17 #ifndef IGNITION_MATH_MATRIX4_HH_ 18 #define IGNITION_MATH_MATRIX4_HH_ 44 memset(this->data, 0,
sizeof(this->data[0][0])*16);
51 memcpy(this->data, _m.data,
sizeof(this->data[0][0])*16);
71 public:
Matrix4(T _v00, T _v01, T _v02, T _v03,
72 T _v10, T _v11, T _v12, T _v13,
73 T _v20, T _v21, T _v22, T _v23,
74 T _v30, T _v31, T _v32, T _v33)
76 this->
Set(_v00, _v01, _v02, _v03,
77 _v10, _v11, _v12, _v13,
78 _v20, _v21, _v22, _v23,
79 _v30, _v31, _v32, _v33);
88 this->
Set(1 - 2*qt.
Y()*qt.
Y() - 2 *qt.
Z()*qt.
Z(),
89 2 * qt.
X()*qt.
Y() - 2*qt.
Z()*qt.
W(),
90 2 * qt.
X() * qt.
Z() + 2 * qt.
Y() * qt.
W(),
93 2 * qt.
X() * qt.
Y() + 2 * qt.
Z() * qt.
W(),
94 1 - 2*qt.
X()*qt.
X() - 2 * qt.
Z()*qt.
Z(),
95 2 * qt.
Y() * qt.
Z() - 2 * qt.
X() * qt.
W(),
98 2 * qt.
X() * qt.
Z() - 2 * qt.
Y() * qt.
W(),
99 2 * qt.
Y() * qt.
Z() + 2 * qt.
X() * qt.
W(),
100 1 - 2 * qt.
X()*qt.
X() - 2 * qt.
Y()*qt.
Y(),
134 T _v00, T _v01, T _v02, T _v03,
135 T _v10, T _v11, T _v12, T _v13,
136 T _v20, T _v21, T _v22, T _v23,
137 T _v30, T _v31, T _v32, T _v33)
139 this->data[0][0] = _v00;
140 this->data[0][1] = _v01;
141 this->data[0][2] = _v02;
142 this->data[0][3] = _v03;
144 this->data[1][0] = _v10;
145 this->data[1][1] = _v11;
146 this->data[1][2] = _v12;
147 this->data[1][3] = _v13;
149 this->data[2][0] = _v20;
150 this->data[2][1] = _v21;
151 this->data[2][2] = _v22;
152 this->data[2][3] = _v23;
154 this->data[3][0] = _v30;
155 this->data[3][1] = _v31;
156 this->data[3][2] = _v32;
157 this->data[3][3] = _v33;
169 this->data[0][0] = _axis.
X()*_axis.
X()*C + c;
170 this->data[0][1] = _axis.
X()*_axis.
Y()*C - _axis.
Z()*s;
171 this->data[0][2] = _axis.
X()*_axis.
Z()*C + _axis.
Y()*s;
173 this->data[1][0] = _axis.
Y()*_axis.
X()*C + _axis.
Z()*s;
174 this->data[1][1] = _axis.
Y()*_axis.
Y()*C + c;
175 this->data[1][2] = _axis.
Y()*_axis.
Z()*C - _axis.
X()*s;
177 this->data[2][0] = _axis.
Z()*_axis.
X()*C - _axis.
Y()*s;
178 this->data[2][1] = _axis.
Z()*_axis.
Y()*C + _axis.
X()*s;
179 this->data[2][2] = _axis.
Z()*_axis.
Z()*C + c;
186 this->data[0][3] = _t.
X();
187 this->data[1][3] = _t.
Y();
188 this->data[2][3] = _t.
Z();
197 this->data[0][3] = _x;
198 this->data[1][3] = _y;
199 this->data[2][3] = _z;
206 return Vector3<T>(this->data[0][3], this->data[1][3], this->data[2][3]);
213 return Vector3<T>(this->data[0][0], this->data[1][1], this->data[2][2]);
223 T trace = this->data[0][0] + this->data[1][1] + this->data[2][2];
227 root = sqrt(trace + 1.0);
229 root = 1.0 / (2.0 * root);
230 q.
X((this->data[2][1] - this->data[1][2]) * root);
231 q.
Y((this->data[0][2] - this->data[2][0]) * root);
232 q.
Z((this->data[1][0] - this->data[0][1]) * root);
236 static unsigned int s_iNext[3] = {1, 2, 0};
238 if (this->data[1][1] > this->data[0][0])
240 if (this->data[2][2] > this->data[i][i])
242 unsigned int j = s_iNext[i];
243 unsigned int k = s_iNext[j];
245 root = sqrt(this->data[i][i] - this->data[j][j] -
246 this->data[k][k] + 1.0);
250 root = 1.0 / (2.0 * root);
251 b = (this->data[j][i] + this->data[i][j]) * root;
252 c = (this->data[k][i] + this->data[i][k]) * root;
257 case 0: q.
X(a);
break;
258 case 1: q.
Y(a);
break;
259 case 2: q.
Z(a);
break;
264 case 0: q.
X(b);
break;
265 case 1: q.
Y(b);
break;
266 case 2: q.
Z(b);
break;
271 case 0: q.
X(c);
break;
272 case 1: q.
Y(c);
break;
273 case 2: q.
Z(c);
break;
276 q.
W((this->data[k][j] - this->data[j][k]) * root);
291 T m31 = this->data[2][0];
292 T m11 = this->data[0][0];
293 T m12 = this->data[0][1];
294 T m13 = this->data[0][2];
295 T m32 = this->data[2][1];
296 T m33 = this->data[2][2];
297 T m21 = this->data[1][0];
299 if (std::abs(m31) >= 1.0)
308 euler.
X(atan2(m12, m13));
309 euler2.
X(atan2(m12, m13));
315 euler.
X(atan2(-m12, -m13));
316 euler2.
X(atan2(-m12, -m13));
324 euler.
X(atan2(m32 / cos(euler.
Y()), m33 / cos(euler.
Y())));
325 euler2.
X(atan2(m32 / cos(euler2.
Y()), m33 / cos(euler2.
Y())));
327 euler.
Z(atan2(m21 / cos(euler.
Y()), m11 / cos(euler.
Y())));
328 euler2.
Z(atan2(m21 / cos(euler2.
Y()), m11 / cos(euler2.
Y())));
348 this->data[0][0] = _s.
X();
349 this->data[1][1] = _s.
Y();
350 this->data[2][2] = _s.
Z();
351 this->data[3][3] = 1.0;
358 public:
void Scale(T _x, T _y, T _z)
360 this->data[0][0] = _x;
361 this->data[1][1] = _y;
362 this->data[2][2] = _z;
363 this->data[3][3] = 1.0;
370 return equal(this->data[3][0], static_cast<T>(0)) &&
371 equal(this->data[3][1], static_cast<T>(0)) &&
372 equal(this->data[3][2], static_cast<T>(0)) &&
373 equal(this->data[3][3], static_cast<T>(1));
389 return Vector3<T>(this->data[0][0]*_v.X() + this->data[0][1]*_v.Y() +
390 this->data[0][2]*_v.Z() + this->data[0][3],
391 this->data[1][0]*_v.X() + this->data[1][1]*_v.Y() +
392 this->data[1][2]*_v.Z() + this->data[1][3],
393 this->data[2][0]*_v.X() + this->data[2][1]*_v.Y() +
394 this->data[2][2]*_v.Z() + this->data[2][3]);
413 _result.
Set(this->data[0][0]*_v.
X() + this->data[0][1]*_v.
Y() +
414 this->data[0][2]*_v.
Z() + this->data[0][3],
415 this->data[1][0]*_v.
X() + this->data[1][1]*_v.
Y() +
416 this->data[1][2]*_v.
Z() + this->data[1][3],
417 this->data[2][0]*_v.
X() + this->data[2][1]*_v.
Y() +
418 this->data[2][2]*_v.
Z() + this->data[2][3]);
426 T v0, v1, v2, v3, v4, v5, t00, t10, t20, t30;
428 v0 = this->data[2][0]*this->data[3][1]
429 - this->data[2][1]*this->data[3][0];
430 v1 = this->data[2][0]*this->data[3][2]
431 - this->data[2][2]*this->data[3][0];
432 v2 = this->data[2][0]*this->data[3][3]
433 - this->data[2][3]*this->data[3][0];
434 v3 = this->data[2][1]*this->data[3][2]
435 - this->data[2][2]*this->data[3][1];
436 v4 = this->data[2][1]*this->data[3][3]
437 - this->data[2][3]*this->data[3][1];
438 v5 = this->data[2][2]*this->data[3][3]
439 - this->data[2][3]*this->data[3][2];
441 t00 = v5*this->data[1][1] - v4*this->data[1][2] + v3*this->data[1][3];
442 t10 = -v5*this->data[1][0] + v2*this->data[1][2] - v1*this->data[1][3];
443 t20 = v4*this->data[1][0] - v2*this->data[1][1] + v0*this->data[1][3];
444 t30 = -v3*this->data[1][0] + v1*this->data[1][1] - v0*this->data[1][2];
446 return t00 * this->data[0][0]
447 + t10 * this->data[0][1]
448 + t20 * this->data[0][2]
449 + t30 * this->data[0][3];
457 T v0, v1, v2, v3, v4, v5, t00, t10, t20, t30;
460 v0 = this->data[2][0]*this->data[3][1] -
461 this->data[2][1]*this->data[3][0];
462 v1 = this->data[2][0]*this->data[3][2] -
463 this->data[2][2]*this->data[3][0];
464 v2 = this->data[2][0]*this->data[3][3] -
465 this->data[2][3]*this->data[3][0];
466 v3 = this->data[2][1]*this->data[3][2] -
467 this->data[2][2]*this->data[3][1];
468 v4 = this->data[2][1]*this->data[3][3] -
469 this->data[2][3]*this->data[3][1];
470 v5 = this->data[2][2]*this->data[3][3] -
471 this->data[2][3]*this->data[3][2];
473 t00 = +(v5*this->data[1][1] -
474 v4*this->data[1][2] + v3*this->data[1][3]);
475 t10 = -(v5*this->data[1][0] -
476 v2*this->data[1][2] + v1*this->data[1][3]);
477 t20 = +(v4*this->data[1][0] -
478 v2*this->data[1][1] + v0*this->data[1][3]);
479 t30 = -(v3*this->data[1][0] -
480 v1*this->data[1][1] + v0*this->data[1][2]);
482 T invDet = 1 / (t00 * this->data[0][0] + t10 * this->data[0][1] +
483 t20 * this->data[0][2] + t30 * this->data[0][3]);
485 r(0, 0) = t00 * invDet;
486 r(1, 0) = t10 * invDet;
487 r(2, 0) = t20 * invDet;
488 r(3, 0) = t30 * invDet;
490 r(0, 1) = -(v5*this->data[0][1] -
491 v4*this->data[0][2] + v3*this->data[0][3]) * invDet;
492 r(1, 1) = +(v5*this->data[0][0] -
493 v2*this->data[0][2] + v1*this->data[0][3]) * invDet;
494 r(2, 1) = -(v4*this->data[0][0] -
495 v2*this->data[0][1] + v0*this->data[0][3]) * invDet;
496 r(3, 1) = +(v3*this->data[0][0] -
497 v1*this->data[0][1] + v0*this->data[0][2]) * invDet;
499 v0 = this->data[1][0]*this->data[3][1] -
500 this->data[1][1]*this->data[3][0];
501 v1 = this->data[1][0]*this->data[3][2] -
502 this->data[1][2]*this->data[3][0];
503 v2 = this->data[1][0]*this->data[3][3] -
504 this->data[1][3]*this->data[3][0];
505 v3 = this->data[1][1]*this->data[3][2] -
506 this->data[1][2]*this->data[3][1];
507 v4 = this->data[1][1]*this->data[3][3] -
508 this->data[1][3]*this->data[3][1];
509 v5 = this->data[1][2]*this->data[3][3] -
510 this->data[1][3]*this->data[3][2];
512 r(0, 2) = +(v5*this->data[0][1] -
513 v4*this->data[0][2] + v3*this->data[0][3]) * invDet;
514 r(1, 2) = -(v5*this->data[0][0] -
515 v2*this->data[0][2] + v1*this->data[0][3]) * invDet;
516 r(2, 2) = +(v4*this->data[0][0] -
517 v2*this->data[0][1] + v0*this->data[0][3]) * invDet;
518 r(3, 2) = -(v3*this->data[0][0] -
519 v1*this->data[0][1] + v0*this->data[0][2]) * invDet;
521 v0 = this->data[2][1]*this->data[1][0] -
522 this->data[2][0]*this->data[1][1];
523 v1 = this->data[2][2]*this->data[1][0] -
524 this->data[2][0]*this->data[1][2];
525 v2 = this->data[2][3]*this->data[1][0] -
526 this->data[2][0]*this->data[1][3];
527 v3 = this->data[2][2]*this->data[1][1] -
528 this->data[2][1]*this->data[1][2];
529 v4 = this->data[2][3]*this->data[1][1] -
530 this->data[2][1]*this->data[1][3];
531 v5 = this->data[2][3]*this->data[1][2] -
532 this->data[2][2]*this->data[1][3];
534 r(0, 3) = -(v5*this->data[0][1] -
535 v4*this->data[0][2] + v3*this->data[0][3]) * invDet;
536 r(1, 3) = +(v5*this->data[0][0] -
537 v2*this->data[0][2] + v1*this->data[0][3]) * invDet;
538 r(2, 3) = -(v4*this->data[0][0] -
539 v2*this->data[0][1] + v0*this->data[0][3]) * invDet;
540 r(3, 3) = +(v3*this->data[0][0] -
541 v1*this->data[0][1] + v0*this->data[0][2]) * invDet;
549 std::swap(this->data[0][1], this->data[1][0]);
550 std::swap(this->data[0][2], this->data[2][0]);
551 std::swap(this->data[0][3], this->data[3][0]);
552 std::swap(this->data[1][2], this->data[2][1]);
553 std::swap(this->data[1][3], this->data[3][1]);
554 std::swap(this->data[2][3], this->data[3][2]);
562 this->data[0][0], this->data[1][0], this->data[2][0], this->data[3][0],
563 this->data[0][1], this->data[1][1], this->data[2][1], this->data[3][1],
564 this->data[0][2], this->data[1][2], this->data[2][2], this->data[3][2],
565 this->data[0][3], this->data[1][3], this->data[2][3], this->data[3][3]);
573 memcpy(this->data, _mat.data,
sizeof(this->data[0][0])*16);
582 this->data[0][0] = _mat(0, 0);
583 this->data[0][1] = _mat(0, 1);
584 this->data[0][2] = _mat(0, 2);
586 this->data[1][0] = _mat(1, 0);
587 this->data[1][1] = _mat(1, 1);
588 this->data[1][2] = _mat(1, 2);
590 this->data[2][0] = _mat(2, 0);
591 this->data[2][1] = _mat(2, 1);
592 this->data[2][2] = _mat(2, 2);
603 this->data[0][0] * _m2(0, 0) +
604 this->data[0][1] * _m2(1, 0) +
605 this->data[0][2] * _m2(2, 0) +
606 this->data[0][3] * _m2(3, 0),
608 this->data[0][0] * _m2(0, 1) +
609 this->data[0][1] * _m2(1, 1) +
610 this->data[0][2] * _m2(2, 1) +
611 this->data[0][3] * _m2(3, 1),
613 this->data[0][0] * _m2(0, 2) +
614 this->data[0][1] * _m2(1, 2) +
615 this->data[0][2] * _m2(2, 2) +
616 this->data[0][3] * _m2(3, 2),
618 this->data[0][0] * _m2(0, 3) +
619 this->data[0][1] * _m2(1, 3) +
620 this->data[0][2] * _m2(2, 3) +
621 this->data[0][3] * _m2(3, 3),
623 this->data[1][0] * _m2(0, 0) +
624 this->data[1][1] * _m2(1, 0) +
625 this->data[1][2] * _m2(2, 0) +
626 this->data[1][3] * _m2(3, 0),
628 this->data[1][0] * _m2(0, 1) +
629 this->data[1][1] * _m2(1, 1) +
630 this->data[1][2] * _m2(2, 1) +
631 this->data[1][3] * _m2(3, 1),
633 this->data[1][0] * _m2(0, 2) +
634 this->data[1][1] * _m2(1, 2) +
635 this->data[1][2] * _m2(2, 2) +
636 this->data[1][3] * _m2(3, 2),
638 this->data[1][0] * _m2(0, 3) +
639 this->data[1][1] * _m2(1, 3) +
640 this->data[1][2] * _m2(2, 3) +
641 this->data[1][3] * _m2(3, 3),
643 this->data[2][0] * _m2(0, 0) +
644 this->data[2][1] * _m2(1, 0) +
645 this->data[2][2] * _m2(2, 0) +
646 this->data[2][3] * _m2(3, 0),
648 this->data[2][0] * _m2(0, 1) +
649 this->data[2][1] * _m2(1, 1) +
650 this->data[2][2] * _m2(2, 1) +
651 this->data[2][3] * _m2(3, 1),
653 this->data[2][0] * _m2(0, 2) +
654 this->data[2][1] * _m2(1, 2) +
655 this->data[2][2] * _m2(2, 2) +
656 this->data[2][3] * _m2(3, 2),
658 this->data[2][0] * _m2(0, 3) +
659 this->data[2][1] * _m2(1, 3) +
660 this->data[2][2] * _m2(2, 3) +
661 this->data[2][3] * _m2(3, 3),
663 this->data[3][0] * _m2(0, 0) +
664 this->data[3][1] * _m2(1, 0) +
665 this->data[3][2] * _m2(2, 0) +
666 this->data[3][3] * _m2(3, 0),
668 this->data[3][0] * _m2(0, 1) +
669 this->data[3][1] * _m2(1, 1) +
670 this->data[3][2] * _m2(2, 1) +
671 this->data[3][3] * _m2(3, 1),
673 this->data[3][0] * _m2(0, 2) +
674 this->data[3][1] * _m2(1, 2) +
675 this->data[3][2] * _m2(2, 2) +
676 this->data[3][3] * _m2(3, 2),
678 this->data[3][0] * _m2(0, 3) +
679 this->data[3][1] * _m2(1, 3) +
680 this->data[3][2] * _m2(2, 3) +
681 this->data[3][3] * _m2(3, 3));
690 this->data[0][0]*_vec.
X() + this->data[0][1]*_vec.
Y() +
691 this->data[0][2]*_vec.
Z() + this->data[0][3],
692 this->data[1][0]*_vec.
X() + this->data[1][1]*_vec.
Y() +
693 this->data[1][2]*_vec.
Z() + this->data[1][3],
694 this->data[2][0]*_vec.
X() + this->data[2][1]*_vec.
Y() +
695 this->data[2][2]*_vec.
Z() + this->data[2][3]);
705 const size_t _col)
const 718 public:
inline T &
operator()(
const size_t _row,
const size_t _col)
731 return equal<T>(this->data[0][0], _m(0, 0), _tol)
732 && equal<T>(this->data[0][1], _m(0, 1), _tol)
733 && equal<T>(this->data[0][2], _m(0, 2), _tol)
734 && equal<T>(this->data[0][3], _m(0, 3), _tol)
735 && equal<T>(this->data[1][0], _m(1, 0), _tol)
736 && equal<T>(this->data[1][1], _m(1, 1), _tol)
737 && equal<T>(this->data[1][2], _m(1, 2), _tol)
738 && equal<T>(this->data[1][3], _m(1, 3), _tol)
739 && equal<T>(this->data[2][0], _m(2, 0), _tol)
740 && equal<T>(this->data[2][1], _m(2, 1), _tol)
741 && equal<T>(this->data[2][2], _m(2, 2), _tol)
742 && equal<T>(this->data[2][3], _m(2, 3), _tol)
743 && equal<T>(this->data[3][0], _m(3, 0), _tol)
744 && equal<T>(this->data[3][1], _m(3, 1), _tol)
745 && equal<T>(this->data[3][2], _m(3, 2), _tol)
746 && equal<T>(this->data[3][3], _m(3, 3), _tol);
755 return this->
Equal(_m, static_cast<T>(1e-6));
763 return !(*
this == _m);
801 _in.setf(std::ios_base::skipws);
803 _in >> d[0] >> d[1] >> d[2] >> d[3]
804 >> d[4] >> d[5] >> d[6] >> d[7]
805 >> d[8] >> d[9] >> d[10] >> d[11]
806 >> d[12] >> d[13] >> d[14] >> d[15];
808 _m.
Set(d[0], d[1], d[2], d[3],
809 d[4], d[5], d[6], d[7],
810 d[8], d[9], d[10], d[11],
811 d[12], d[13], d[14], d[15]);
828 auto front = _target - _eye;
849 auto left = up.
Cross(front);
858 up = (front.Cross(left)).Normalize();
861 front.X(), left.X(), up.X(), _eye.X(),
862 front.Y(), left.Y(), up.Y(), _eye.Y(),
863 front.Z(), left.Z(), up.Z(), _eye.Z(),
868 private: T data[4][4];
const T & W() const
Get the w component.
Definition: Quaternion.hh:935
T X() const
Get the x value.
Definition: Vector3.hh:635
Pose3< T > Pose() const
Get the transformation as math::Pose.
Definition: Matrix4.hh:339
static const Matrix4< T > Identity
Identity matrix.
Definition: Matrix4.hh:36
const T & Z() const
Get the z component.
Definition: Quaternion.hh:956
Vector3< T > operator*(const Vector3< T > &_vec) const
Multiplication operator.
Definition: Matrix4.hh:687
const Vector3< T > & Pos() const
Get the position.
Definition: Pose3.hh:345
void Set(T _x=0, T _y=0, T _z=0)
Set the contents of the vector.
Definition: Vector3.hh:175
T precision(const T &_a, const unsigned int &_precision)
get value at a specified precision
Definition: Helpers.hh:576
const Matrix4< T > & operator=(const Matrix3< T > &_mat)
Equal operator for 3x3 matrix.
Definition: Matrix4.hh:580
Matrix4< int > Matrix4i
Definition: Matrix4.hh:885
static const size_t IGN_THREE_SIZE_T
size_t type with a value of 3
Definition: Helpers.hh:222
static const size_t IGN_ZERO_SIZE_T
size_t type with a value of 0
Definition: Helpers.hh:213
Matrix4(const Matrix4< T > &_m)
Copy constructor.
Definition: Matrix4.hh:49
Encapsulates a position and rotation in three space.
Definition: Pose3.hh:30
Matrix4(const Pose3< T > &_pose)
Construct Matrix4 from a math::Pose3.
Definition: Matrix4.hh:108
bool TransformAffine(const Vector3< T > &_v, Vector3< T > &_result) const
Perform an affine transformation.
Definition: Matrix4.hh:407
friend std::istream & operator>>(std::istream &_in, ignition::math::Matrix4< T > &_m)
Stream extraction operator.
Definition: Matrix4.hh:797
A 4x4 matrix class.
Definition: Matrix4.hh:33
static const Matrix4< T > Zero
Zero matrix.
Definition: Matrix4.hh:39
bool equal(const T &_a, const T &_b, const T &_epsilon=T(1e-6))
check if two values are equal, within a tolerance
Definition: Helpers.hh:542
void Scale(const Vector3< T > &_s)
Set the scale.
Definition: Matrix4.hh:346
bool operator==(const Matrix4< T > &_m) const
Equality operator.
Definition: Matrix4.hh:753
Matrix4< T > operator*(const Matrix4< T > &_m2) const
Multiplication operator.
Definition: Matrix4.hh:600
Vector3 Normalize()
Normalize the vector length.
Definition: Vector3.hh:129
bool operator!=(const Matrix4< T > &_m) const
Inequality test operator.
Definition: Matrix4.hh:761
Quaternion< T > Rotation() const
Get the rotation as a quaternion.
Definition: Matrix4.hh:218
A 3x3 matrix class.
Definition: Matrix3.hh:35
Matrix4()
Constructor.
Definition: Matrix4.hh:42
const T & Y() const
Get the y component.
Definition: Quaternion.hh:949
T Determinant() const
Return the determinant of the matrix.
Definition: Matrix4.hh:424
T Y() const
Get the y value.
Definition: Vector3.hh:642
Matrix4(T _v00, T _v01, T _v02, T _v03, T _v10, T _v11, T _v12, T _v13, T _v20, T _v21, T _v22, T _v23, T _v30, T _v31, T _v32, T _v33)
Constructor.
Definition: Matrix4.hh:71
T & operator()(const size_t _row, const size_t _col)
Get a mutable version the value at the specified row, column index.
Definition: Matrix4.hh:718
void Transpose()
Transpose this matrix.
Definition: Matrix4.hh:547
Matrix4< T > Transposed() const
Return the transpose of this matrix.
Definition: Matrix4.hh:559
void Axis(const Vector3< T > &_axis, T _angle)
Set the upper-left 3x3 matrix from an axis and angle.
Definition: Matrix4.hh:163
Vector3< T > EulerRotation(bool _firstSolution) const
Get the rotation as a Euler angles.
Definition: Matrix4.hh:286
void Scale(T _x, T _y, T _z)
Set the scale.
Definition: Matrix4.hh:358
static const double IGN_DEPRECATED(2) DPRCT_MAX_D
const T & X() const
Get the x component.
Definition: Quaternion.hh:942
The Vector3 class represents the generic vector containing 3 elements.
Definition: Vector3.hh:36
Matrix4< float > Matrix4f
Definition: Matrix4.hh:887
T Z() const
Get the z value.
Definition: Vector3.hh:649
bool Equal(const Matrix4 &_m, const T &_tol) const
Equality test with tolerance.
Definition: Matrix4.hh:729
bool IsAffine() const
Return true if the matrix is affine.
Definition: Matrix4.hh:368
Vector3 Cross(const Vector3< T > &_v) const
Return the cross product of this vector with another vector.
Definition: Vector3.hh:185
Matrix4< T > Inverse() const
Return the inverse matrix.
Definition: Matrix4.hh:455
void Translate(const Vector3< T > &_t)
Set the translational values [ (0, 3) (1, 3) (2, 3) ].
Definition: Matrix4.hh:184
Vector3< T > TransformAffine(const Vector3< T > &_v) const IGN_DEPRECATED(3.0)
Perform an affine transformation.
Definition: Matrix4.hh:382
virtual ~Matrix4()
Destructor.
Definition: Matrix4.hh:114
void Translate(T _x, T _y, T _z)
Set the translational values [ (0, 3) (1, 3) (2, 3) ].
Definition: Matrix4.hh:195
Vector3< T > Scale() const
Get the scale values as a Vector3<T>
Definition: Matrix4.hh:211
static Matrix4< T > LookAt(const Vector3< T > &_eye, const Vector3< T > &_target, const Vector3< T > &_up=Vector3< T >::UnitZ)
Get transform which translates to _eye and rotates the X axis so it faces the _target.
Definition: Matrix4.hh:824
const T & operator()(const size_t _row, const size_t _col) const
Get the value at the specified row, column index.
Definition: Matrix4.hh:704
void Set(T _v00, T _v01, T _v02, T _v03, T _v10, T _v11, T _v12, T _v13, T _v20, T _v21, T _v22, T _v23, T _v30, T _v31, T _v32, T _v33)
Change the values.
Definition: Matrix4.hh:133
Vector3< T > Translation() const
Get the translational values as a Vector3.
Definition: Matrix4.hh:204
Matrix4< double > Matrix4d
Definition: Matrix4.hh:886
void Normalize()
Normalize the quaternion.
Definition: Quaternion.hh:220
A quaternion class.
Definition: Matrix3.hh:30
Matrix4(const Quaternion< T > &_q)
Construct Matrix4 from a quaternion.
Definition: Matrix4.hh:84
#define IGN_PI
Define IGN_PI, IGN_PI_2, and IGN_PI_4.
Definition: Helpers.hh:173
Matrix4< T > & operator=(const Matrix4< T > &_mat)
Equal operator.
Definition: Matrix4.hh:571
friend std::ostream & operator<<(std::ostream &_out, const ignition::math::Matrix4< T > &_m)
Stream insertion operator.
Definition: Matrix4.hh:770
T clamp(T _v, T _min, T _max)
Simple clamping function.
Definition: Helpers.hh:392