The composition of maps g*d is a derivation M → N, with the composition g*f defining the module structure of N over M, where f: M → L defines the module structure of L over M.
i1 : L = lieAlgebra{a,b} o1 = L o1 : LieAlgebra |
i2 : d = lieDerivation{a a b,b b a} o2 = d o2 : LieDerivation |
i3 : describe d o3 = a => - (a b a) b => (b b a) map => id_L sign => 0 weight => {2, 0} source => L target => L |
i4 : N = lieAlgebra{a1,b1} o4 = N o4 : LieAlgebra |
i5 : g = map(N,L,{b1,a1}) o5 = g o5 : LieAlgebraMap |
i6 : h = g*d o6 = h o6 : LieDerivation |
i7 : describe h o7 = a => (b1 b1 a1) b => - (a1 b1 a1) map => g sign => 0 weight => {2, 0} source => L target => N |