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Examples of computations

Q-periodic modules

A — finite dimensional algebra

Recall: A module M is Q-periodic if Q} (M) ~ M for some
positive integer n.

In some situations the period can indicate the degree of
generators in the Hochschild cohomology ring,
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Examples of computations

Periodic algebras

A — finite dimensional k-algebra
A"V = A°P @, A\ — enveloping algebra
Recall: A is a periodic algebra if A is a Q-periodic module, that
iS Qenv (A) =~ A @s A*™-modules.
Facts:
@ Ais a selfinjective algebra.
@ All modules are Q-periodic.

@ The Hochschild cohomology modulo nilpotent elements is
isomorphic to k[x], where the degree of x is the period.
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Examples of computations

Finding quivers

Recall: A = kQ// with | admissible is a basic algebra, that is,
A= ®l_4P;

with P; indecomposable, then P; % P; for i # .
Facts:

@ A —finite dimensional algebra.

@ rad A = (arrows) /.

@ A/rad A ~ KQ/L_ . Jinear span of vertices.

— (arrows)/l —
(]
2
rad A/ rad® A ~ (arr(l)ws) / <arrolws>
__ (arrows)
~ (arrows)?

~ linear span of arrows
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Examples of computations

Finding quivers

A — finite dimensional algebra with A/ rad A ~ k" for some n.

Algorithm:

@ Lift a complete set of orthogonal idempotents from A/ rad A
to a complete set of orthogonal idempotents in A, say
{ej}_ —the vertices.

@ Compute gjradA/ rad® Aej, find a basis and lift back to
e rad Ag; — the arrows from vertex i to vertex j.

@ Construct a quiver Q from this and a homomorphism
v: kKQ — A.

@ Find the kernel of .
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Examples of computations

Trivial extensions

A — finite dimensional algebra

T(N) = AN @ D(A) — trivial extension,

(X)) - (N ) = (ON, M+ A)
@ rad T(A) =rad A @ D(N).

@ rad® T(A) = rad® A @ D(A) rad A + rad AD(A).
rad T(A) . radA D(A)
rad2 T(A) — rad2 A ® D(A) rad A+rad AD(A)

@ T(A) is a symmetric algebra, I' ~ D(I') as bimodules.
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Tilting modules

AR-theory

Recall that a short exact sequence

0—>Ai>B£>C—>O

is almost split exact if it is not split exact and

@ for any not splittable epimorphism t: X — C there is a
homomorphism t': X — B such that gt’ = t,

@ for any not splittable monomorphism s: A — Y there is a
homomorphism s’': A — Y such that s'f = s.
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Tilting modules

AR-theory

Facts:

@ C and A are indecomposable modules.

@ A~ DTrCand C ~ Tr D(A).

@ For any indecomposable non-projective module C and for
any indecomposable non-injective module A, there is an
almost split sequence ending in C and starting in A.

@ An almost split sequence is a generator of the socle of
ExtA(C, DTr(C)) as an End(C)-module.
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Tilting modules

APR-tilting

A = kQ — hereditary, Q no oriented cycle and connected.
S simple projetive module (and not injective)
A is a classical tilting module T:
@ pdpyT > 1,
@ Ext\(T,T) = (0),
@ the number of indecomposable non-isomorphic summands

in T is equal to the number of isomorphism class of simple
modules of A.

AN=P&S— T =PaTrD(S) - APR-ilting
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