Interoperability among
Data Processing Frameworks

Reality or Wishful Thinking?

Tiziano Zito
Niko Wilbert, Rike-Benjamin Schuppner, Zbigniew J€drzejewski-Szmek,
Laurenz Wiskott, Pietro Berkes

. Python in Neuroscience Satellite to EuroSciPy
b ® [J P [} L}
]:" Ecole Normale Supérieure, Paris

'.‘.. bcen August 30th, 2011 .

berlin

Data processing in neuroscience

»
=

WD 4] pED))

2D D) K
"3 D Y 1 1)

Data processing libraries in Python

scikit-learn
PyBrain
MLPy
PyML
PyMVPA
Shogun
Milk
NLTK
Orange
Elefant
LibSVM
OpenCVv
NiPYPE
Pylearn
MDP

. how many more?

a source of joy for the user

Diversity:

—hoTOoOMO MmN
wd NG ™N Oy WS
o TP e |0—T % N X
DL o~ R0 -
8 ~—==T\wiN N9 I
NN O NN O
NN AN NS x
LR D N o IR Ay ¢
N - A~ N
MmN Ty oQ N

Strategies I - wrap and be wrapped

- define and advertise a clear API

(by inheritance / by convention?)
(no, epydoc is not enough)

- numpy.ndarray for the I/0
(enhanced array subclasses or proxy

objects with a "asarray" method?)

- release as often as you want but you

shall not break backward compatibility
(you have more users than you think)

- your code shall be inspectable
(duck-typing is not always an option)

Strategies II — softly depend

hard dependencies are expensive

no dependencies to specific versions
no locally modified copies

ask neuro.debian.net to package you
soft dependencies are worth the effort

hard-coded or dynamically generated
wrappers?

MDP approach to interoperability

Building blocks: Node

- fundamental data processing element
Node classes correspond to algorithms

- API: train
support for multiple phases, batch,

online, chunks, supervised, unsupervised

- API: execute
map n-dim input to m-dim output

- API: inverse
inverse of execute mapping

- data format: 2-dim numpy arrays
- automatic consistency checks and

conversions (dimensions, dtype, ...)

MDP approach to interoperability

Building blocks: Flow

- combine nodes in a pipeline

- API: train, execute, inverse

- automatic training, execution, inversion
- automatic checks: dims and data formats

- Flow is a Python container (list)
(syntactic sugar)

- feed on arrays or iterators

- crash recovery, checkpoints

MDP approach to interoperability

Building blocks: Network

- Layer

combine nodes horizontally in parallel
- Switchboard

routing between layers
- FlowNode

encapsulate a Flow into a “super” Node

- everything is a Node

combine as you want all acyclic graphs
can be implemented

Embed and wrap MDP

- I/0 by 2-dim numpy.ndarray

- API is stable (2004-?) and designed for
straightforward embedding

- PYyMVPA (sprint!)
PyMCA
Oger (sprint!)
Chandler

MDP wraps

scipy

libsvm
shogun
parallel-python
joblib

scikit-learn...

and embeds

MDP && scikit-learn

- wrappers dynamically generated (docs too!)

Pros:
- transparent

- forward compatible

Cons:
- API conventions are not always consistent
- force us to duck-typing
- API is not carved in stone
- manual intervention to get all

- # of output components

A future of interoperability

diversity is good! no winner-take-all

3 simple communication rules:
write! talk! link!

heterogeneous sprints: induce interbreeding

but...

A future of interoperability

diversity is good! no winner-take-all

3 simple communication rules:
write! talk! link!

heterogeneous sprints: induce interbreeding

but... stop talking, start coding!

