We compute the equation and nonminimal resolution F of the carpet of type (a,b) where a ≥b over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5 o1 = (5, 5) o1 : Sequence |
i2 : elapsedTime T=carpetBettiTable(a,b,3) -- 0.0038182 seconds elapsed -- 0.0116918 seconds elapsed -- 0.0464368 seconds elapsed -- 0.0202119 seconds elapsed -- 0.0061391 seconds elapsed -- 0.328346 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o2 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o2 : BettiTally |
i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3); ZZ o3 : Ideal of --[x , x , x , x , x , x , y , y , y , y , y , y ] 3 0 1 2 3 4 5 0 1 2 3 4 5 |
i4 : elapsedTime T'=minimalBetti J -- 0.155039 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o4 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o4 : BettiTally |
i5 : T-T' 0 1 2 3 4 5 6 7 8 9 o5 = total: . . . . . . . . . . 1: . . . . . . . . . . 2: . . . . . . . . . . 3: . . . . . . . . . . o5 : BettiTally |
i6 : elapsedTime h=carpetBettiTables(6,6); -- 0.00852258 seconds elapsed -- 0.066848 seconds elapsed -- 0.229907 seconds elapsed -- 2.01713 seconds elapsed -- 0.787794 seconds elapsed -- 0.0837333 seconds elapsed -- 0.0127484 seconds elapsed -- 6.36826 seconds elapsed |
i7 : carpetBettiTable(h,7) 0 1 2 3 4 5 6 7 8 9 10 11 o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 . . . . . . 2: . . . . . . 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o7 : BettiTally |
i8 : carpetBettiTable(h,5) 0 1 2 3 4 5 6 7 8 9 10 11 o8 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 120 . . . . . 2: . . . . . 120 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o8 : BettiTally |