FrobeniusThresholds : Index
-
Bounds -- an option for the function fpt specifying lower and upper bounds for the F-pure threshold
-
compareFPT -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(..., AssumeDomain => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(..., AtOrigin => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(..., FrobeniusRootStrategy => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(..., MaxCartierIndex => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(..., QGorensteinIndex => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(..., Verbose => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
compareFPT(Number,RingElement) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
-
ContainmentTest -- an option for the function nu specifying the type of containment of powers of ideals to test
-
FinalAttempt -- an option for the function fpt to perform a final check attempting find an F-pure threshold
-
fpt -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(..., AtOrigin => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(..., Attempts => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(..., Bounds => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(..., DepthOfSearch => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(..., FinalAttempt => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(..., GuessStrategy => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(..., UseSpecialAlgorithms => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(..., Verbose => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(List,List) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
fpt(RingElement) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
-
FrobeniusPower -- a valid value for the option ContainmentTest
-
FrobeniusRoot -- a valid value for the option ContainmentTest
-
FrobeniusThresholds -- a package for computing F-pure thresholds and related invariants
-
GlobalFrobeniusRoot -- a valid value for the option ContainmentTest
-
GuessStrategy -- an option for the function fpt to specify the criterion used for selecting numbers to check
-
isFJumpingExponent -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(..., AssumeDomain => ...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(..., AtOrigin => ...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(..., FrobeniusRootStrategy => ...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(..., MaxCartierIndex => ...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(..., QGorensteinIndex => ...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(..., Verbose => ...) -- whether a given number is an F-jumping exponent
-
isFJumpingExponent(Number,RingElement) -- whether a given number is an F-jumping exponent
-
isFPT -- checks whether a given rational number is the F-pure threshold
-
isFPT(..., AssumeDomain => ...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(..., AtOrigin => ...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(..., FrobeniusRootStrategy => ...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(..., MaxCartierIndex => ...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(..., QGorensteinIndex => ...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(..., Verbose => ...) -- checks whether a given rational number is the F-pure threshold
-
isFPT(Number,RingElement) -- checks whether a given rational number is the F-pure threshold
-
isSimpleNormalCrossing -- whether a polynomial is a product of factors that are in simple normal crossing
-
isSimpleNormalCrossing(..., AtOrigin => ...) -- whether a polynomial is a product of factors that are in simple normal crossing
-
isSimpleNormalCrossing(..., Verbose => ...) -- whether a polynomial is a product of factors that are in simple normal crossing
-
isSimpleNormalCrossing(Product) -- whether a polynomial is a product of factors that are in simple normal crossing
-
isSimpleNormalCrossing(RingElement) -- whether a polynomial is a product of factors that are in simple normal crossing
-
nu -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(..., AtOrigin => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(..., ContainmentTest => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(..., ReturnList => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(..., Search => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(..., UseSpecialAlgorithms => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(..., Verbose => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(ZZ,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(ZZ,Ideal,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(ZZ,RingElement) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
nu(ZZ,RingElement,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
-
ReturnList -- an option for the function nu to return a list of successive nu values
-
Search -- an option for the function nu to specify the search method for testing containments of powers of ideals
-
StandardPower -- a valid value for the option ContainmentTest
-
UseSpecialAlgorithms -- an option for the functions fpt and nu to use special algorithms to speed up computations