The optional input given above is not relevant for Lie algebras. Instead of generators one may use the abbreviation gens. If S is of type FGLieIdeal, then the generators of S are the generators of S as an ideal. If S is of type FGLieSubAlgebra, then the generators of S are the generators of S as a Lie subalgebra. If S is of type LieSubSpace given by a finite set of generators, then the generators of S are the generators of S as a Lie subspace. In all other cases, if S is of type LieSubSpace, then the function generators applied to S is not defined.
i1 : F=lieAlgebra{a,b,c} o1 = F o1 : LieAlgebra |
i2 : I=lieIdeal{a a b,a a c} o2 = I o2 : FGLieIdeal |
i3 : L=F/I o3 = L o3 : LieAlgebra |
i4 : gens I o4 = { - (a b a), - (a c a)} o4 : List |
i5 : J=kernel map(L,F) o5 = J o5 : LieIdeal |
i6 : gens J the subspace has no generators |