|
def | __init__ (self, solver=None, ctx=None, logFile=None) |
|
def | __del__ (self) |
|
def | set (self, *args, **keys) |
|
def | push (self) |
|
def | pop (self, num=1) |
|
def | num_scopes (self) |
|
def | reset (self) |
|
def | assert_exprs (self, *args) |
|
def | add (self, *args) |
|
def | __iadd__ (self, fml) |
|
def | append (self, *args) |
|
def | insert (self, *args) |
|
def | assert_and_track (self, a, p) |
|
def | check (self, *assumptions) |
|
def | model (self) |
|
def | import_model_converter (self, other) |
|
def | unsat_core (self) |
|
def | consequences (self, assumptions, variables) |
|
def | from_file (self, filename) |
|
def | from_string (self, s) |
|
def | cube (self, vars=None) |
|
def | cube_vars (self) |
|
def | proof (self) |
|
def | assertions (self) |
|
def | units (self) |
|
def | non_units (self) |
|
def | trail_levels (self) |
|
def | trail (self) |
|
def | statistics (self) |
|
def | reason_unknown (self) |
|
def | help (self) |
|
def | param_descrs (self) |
|
def | __repr__ (self) |
|
def | translate (self, target) |
|
def | __copy__ (self) |
|
def | __deepcopy__ (self, memo={}) |
|
def | sexpr (self) |
|
def | dimacs (self) |
|
def | to_smt2 (self) |
|
def | use_pp (self) |
|
Solver API provides methods for implementing the main SMT 2.0 commands: push, pop, check, get-model, etc.
Definition at line 6436 of file z3py.py.
◆ __init__()
def __init__ |
( |
|
self, |
|
|
|
solver = None , |
|
|
|
ctx = None , |
|
|
|
logFile = None |
|
) |
| |
Definition at line 6439 of file z3py.py.
6439 def __init__(self, solver=None, ctx=None, logFile=None):
6440 assert solver
is None or ctx
is not None
6441 self.ctx = _get_ctx(ctx)
6442 self.backtrack_level = 4000000000
6447 self.solver = solver
6449 if logFile
is not None:
6450 self.set(
"solver.smtlib2_log", logFile)
◆ __del__()
Definition at line 6452 of file z3py.py.
6453 if self.solver
is not None and self.ctx.ref()
is not None:
◆ __copy__()
Definition at line 6874 of file z3py.py.
6875 return self.translate(self.ctx)
◆ __deepcopy__()
def __deepcopy__ |
( |
|
self, |
|
|
|
memo = {} |
|
) |
| |
Definition at line 6877 of file z3py.py.
6877 def __deepcopy__(self, memo={}):
6878 return self.translate(self.ctx)
◆ __iadd__()
def __iadd__ |
( |
|
self, |
|
|
|
fml |
|
) |
| |
Definition at line 6574 of file z3py.py.
6574 def __iadd__(self, fml):
◆ __repr__()
Return a formatted string with all added constraints.
Definition at line 6857 of file z3py.py.
6858 """Return a formatted string with all added constraints."""
6859 return obj_to_string(self)
◆ add()
Assert constraints into the solver.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2)
>>> s
[x > 0, x < 2]
Definition at line 6563 of file z3py.py.
6563 def add(self, *args):
6564 """Assert constraints into the solver.
6568 >>> s.add(x > 0, x < 2)
6572 self.assert_exprs(*args)
Referenced by Solver.__iadd__(), Fixedpoint.__iadd__(), and Optimize.__iadd__().
◆ append()
def append |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Assert constraints into the solver.
>>> x = Int('x')
>>> s = Solver()
>>> s.append(x > 0, x < 2)
>>> s
[x > 0, x < 2]
Definition at line 6578 of file z3py.py.
6578 def append(self, *args):
6579 """Assert constraints into the solver.
6583 >>> s.append(x > 0, x < 2)
6587 self.assert_exprs(*args)
◆ assert_and_track()
def assert_and_track |
( |
|
self, |
|
|
|
a, |
|
|
|
p |
|
) |
| |
Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
If `p` is a string, it will be automatically converted into a Boolean constant.
>>> x = Int('x')
>>> p3 = Bool('p3')
>>> s = Solver()
>>> s.set(unsat_core=True)
>>> s.assert_and_track(x > 0, 'p1')
>>> s.assert_and_track(x != 1, 'p2')
>>> s.assert_and_track(x < 0, p3)
>>> print(s.check())
unsat
>>> c = s.unsat_core()
>>> len(c)
2
>>> Bool('p1') in c
True
>>> Bool('p2') in c
False
>>> p3 in c
True
Definition at line 6600 of file z3py.py.
6600 def assert_and_track(self, a, p):
6601 """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
6603 If `p` is a string, it will be automatically converted into a Boolean constant.
6608 >>> s.set(unsat_core=True)
6609 >>> s.assert_and_track(x > 0, 'p1')
6610 >>> s.assert_and_track(x != 1, 'p2')
6611 >>> s.assert_and_track(x < 0, p3)
6612 >>> print(s.check())
6614 >>> c = s.unsat_core()
6624 if isinstance(p, str):
6625 p =
Bool(p, self.ctx)
6626 _z3_assert(isinstance(a, BoolRef),
"Boolean expression expected")
6627 _z3_assert(isinstance(p, BoolRef)
and is_const(p),
"Boolean expression expected")
◆ assert_exprs()
def assert_exprs |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Assert constraints into the solver.
>>> x = Int('x')
>>> s = Solver()
>>> s.assert_exprs(x > 0, x < 2)
>>> s
[x > 0, x < 2]
Definition at line 6544 of file z3py.py.
6544 def assert_exprs(self, *args):
6545 """Assert constraints into the solver.
6549 >>> s.assert_exprs(x > 0, x < 2)
6553 args = _get_args(args)
6556 if isinstance(arg, Goal)
or isinstance(arg, AstVector):
Referenced by Solver.add(), Fixedpoint.add(), Optimize.add(), Solver.append(), Fixedpoint.append(), Solver.insert(), and Fixedpoint.insert().
◆ assertions()
Return an AST vector containing all added constraints.
>>> s = Solver()
>>> s.assertions()
[]
>>> a = Int('a')
>>> s.add(a > 0)
>>> s.add(a < 10)
>>> s.assertions()
[a > 0, a < 10]
Definition at line 6781 of file z3py.py.
6781 def assertions(self):
6782 """Return an AST vector containing all added constraints.
Referenced by Solver.to_smt2().
◆ check()
def check |
( |
|
self, |
|
|
* |
assumptions |
|
) |
| |
Check whether the assertions in the given solver plus the optional assumptions are consistent or not.
>>> x = Int('x')
>>> s = Solver()
>>> s.check()
sat
>>> s.add(x > 0, x < 2)
>>> s.check()
sat
>>> s.model().eval(x)
1
>>> s.add(x < 1)
>>> s.check()
unsat
>>> s.reset()
>>> s.add(2**x == 4)
>>> s.check()
unknown
Definition at line 6630 of file z3py.py.
6630 def check(self, *assumptions):
6631 """Check whether the assertions in the given solver plus the optional assumptions are consistent or not.
6637 >>> s.add(x > 0, x < 2)
6640 >>> s.model().eval(x)
6646 >>> s.add(2**x == 4)
6650 assumptions = _get_args(assumptions)
6651 num = len(assumptions)
6652 _assumptions = (Ast * num)()
6653 for i
in range(num):
6654 _assumptions[i] = assumptions[i].as_ast()
6656 return CheckSatResult(r)
◆ consequences()
def consequences |
( |
|
self, |
|
|
|
assumptions, |
|
|
|
variables |
|
) |
| |
Determine fixed values for the variables based on the solver state and assumptions.
>>> s = Solver()
>>> a, b, c, d = Bools('a b c d')
>>> s.add(Implies(a,b), Implies(b, c))
>>> s.consequences([a],[b,c,d])
(sat, [Implies(a, b), Implies(a, c)])
>>> s.consequences([Not(c),d],[a,b,c,d])
(sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
Definition at line 6713 of file z3py.py.
6713 def consequences(self, assumptions, variables):
6714 """Determine fixed values for the variables based on the solver state and assumptions.
6716 >>> a, b, c, d = Bools('a b c d')
6717 >>> s.add(Implies(a,b), Implies(b, c))
6718 >>> s.consequences([a],[b,c,d])
6719 (sat, [Implies(a, b), Implies(a, c)])
6720 >>> s.consequences([Not(c),d],[a,b,c,d])
6721 (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
6723 if isinstance(assumptions, list):
6724 _asms = AstVector(
None, self.ctx)
6725 for a
in assumptions:
6728 if isinstance(variables, list):
6729 _vars = AstVector(
None, self.ctx)
6733 _z3_assert(isinstance(assumptions, AstVector),
"ast vector expected")
6734 _z3_assert(isinstance(variables, AstVector),
"ast vector expected")
6735 consequences = AstVector(
None, self.ctx)
6737 sz = len(consequences)
6738 consequences = [ consequences[i]
for i
in range(sz) ]
6739 return CheckSatResult(r), consequences
◆ cube()
def cube |
( |
|
self, |
|
|
|
vars = None |
|
) |
| |
Get set of cubes
The method takes an optional set of variables that restrict which
variables may be used as a starting point for cubing.
If vars is not None, then the first case split is based on a variable in
this set.
Definition at line 6749 of file z3py.py.
6749 def cube(self, vars = None):
6751 The method takes an optional set of variables that restrict which
6752 variables may be used as a starting point for cubing.
6753 If vars is not None, then the first case split is based on a variable in
6756 self.cube_vs = AstVector(
None, self.ctx)
6757 if vars
is not None:
6759 self.cube_vs.push(v)
6761 lvl = self.backtrack_level
6762 self.backtrack_level = 4000000000
6763 r = AstVector(
Z3_solver_cube(self.ctx.ref(), self.solver, self.cube_vs.vector, lvl), self.ctx)
6764 if (len(r) == 1
and is_false(r[0])):
◆ cube_vars()
Access the set of variables that were touched by the most recently generated cube.
This set of variables can be used as a starting point for additional cubes.
The idea is that variables that appear in clauses that are reduced by the most recent
cube are likely more useful to cube on.
Definition at line 6770 of file z3py.py.
6770 def cube_vars(self):
6771 """Access the set of variables that were touched by the most recently generated cube.
6772 This set of variables can be used as a starting point for additional cubes.
6773 The idea is that variables that appear in clauses that are reduced by the most recent
6774 cube are likely more useful to cube on."""
◆ dimacs()
Return a textual representation of the solver in DIMACS format.
Definition at line 6891 of file z3py.py.
6892 """Return a textual representation of the solver in DIMACS format."""
◆ from_file()
def from_file |
( |
|
self, |
|
|
|
filename |
|
) |
| |
Parse assertions from a file
Definition at line 6741 of file z3py.py.
6741 def from_file(self, filename):
6742 """Parse assertions from a file"""
◆ from_string()
def from_string |
( |
|
self, |
|
|
|
s |
|
) |
| |
Parse assertions from a string
Definition at line 6745 of file z3py.py.
6745 def from_string(self, s):
6746 """Parse assertions from a string"""
◆ help()
Display a string describing all available options.
Definition at line 6849 of file z3py.py.
6850 """Display a string describing all available options."""
◆ import_model_converter()
def import_model_converter |
( |
|
self, |
|
|
|
other |
|
) |
| |
Import model converter from other into the current solver
Definition at line 6677 of file z3py.py.
6677 def import_model_converter(self, other):
6678 """Import model converter from other into the current solver"""
◆ insert()
def insert |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Assert constraints into the solver.
>>> x = Int('x')
>>> s = Solver()
>>> s.insert(x > 0, x < 2)
>>> s
[x > 0, x < 2]
Definition at line 6589 of file z3py.py.
6589 def insert(self, *args):
6590 """Assert constraints into the solver.
6594 >>> s.insert(x > 0, x < 2)
6598 self.assert_exprs(*args)
◆ model()
Return a model for the last `check()`.
This function raises an exception if
a model is not available (e.g., last `check()` returned unsat).
>>> s = Solver()
>>> a = Int('a')
>>> s.add(a + 2 == 0)
>>> s.check()
sat
>>> s.model()
[a = -2]
Definition at line 6658 of file z3py.py.
6659 """Return a model for the last `check()`.
6661 This function raises an exception if
6662 a model is not available (e.g., last `check()` returned unsat).
6666 >>> s.add(a + 2 == 0)
6675 raise Z3Exception(
"model is not available")
Referenced by FuncInterp.translate().
◆ non_units()
Return an AST vector containing all atomic formulas in solver state that are not units.
Definition at line 6800 of file z3py.py.
6800 def non_units(self):
6801 """Return an AST vector containing all atomic formulas in solver state that are not units.
◆ num_scopes()
Return the current number of backtracking points.
>>> s = Solver()
>>> s.num_scopes()
0L
>>> s.push()
>>> s.num_scopes()
1L
>>> s.push()
>>> s.num_scopes()
2L
>>> s.pop()
>>> s.num_scopes()
1L
Definition at line 6512 of file z3py.py.
6512 def num_scopes(self):
6513 """Return the current number of backtracking points.
◆ param_descrs()
Return the parameter description set.
Definition at line 6853 of file z3py.py.
6853 def param_descrs(self):
6854 """Return the parameter description set."""
◆ pop()
def pop |
( |
|
self, |
|
|
|
num = 1 |
|
) |
| |
Backtrack \c num backtracking points.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.push()
>>> s.add(x < 1)
>>> s
[x > 0, x < 1]
>>> s.check()
unsat
>>> s.pop()
>>> s.check()
sat
>>> s
[x > 0]
Definition at line 6490 of file z3py.py.
6490 def pop(self, num=1):
6491 """Backtrack \c num backtracking points.
◆ proof()
Return a proof for the last `check()`. Proof construction must be enabled.
Definition at line 6777 of file z3py.py.
6778 """Return a proof for the last `check()`. Proof construction must be enabled."""
◆ push()
Create a backtracking point.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.push()
>>> s.add(x < 1)
>>> s
[x > 0, x < 1]
>>> s.check()
unsat
>>> s.pop()
>>> s.check()
sat
>>> s
[x > 0]
Definition at line 6468 of file z3py.py.
6469 """Create a backtracking point.
◆ reason_unknown()
def reason_unknown |
( |
|
self | ) |
|
Return a string describing why the last `check()` returned `unknown`.
>>> x = Int('x')
>>> s = SimpleSolver()
>>> s.add(2**x == 4)
>>> s.check()
unknown
>>> s.reason_unknown()
'(incomplete (theory arithmetic))'
Definition at line 6836 of file z3py.py.
6836 def reason_unknown(self):
6837 """Return a string describing why the last `check()` returned `unknown`.
6840 >>> s = SimpleSolver()
6841 >>> s.add(2**x == 4)
6844 >>> s.reason_unknown()
6845 '(incomplete (theory arithmetic))'
◆ reset()
Remove all asserted constraints and backtracking points created using `push()`.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.reset()
>>> s
[]
Definition at line 6530 of file z3py.py.
6531 """Remove all asserted constraints and backtracking points created using `push()`.
◆ set()
def set |
( |
|
self, |
|
|
* |
args, |
|
|
** |
keys |
|
) |
| |
Set a configuration option. The method `help()` return a string containing all available options.
>>> s = Solver()
>>> # The option MBQI can be set using three different approaches.
>>> s.set(mbqi=True)
>>> s.set('MBQI', True)
>>> s.set(':mbqi', True)
Definition at line 6456 of file z3py.py.
6456 def set(self, *args, **keys):
6457 """Set a configuration option. The method `help()` return a string containing all available options.
6460 >>> # The option MBQI can be set using three different approaches.
6461 >>> s.set(mbqi=True)
6462 >>> s.set('MBQI', True)
6463 >>> s.set(':mbqi', True)
◆ sexpr()
Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s.add(x < 2)
>>> r = s.sexpr()
Definition at line 6880 of file z3py.py.
6881 """Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.
Referenced by Fixedpoint.__repr__(), and Optimize.__repr__().
◆ statistics()
Return statistics for the last `check()`.
>>> s = SimpleSolver()
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.check()
sat
>>> st = s.statistics()
>>> st.get_key_value('final checks')
1
>>> len(st) > 0
True
>>> st[0] != 0
True
Definition at line 6818 of file z3py.py.
6818 def statistics(self):
6819 """Return statistics for the last `check()`.
6821 >>> s = SimpleSolver()
6826 >>> st = s.statistics()
6827 >>> st.get_key_value('final checks')
◆ to_smt2()
return SMTLIB2 formatted benchmark for solver's assertions
Definition at line 6895 of file z3py.py.
6896 """return SMTLIB2 formatted benchmark for solver's assertions"""
6897 es = self.assertions()
6903 for i
in range(sz1):
6904 v[i] = es[i].as_ast()
6906 e = es[sz1].as_ast()
6908 e =
BoolVal(
True, self.ctx).as_ast()
◆ trail()
Return trail of the solver state after a check() call.
Definition at line 6813 of file z3py.py.
6814 """Return trail of the solver state after a check() call.
Referenced by Solver.trail_levels().
◆ trail_levels()
Return trail and decision levels of the solver state after a check() call.
Definition at line 6805 of file z3py.py.
6805 def trail_levels(self):
6806 """Return trail and decision levels of the solver state after a check() call.
6808 trail = self.trail()
6809 levels = (ctypes.c_uint * len(trail))()
6811 return trail, levels
◆ translate()
def translate |
( |
|
self, |
|
|
|
target |
|
) |
| |
Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
>>> c1 = Context()
>>> c2 = Context()
>>> s1 = Solver(ctx=c1)
>>> s2 = s1.translate(c2)
Definition at line 6861 of file z3py.py.
6861 def translate(self, target):
6862 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
6866 >>> s1 = Solver(ctx=c1)
6867 >>> s2 = s1.translate(c2)
6870 _z3_assert(isinstance(target, Context),
"argument must be a Z3 context")
6872 return Solver(solver, target)
Referenced by Solver.__copy__(), and Solver.__deepcopy__().
◆ units()
Return an AST vector containing all currently inferred units.
Definition at line 6795 of file z3py.py.
6796 """Return an AST vector containing all currently inferred units.
◆ unsat_core()
Return a subset (as an AST vector) of the assumptions provided to the last check().
These are the assumptions Z3 used in the unsatisfiability proof.
Assumptions are available in Z3. They are used to extract unsatisfiable cores.
They may be also used to "retract" assumptions. Note that, assumptions are not really
"soft constraints", but they can be used to implement them.
>>> p1, p2, p3 = Bools('p1 p2 p3')
>>> x, y = Ints('x y')
>>> s = Solver()
>>> s.add(Implies(p1, x > 0))
>>> s.add(Implies(p2, y > x))
>>> s.add(Implies(p2, y < 1))
>>> s.add(Implies(p3, y > -3))
>>> s.check(p1, p2, p3)
unsat
>>> core = s.unsat_core()
>>> len(core)
2
>>> p1 in core
True
>>> p2 in core
True
>>> p3 in core
False
>>> # "Retracting" p2
>>> s.check(p1, p3)
sat
Definition at line 6681 of file z3py.py.
6681 def unsat_core(self):
6682 """Return a subset (as an AST vector) of the assumptions provided to the last check().
6684 These are the assumptions Z3 used in the unsatisfiability proof.
6685 Assumptions are available in Z3. They are used to extract unsatisfiable cores.
6686 They may be also used to "retract" assumptions. Note that, assumptions are not really
6687 "soft constraints", but they can be used to implement them.
6689 >>> p1, p2, p3 = Bools('p1 p2 p3')
6690 >>> x, y = Ints('x y')
6692 >>> s.add(Implies(p1, x > 0))
6693 >>> s.add(Implies(p2, y > x))
6694 >>> s.add(Implies(p2, y < 1))
6695 >>> s.add(Implies(p3, y > -3))
6696 >>> s.check(p1, p2, p3)
6698 >>> core = s.unsat_core()
6707 >>> # "Retracting" p2
◆ backtrack_level
◆ ctx
Definition at line 6441 of file z3py.py.
Referenced by Probe.__call__(), Solver.__copy__(), Solver.__deepcopy__(), Fixedpoint.__deepcopy__(), Optimize.__deepcopy__(), ApplyResult.__deepcopy__(), Tactic.__deepcopy__(), Probe.__deepcopy__(), Solver.__del__(), Fixedpoint.__del__(), Optimize.__del__(), ApplyResult.__del__(), Tactic.__del__(), Probe.__del__(), Probe.__eq__(), Probe.__ge__(), ApplyResult.__getitem__(), Probe.__gt__(), Probe.__le__(), ApplyResult.__len__(), Probe.__lt__(), Probe.__ne__(), Fixedpoint.add_cover(), Fixedpoint.add_rule(), Optimize.add_soft(), Tactic.apply(), ApplyResult.as_expr(), Solver.assert_and_track(), Optimize.assert_and_track(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Solver.assertions(), Optimize.assertions(), Solver.check(), Optimize.check(), Solver.consequences(), Solver.dimacs(), Solver.from_file(), Optimize.from_file(), Solver.from_string(), Optimize.from_string(), Fixedpoint.get_answer(), Fixedpoint.get_assertions(), Fixedpoint.get_cover_delta(), Fixedpoint.get_ground_sat_answer(), Fixedpoint.get_num_levels(), Fixedpoint.get_rule_names_along_trace(), Fixedpoint.get_rules(), Fixedpoint.get_rules_along_trace(), Solver.help(), Fixedpoint.help(), Optimize.help(), Tactic.help(), Solver.import_model_converter(), Optimize.maximize(), Optimize.minimize(), Solver.model(), Optimize.model(), Solver.non_units(), Solver.num_scopes(), Optimize.objectives(), Solver.param_descrs(), Fixedpoint.param_descrs(), Optimize.param_descrs(), Tactic.param_descrs(), Fixedpoint.parse_file(), Fixedpoint.parse_string(), Solver.pop(), Optimize.pop(), Solver.proof(), Solver.push(), Optimize.push(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), Solver.reason_unknown(), Fixedpoint.reason_unknown(), Optimize.reason_unknown(), Fixedpoint.register_relation(), Solver.reset(), Solver.set(), Fixedpoint.set(), Optimize.set(), Fixedpoint.set_predicate_representation(), Solver.sexpr(), Fixedpoint.sexpr(), Optimize.sexpr(), ApplyResult.sexpr(), Tactic.solver(), Solver.statistics(), Fixedpoint.statistics(), Optimize.statistics(), Solver.to_smt2(), Fixedpoint.to_string(), Solver.trail(), Solver.trail_levels(), Solver.translate(), Solver.units(), Solver.unsat_core(), Optimize.unsat_core(), and Fixedpoint.update_rule().
◆ cube_vs
◆ solver
Definition at line 6443 of file z3py.py.
Referenced by Solver.__del__(), Solver.assert_and_track(), Solver.assert_exprs(), Solver.assertions(), Solver.check(), Solver.consequences(), Solver.dimacs(), Solver.from_file(), Solver.from_string(), Solver.help(), Solver.import_model_converter(), Solver.model(), Solver.non_units(), Solver.num_scopes(), Solver.param_descrs(), Solver.pop(), Solver.proof(), Solver.push(), Solver.reason_unknown(), Solver.reset(), Solver.set(), Solver.sexpr(), Solver.statistics(), Solver.trail(), Solver.trail_levels(), Solver.translate(), Solver.units(), and Solver.unsat_core().
void Z3_API Z3_solver_import_model_converter(Z3_context ctx, Z3_solver src, Z3_solver dst)
Ad-hoc method for importing model conversion from solver.
Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s)
Convert a solver into a string.
void Z3_API Z3_solver_get_levels(Z3_context c, Z3_solver s, Z3_ast_vector literals, unsigned sz, unsigned levels[])
retrieve the decision depth of Boolean literals (variables or their negations). Assumes a check-sat c...
void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s)
Remove all assertions from the solver.
Z3_ast Z3_API Z3_solver_get_proof(Z3_context c, Z3_solver s)
Retrieve the proof for the last Z3_solver_check or Z3_solver_check_assumptions.
expr range(expr const &lo, expr const &hi)
Z3_string Z3_API Z3_solver_get_reason_unknown(Z3_context c, Z3_solver s)
Return a brief justification for an "unknown" result (i.e., Z3_L_UNDEF) for the commands Z3_solver_ch...
void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n)
Backtrack n backtracking points.
Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[])
Check whether the assertions in the given solver and optional assumptions are consistent or not.
void Z3_API Z3_solver_push(Z3_context c, Z3_solver s)
Create a backtracking point.
Z3_ast_vector Z3_API Z3_solver_get_assertions(Z3_context c, Z3_solver s)
Return the set of asserted formulas on the solver.
Z3_param_descrs Z3_API Z3_solver_get_param_descrs(Z3_context c, Z3_solver s)
Return the parameter description set for the given solver object.
unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s)
Return the number of backtracking points.
Z3_ast_vector Z3_API Z3_solver_get_trail(Z3_context c, Z3_solver s)
Return the trail modulo model conversion, in order of decision level The decision level can be retrie...
void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s)
Decrement the reference counter of the given solver.
void Z3_API Z3_solver_from_string(Z3_context c, Z3_solver s, Z3_string file_name)
load solver assertions from a string.
Z3_ast_vector Z3_API Z3_solver_get_unsat_core(Z3_context c, Z3_solver s)
Retrieve the unsat core for the last Z3_solver_check_assumptions The unsat core is a subset of the as...
Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s)
Return the set of units modulo model conversion.
void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p)
Assert a constraint a into the solver, and track it (in the unsat) core using the Boolean constant p.
Z3_stats Z3_API Z3_solver_get_statistics(Z3_context c, Z3_solver s)
Return statistics for the given solver.
void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p)
Set the given solver using the given parameters.
Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s)
Return the set of non units in the solver state.
Z3_ast_vector Z3_API Z3_solver_cube(Z3_context c, Z3_solver s, Z3_ast_vector vars, unsigned backtrack_level)
extract a next cube for a solver. The last cube is the constant true or false. The number of (non-con...
Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s)
Convert a solver into a DIMACS formatted string.
void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a)
Assert a constraint into the solver.
Z3_solver Z3_API Z3_solver_translate(Z3_context source, Z3_solver s, Z3_context target)
Copy a solver s from the context source to the context target.
def BoolVal(val, ctx=None)
Z3_solver Z3_API Z3_mk_solver(Z3_context c)
Create a new solver. This solver is a "combined solver" (see combined_solver module) that internally ...
void Z3_API Z3_solver_from_file(Z3_context c, Z3_solver s, Z3_string file_name)
load solver assertions from a file.
Z3_string Z3_API Z3_solver_get_help(Z3_context c, Z3_solver s)
Return a string describing all solver available parameters.
Z3_lbool Z3_API Z3_solver_get_consequences(Z3_context c, Z3_solver s, Z3_ast_vector assumptions, Z3_ast_vector variables, Z3_ast_vector consequences)
retrieve consequences from solver that determine values of the supplied function symbols.
def args2params(arguments, keywords, ctx=None)
Z3_string Z3_API Z3_benchmark_to_smtlib_string(Z3_context c, Z3_string name, Z3_string logic, Z3_string status, Z3_string attributes, unsigned num_assumptions, Z3_ast const assumptions[], Z3_ast formula)
Convert the given benchmark into SMT-LIB formatted string.
Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s)
Retrieve the model for the last Z3_solver_check or Z3_solver_check_assumptions.
void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s)
Increment the reference counter of the given solver.