
Python in
Computational Neuroscience

&
Modular toolkit for Data
Processing (MDP)

Tiziano Zito, Pietro Berkes, Niko Wilbert

Python in
Computational Neuroscience

Python

mdp-toolkit.sourceforge.net

Created in 1991 by Guido van Rossum as a scripting language.
Its characteristics are:

■ very concise and readable code, almost like pseudo-code:

print "hello world"

■ garbage collection (memory is freed automatically)
■ dynamically typed

a = "test"

def increment(value):

return value + 1

increment(a) # error at runtime

Allows fast implementation, relies on conventions and
documentation.
Note that static typing often only catches simple bugs, but not
subtle ones (e.g., division by zero).

Python

mdp-toolkit.sourceforge.net

■ whitespaces indicate code blocks

for i in range (4):

line = "Happy Birthday"

if i % 3:

line += " to you"

else:

line += " dear Guido"

print line

■ supports Object Oriented and to some extend Functional
programming

class Test(object):

def info(self):

print "test here"

test = Test() # create class instance

test.info() # prints "test here"

dynamic nature also enables metaprogramming

Python

mdp-toolkit.sourceforge.net

■ Python code is interpreted by a virtual machine (after being compiled
to byte code) or can be written in an interactive interpreter (REPL).
Python can be a 100 times slower than C, but relies on external
libraries where performance matters (e.g. numerics in Fortran).

■ Python is maybe the leading modern dynamic language.
(according to TIOBE, when PHP, Pearl and VB are ignored)
It is one of three official languages at Google (e.g. Youtube is
implemented in Python).

■ Python is generally considered to have hit a sweet spot in language
design, people just like it.

■ Open source ecosystem (language, libraries, IDEs).

Bottom line: Python allows very rapid and enjoyable development.

Python in Computational Neuroscience

mdp-toolkit.sourceforge.net

Python has gained much popularity in science, thanks to its available
libraries and language quality.

■ Python is now competitor to Matlab in data analysis and smaller
simulations.

■ Python is increasingly used to interface with the standard neural
simulators (like NEURON, e.g. via PyNN).

Examples of Research groups migrating their code bases to Python.

So let’s compare Python and Matlab (hopefully in an objective way) ;-)

Python vs. Matlab

mdp-toolkit.sourceforge.net

Python Matlab
+ free and open source - expensive and proprietary
+ very good language design - poor language design
+ advanced programming tools,
scales well

- lack of tools, problems with large
projects

- scientific libraries are good and
improving

+ scientific libraries superior in
several areas (e.g. statistics)

+ huge range of libraries from all
areas, very diverse

- restricted to numerical applica-
tions

+ easy integration of C code for
performance

- interfacing C code problematic

Python is not just a low-cost Matlab clone!

Modular Toolkit for Data
Processing

Background

mdp-toolkit.sourceforge.net

■ Open Source library (LGPL)

■ first release 2004

■ 15k+ downloads, available in Debian, Ubuntu, MacPorts,
Python(x,y)

■ originated in and supported by research group of Prof. Wiskott,
but used outside neuroscience as well

Overview

mdp-toolkit.sourceforge.net

1. Introducing the basic building blocks of MDP

2. Example

3. Outlook

Building blocks: Node

mdp-toolkit.sourceforge.net

Node: fundamental data processing element,
node classes represent algorithms, public API:

train (optional)
support for multiple phases, batch, online, chunks, supervised,
unsupervised

execute
map n dimensional input to m dimensional output

inverse (optional)
inverse of execute mapping

data format: 2d numpy arrays
(1st index for samples, 2nd index for channels)
automatic checks and conversions (dimensions, dtype).

Building blocks: Node

mdp-toolkit.sourceforge.net

Example: Principal Component Analysis (PCA)
reduce dimension of data from 10 to 5:

>>> import mdp

>>> import numpy as np

>>> data = np.random.random ((50 ,10)) # 50 data points

>>> node = mdp.nodes.PCANode(output_dim =5,

... dtype=’float32 ’)

>>> node.train(data)

>>> proj_data = node.execute(data)

shortcut:

>>> import mdp

>>> import numpy as np

>>> data = np.random.random ((50 ,10)) # 50 data points

>>> proj_data = mdp.pca(data , output_dim =5, dtype=’float32 ’)

Building blocks: Node

mdp-toolkit.sourceforge.net

Some available nodes:

PCA (standard, NIPALS)
ICA (FastICA, CuBICA, JADE, TDSEP)

Locally Linear Embedding
Hessian Locally Linear Embedding
Fisher Discriminant Analysis
Slow Feature Analysis

Independent Slow Feature Analysis
Restricted Boltzmann Machine

Growing Neural Gas
Factor Analysis
Gaussian Classifiers
Polynomial Expansion
Time Frames
Hit Parades
Noise
...

Or write your own node (and contribute it :-).

Building blocks: Flow

mdp-toolkit.sourceforge.net

Combine nodes in a Flow (data processing pipeline):

>>> flow = PCANode () + SFANode () + FastICANode ()

>>> flow.train(train_data)

>>> test_result = flow.execute(test_data)

>>> rec_test_data = flow.invert(test_result)

>>> flow += HitParadeNode ()

■ automatic organization: training, execution, inversion
■ automatic checks: dimensions and data formats
■ use arrays or iterators
■ crash recovery, checkpoints

Building blocks: Network

mdp-toolkit.sourceforge.net

mdp.hinet package for hierarchical networks

Layer (combine nodes horizontally in parallel)
Switchboard (routing between layers)
FlowNode (combine nodes into a “supernode”)

All these classes are nodes, combine them as you want.

Building blocks: Network

mdp-toolkit.sourceforge.net

HTML representation of your network:

>>> mdp.hinet.show_flow(flow)

Use this for debugging, reports or GUI.

Extending MDP: Writing Nodes

mdp-toolkit.sourceforge.net

Write your own node class:

>>> class MyNode(Node):

... def _train(self , x):

... ... training code ...

... def _execute(self , x):

... ... execution code ...

...

>>> flow = PCANode () + MyNode ()

■ integrate with the existing library
■ benefit from automatic checks and conversions
■ contribute your node to make it available to a broader audience

Parallelization

mdp-toolkit.sourceforge.net

■ for “embarrassingly parallel” problems:
data chunks for node training can be processed independently (fork
node), combine results in the end (join node)

■ parallel training and execution is automatically handled by
ParallelFlow

■ easy to implement for your own nodes
(implement _fork and _join methods)

Example:

>>> pflow = mdp.parallel.ParallelFlow ([PCANode(), SFANode ()])

>>> scheduler = mdp.parallel.ProcessScheduler(n_processes =4)

>>> pflow.train(data , scheduler)

Real World Example

mdp-toolkit.sourceforge.net

■ object recognition system,
working on 155x155 pixel image sequences

■ several GB of training data for each training phase.
■ hierarchical network with nested nodes,
900 “supernodes” on lowest layer

■ training is parallelized, takes multiple hours on network

[Franzius, M., Wilbert, N., and Wiskott, L., 2008]

Upcoming: BiNet package

mdp-toolkit.sourceforge.net

mdp.binet package will allow data flow in both directions,
enabling for example error backpropagation and loops.

compatible with both the mpd.parallel and mdp.hinet packages.

HTML+JS based inspector for debugging and analysing

scheduled for inclusion in MDP 3.0 (maybe end of 2009)

Embedding / Using MDP

mdp-toolkit.sourceforge.net

■ comprehensive documentation:
tutorial covering basic and advanced usage,
detailed doc-strings,
PEP8 compliant, commented, and pylint-clean code

■ API is stable and designed for straightforward embedding

■ unittest coverage (400+ unit tests)

■ minimal dependencies: Python + NumPy

■ used by:
PyMCA (X-ray fluorescence mapping),
PyMVPA (ML framework for neuroimaging data analysis),
Chandler (personal organizer application)

Thank you!

mdp-toolkit.sourceforge.net

mdp-toolkit.sourceforge.net

	 Python in Computational Neuroscience 0.5cm [scale=0.7]rockpython.jpg [scale=1.0]brain.jpg
	Python
	Python
	Python
	Python in Computational Neuroscience
	Python vs. Matlab

	Modular Toolkit for Data Processing 0.8cm [scale=1.5]mdplogo.png
	Background
	Overview
	Building blocks: Node
	Building blocks: Node
	Building blocks: Node
	Building blocks: Flow
	Building blocks: Network
	Building blocks: Network
	Extending MDP: Writing Nodes
	Parallelization
	Real World Example
	Upcoming: BiNet package
	Embedding / Using MDP
	Thank you!

