We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00385713, .00158122) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .0111544, .0599961) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.0125901, .0209399}, {.0126054, .00777136}, {.0185606, .0119953}, ------------------------------------------------------------------------ {.0127529, .0172857}, {.0126978, .0227869}, {.0138855, .0206728}, ------------------------------------------------------------------------ {.012141, .0146424}, {.0396071, .0136777}, {.0114317, .0102072}, ------------------------------------------------------------------------ {.0145399, .0142027}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0160812034 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .015418182 o7 : RR (of precision 53) |