WCSLIB

Generated by Doxygen 1.9.3

1 WCSLIB 7.10 and PGSBOX 7.10 1
1.1 Contents L e e e e e e e e 1
1.2Copyright e e e e e 1

2 Introduction 2

3 FITS-WCS and related software 2

4 Overview of WCSLIB 5

5 WCSLIB data structures 7

6 Memory management 8

7 Diagnostic output 8

8 Vector API 9
8.1 Vectorlengths 10
8.2 Vectorstrides e 11

9 Thread-safety 12

10 Limits 12

11 Example code, testing and verification 13

12 WCSLIB Fortran wrappers 14

13 PGSBOX 16

14 WCSLIB version numbers 17

15 Deprecated List 18

16 Data Structure Index 20
16.1 Data Structures L e e e e 20

17 File Index 21
171 File List o e e e e e 21

18 Data Structure Documentation 22
18.1 auxprm Struct Reference L 22

18.1.1 Detailed Description e 22
18.1.2 Field Documentation e 22
18.2 celprm Struct Reference L 23
18.2.1 Detailed Description e 23
18.2.2 Field Documentation L 24
18.3disprm Struct Reference L 26
18.3.1 Detailed Description 26

Generated by Doxygen

18.3.2 Field Documentation e e 27

18.4 dpkey Struct Reference e 30
18.4.1 Detailed Description e 30
18.4.2 Field Documentation 30

18.5 fitskey Struct Reference L e e e e 31
18.5.1 Detailed Description e 32
18.5.2 Field Documentation 32

18.6 fitskeyid Struct Reference e 35
18.6.1 Detailed Description e 35
18.6.2 Field Documentation 35

18.7 linprm Struct Reference L 36
18.7.1 Detailed Description e e 36
18.7.2 Field Documentation 36

18.8 prjprm Struct Reference L 40
18.8.1 Detailed Description e 40
18.8.2 Field Documentation 40

18.9 pscard Struct Reference L e 44
18.9.1 Detailed Description e e 44
18.9.2 Field Documentation L 44
18.10 pvcard Struct Reference L e e 45
18.10.1 Detailed Description e 45
18.10.2 Field Documentation L 45
18.11 spcprm Struct Reference L 46
18.11.1 Detailed Description e 46
18.11.2 Field Documentation L 46
18.12 spxprm Struct Reference L e e 49
18.12.1 Detailed Description e 50
18.12.2 Field Documentation L 50
18.13 tabprm Struct Reference e 54
18.13.1 Detailed Description e 54
18.13.2 Field Documentation L 55
18.14 weserr Struct Reference L L 58
18.14.1 Detailed Description e 58
18.14.2 Field Documentation L 58
18.15 wesprm Struct Reference L L 59
18.15.1 Detailed Description e 61
18.15.2 Field Documentation 61
18.16 wtbarr Struct Reference L 76
18.16.1 Detailed Description e 77
18.16.2 Field Documentation 77

19 File Documentation 78

Generated by Doxygen

19.1 cel.Lh File Reference e 78
19.1.1 Detailed Description e 80
19.1.2 Macro Definition Documentation L 80
19.1.83 Enumeration Type Documentation L o 81
19.1.4 Function Documentation L 81
19.1.5 Variable Documentation 86

19.2cel.h . . e 86

19.3dis.h File Reference e 91
19.3.1 Detailed Description e 93
19.3.2 Macro Definition Documentation L 97
19.3.3 Enumeration Type Documentation 97
19.3.4 Function Documentation 97
19.3.5 Variable Documentation L 106

19.4dis.h . . . L e e e 106

19.5fitshdr.h File Reference o 119
19.5.1 Detailed Description 121
19.5.2 Macro Definition Documentation L 121
19.5.3 Typedef Documentation e 122
19.5.4 Enumeration Type Documentation Lo 122
19.5.5 Function Documentation 122
19.5.6 Variable Documentation L 124

19.6fitshdr.h o e 124

19.7 getwestab.h File Reference oL 129
19.7.1 Detailed Description 130
19.7.2 Function Documentation L 130

19.8 getwestab.h . . . o L 131

19.91lin.h File Reference e e 133
19.9.1 Detailed Description 135
19.9.2 Macro Definition Documentation L 135
19.9.3 Enumeration Type Documentation Lo 136
19.9.4 Function Documentation L 137
19.9.5 Variable Documentation 145

1910 0inch L L L L e 145

19.11log.h File Reference 154
19.11.1 Detailed Description 155
19.11.2 Enumeration Type Documentation 155
19.11.3 Function Documentation 155
19.11.4 Variable Documentation 157

19.1210g.h . . L L e e 157

19.13 pri.h File Reference o L e e e 159
19.13.1 Detailed Description 164
19.13.2 Macro Definition Documentation L L 166

Generated by Doxygen

19.13.3 Enumeration Type Documentation 167
19.13.4 Function Documentation L 167
19.13.5 Variable Documentation L 184
1914 prih © L e 185
19.15spc.h File Reference L e 195
19.15.1 Detailed Description e 197
19.15.2 Macro Definition Documentation L o 199
19.15.3 Enumeration Type Documentation 200
19.15.4 Function Documentation 200
19.15.5 Variable Documentation 210
19.16spC.h . L L e 211
19.17 sph.h File Reference o 222
19.17.1 Detailed Description e 222
19.17.2 Function Documentation e 222
1918 sph.h o L o e 225
19.19 spx.h File Reference e 228
19.19.1 Detailed Description 230
19.19.2 Macro Definition Documentation 232
19.19.3 Enumeration Type Documentation L. 232
19.19.4 Function Documentation 233
19.19.5 Variable Documentation 239
19.20 spxX.h . L o e e 239
19.21tab.h File Reference L 246
19.21.1 Detailed Description e 247
19.21.2 Macro Definition Documentation L L 248
19.21.3 Enumeration Type Documentation 248
19.21.4 Function Documentation L 249
19.21.5 Variable Documentation L 256
19.22tab.h . . . e 256
19.23 wes.h File Reference L e 264
19.28.1 Detailed Description L 266
19.23.2 Macro Definition Documentation Lo 267
19.23.3 Enumeration Type Documentation oL 270
19.23.4 Function Documentation L 271
19.23.5 Variable Documentation 286
19.24 WCS.h . . . L e e e e e e 286
19.25weserrh File Reference o o 312
19.25.1 Detailed Description e 313
19.25.2 Macro Definition Documentation Lo 313
19.25.3 Function Documentation L 313
19.26 WCSEIT.N . . . o e e e e e e e e 317
19.27 wesfix.h File Reference o L 320

Generated by Doxygen

19.27.1 Detailed Description 322
19.27.2 Macro Definition Documentation L o 323
19.27.3 Enumeration Type Documentationo 324
19.27.4 Function Documentation 325
19.27.5 Variable Documentation L 332
19.28 wesfix.h .« . o o e 333
19.29 weshdr.h File Reference L 340
19.29.1 Detailed Description 343
19.29.2 Macro Definition Documentation 344
19.29.3 Enumeration Type Documentation o 348
19.29.4 Function Documentation L 348
19.29.5 Variable Documentation 366
19.30weshdr.h . . o e e e e e e 366
19.31 wesmath.h File Reference 382
19.31.1 Detailed Description 382
19.31.2 Macro Definition Documentation 382
19.32wesmath.h . . o L L e e 383
19.33 wesprintf.h File Reference 384
19.33.1 Detailed Description 385
19.33.2 Macro Definition Documentation Lo 385
19.33.3 Function Documentation 385
19.34 wesprintfh . o o L L e e 387
19.35 westrig.h File Reference o L L 388
19.35.1 Detailed Description 389
19.35.2 Macro Definition Documentation L L L 389
19.35.3 Function Documentation L 390
19.36 westrig.h . . o e e e e 392
19.37 wesunits.h File Reference L L 395
19.37.1 Detailed Description 397
19.37.2 Macro Definition Documentationo 397
19.37.3 Enumeration Type Documentation 399
19.37.4 Function Documentation L 399
19.37.5 Variable Documentation 404
19.38 wesunits.h . . . e e e 405
19.39 wesutil.h File Reference o L 409
19.39.1 Detailed Description 410
19.39.2 Function Documentation L 410
19.40 wesutilh . . . o e e e 419
19.41 wtbarr.h File Reference L 424
19.41.1 Detailed Description e 425
19.42 wtbarr.h e e e e 425
19.43 weslib.h File Reference o L 426

Generated by Doxygen

1 WCSLIB 7.10 and PGSBOX 7.10 1

19.43.1 Detailed Description42
19.44 weslib.h . . . e 427
Index 429

1 WCSLIB 7.10 and PGSBOX 7.10

1.1 Contents

* Introduction

+ FITS-WCS and related software
+ Overview of WCSLIB

+ WCSLIB data structures

* Memory management

» Diagnostic output

» Vector API

» Thread-safety

* Limits

+ Example code, testing and verification
+ WCSLIB Fortran wrappers

« PGSBOX

« WCSLIB version numbers

1.2 Copyright

WCSLIB 7.10 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2022, Mark Calabretta

WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see http://www.gnu.org/licenses.

Direct correspondence concerning WCSLIB to mark@calabretta.id.au
Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.

http://www.atnf.csiro.au/people/Mark.Calabretta
$Id: mainpage.dox,v 7.10 2022/04/23 14:25:15 mcalabre Exp $

Generated by Doxygen

2 Introduction

WCSLIB is a C library, supplied with a full set of Fortran wrappers, that implements the "World Coordinate System"”
(WCS) standard in FITS (Flexible Image Transport System). It also includes a PGPLOT-based routine, PGSBOX,
for drawing general curvilinear coordinate graticules, and also a number of utility programs.

The FITS data format is widely used within the international astronomical community, from the radio to gamma-ray
regimes, for data interchange and archive, and also increasingly as an online format. It is described in

« "Definition of The Flexible Image Transport System (FITS)", FITS Standard, Version 3.0, 2008 July 10.

available from the FITS Support Office at http://fits.gsfc.nasa.gov

The FITS WCS standard is described in

» "Representations of world coordinates in FITS" (Paper 1), Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395,
1061-1075

» "Representations of celestial coordinates in FITS" (Paper Il), Calabretta, M.R., & Greisen, E.W. 2002, A&A,
395, 1077-1122

» "Representations of spectral coordinates in FITS" (Paper Ill), Greisen, E.W., Calabretta, M.R., Valdes, F.G.,
& Allen, S.L. 2006, A&A, 446, 747

» "Representations of distortions in FITS world coordinate systems", Calabretta, M.R. et al. (WCS Pa-
per 1V, draft dated 2004/04/22), available from http://www.atnf.csiro.au/people/Mark. «
Calabretta

» "Mapping on the HEALPix Grid" (HPX, Paper V), Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865

» "Representing the 'Butterfly' Projection in FITS: Projection Code XPH" (XPH, Paper VI), Calabretta, M.R., &
Lowe, S.R. 2013, PASA, 30, e050

» "Representations of time coordinates in FITS: Time and relative dimension in space" (Paper VII), Rots, A.H.,
Bunclark, P.S., Calabretta, M.R., Allen, S.L., Manchester R.N., & Thompson, W.T. 2015, A&A, 574, A36

Reprints of all published papers may be obtained from NASA's Astrophysics Data System (ADS), http«
://adsabs.harvard.edu/. Reprints of Papers |, Il (including HPX & XPH), and Il are available from
http://www.atnf.csiro.au/people/Mark.Calabretta. This site also includes errata and supple-
mentary material for Papers |, Il and Il

Additional information on all aspects of FITS and its various software implementations may be found at the FITS
Support Office http://fits.gsfc.nasa.gov.

3 FITS-WCS and related software

Several implementations of the FITS WCS standards are available:

« The WCSLIB software distribution (i.e. this library) may be obtained from http://www.atnf.«
csiro.au/people/Mark.Calabretta/WCS/. The remainder of this manual describes its use.

WCSLIB is included in the Astrophysics Source Code Library (ASCL https://ascl.net) as record

ascl:1108.003 (https://ascl.net/1108.003), and in the Astrophysics Data System (ADS
https://ui.adsabs.harvard.edu) with bibcode 2011ascl.soft08003C (https://ui.«

adsabs.harvard.edu/abs/201lascl.soft08003C).

Generated by Doxygen

http://fits.gsfc.nasa.gov
http://www.atnf.csiro.au/people/Mark.Calabretta
http://www.atnf.csiro.au/people/Mark.Calabretta
http://adsabs.harvard.edu/
http://adsabs.harvard.edu/
http://www.atnf.csiro.au/people/Mark.Calabretta
http://www.atnf.csiro.au/people/Mark.Calabretta
http://fits.gsfc.nasa.gov
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/
https://ascl.net
https://ascl.net/1108.003
https://ui.adsabs.harvard.edu
https://ui.adsabs.harvard.edu/abs/2011ascl.soft08003C
https://ui.adsabs.harvard.edu/abs/2011ascl.soft08003C

3 FITS-WCS and related software 3

» westools, developed by Jessica Mink, may be obtained from http://tdc-www.harvard.«
edu/software/wcstools/.

ASCL: https://ascl.net/1109.015
ADS: https://ui.adsabs.harvard.edu/abs/201lascl.soft09015M

« AST, developed by David Berry within the U.K. Starlink project, http://www.starlink.«
ac.uk/ast/ and now supported by JAC, Hawaii http://starlink.jach.hawaii.«
edu/starlink/. A useful utility for experimenting with FITS WCS descriptions (similar to wcsgrid)
is also provided; go to the above site and then look at the section entitled "FITS-WCS Plotting Demo".

ASCL: https://ascl.net/1404.016
ADS: https://ui.adsabs.harvard.edu/abs/2014ascl.soft04016B

« SolarSoft, http://sohowww.nascom.nasa.gov/solarsoft/, primarily an IDL-based
system for analysis of Solar physics data, contains a module written by Bill Thompson oriented
towards Solar coordinate systems, including spectral, http://sohowww.nascom.nasa.«
gov/solarsoft/gen/idl/wcs/.

ASCL: https://ascl.net/1208.013
ADS: https://ui.adsabs.harvard.edu/abs/2012ascl.soft08013F

» The IDL Astronomy Library, http://idlastro.gsfc.nasa.gov/, contains an independent
implementation of FITS-WCS in IDL by Rick Balsano, Wayne Landsman and others. See http«
://idlastro.gsfc.nasa.gov/contents.html#C5.

Python wrappers to WCSLIB are provided by

» The Kapteyn Package http://www.astro.rug.nl/software/kapteyn/ by Hans Terlouw and
Martin Vogelaar.

ASCL: https://ascl.net/1611.010
ADS: https://ui.adsabs.harvard.edu/abs/2016ascl.soft11010T

e pywecs, http://stsdas.stsci.edu/astrolib/pywcs/ by Michael Droettboom, which is dis-
tributed within Astropy, https://www.astropy.orgq.

ASCL (Astropy): https://ascl.net/1304.002
ADS (Astropy): https://ui.adsabs.harvard.edu/abs/2013ascl.soft04002G

Java is supported via

+ CADC/CCDA Java Native Interface (JNI) bindings to WCSLIB 4.2 http://www.cadc-ccda.+«
hia-iha.nrc-cnrc.gc.ca/cadc/source/ by Patrick Dowler.

and Javascript by

* wesjs, https://github.com/astrojs/wcsjs, aport created by Amit Kapadia using Emscripten,
an LLVM to Javascript compiler. wcsjs provides a code base for running WCSLIB on web browsers.

Julia wrappers (https://en.wikipedia.org/wiki/Julia_ (programming_language)) are pro-
vided by

« WCS.jl, https://github.com/JuliaAstro/WCS. 1, a component of Julia Astro, https«
://github.com/JuliaAstro.

Generated by Doxygen

http://tdc-www.harvard.edu/software/wcstools/
http://tdc-www.harvard.edu/software/wcstools/
https://ascl.net/1109.015
https://ui.adsabs.harvard.edu/abs/2011ascl.soft09015M
http://www.starlink.ac.uk/ast/
http://www.starlink.ac.uk/ast/
http://starlink.jach.hawaii.edu/starlink/
http://starlink.jach.hawaii.edu/starlink/
https://ascl.net/1404.016
https://ui.adsabs.harvard.edu/abs/2014ascl.soft04016B
http://sohowww.nascom.nasa.gov/solarsoft/
http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/wcs/
http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/wcs/
https://ascl.net/1208.013
https://ui.adsabs.harvard.edu/abs/2012ascl.soft08013F
http://idlastro.gsfc.nasa.gov/
http://idlastro.gsfc.nasa.gov/contents.html#C5
http://idlastro.gsfc.nasa.gov/contents.html#C5
http://www.astro.rug.nl/software/kapteyn/
https://ascl.net/1611.010
https://ui.adsabs.harvard.edu/abs/2016ascl.soft11010T
http://stsdas.stsci.edu/astrolib/pywcs/
https://www.astropy.org
https://ascl.net/1304.002
https://ui.adsabs.harvard.edu/abs/2013ascl.soft04002G
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/source/
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/source/
https://github.com/astrojs/wcsjs
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://github.com/JuliaAstro/WCS.jl
https://github.com/JuliaAstro
https://github.com/JuliaAstro

An interface for the R programming language (https://en.wikipedia.org/wiki/R_ (programming«
_language)) is available at

* Rwes, https://github.com/asgr/Rwcs/ by Aaron Robotham.

Recommended WCS-aware FITS image viewers:

* Bill Joye's DS9, http://hea-www.harvard.edu/RD/ds9/, and

ASCL: https://ascl.net/0003.002
ADS: https://ui.adsabs.harvard.edu/abs/2000ascl.soft03002S

* Fvby Pan Chai, http://heasarc.gsfc.nasa.gov/ftools/fv/.

ASCL: https://ascl.net/1205.005
ADS: https://ui.adsabs.harvard.edu/abs/2012ascl.soft05005P

both handle 2-D images.

Currently (2013/01/29) | know of no image viewers that handle 1-D spectra properly nor multi-dimensional data, not
even multi-dimensional data with only two non-degenerate image axes (please inform me if you know otherwise).

Pre-built WCSLIB packages are available, generally a little behind the main release (this list will probably be stale
by the time you read it, best do a web search):

 archlinux (tgz), https://www.archlinux.org/packages/extra/i686/wcslib.
» Debian (deb), http://packages.debian.org/search?keywords=wcslib.

» Fedora (RPM), https://admin.fedoraproject.org/pkgdb/package/wcslib
* Fresh Ports (RPM), http://www.freshports.org/astro/wcslib.

* Gentoo, http://packages.gentoo.org/package/sci-astronomy/wcslib.

* Homebrew (MacOSX), https://github.com/Homebrew/homebrew—-science

* RPM (general) http://rpmfind.net/linux/rpm2html/search.php?query=wcslib,
http://www.rpmseek.com/rpm-pl/wcslib.html.

* Ubuntu (deb), https://launchpad.net/ubuntu/+source/wcslib.

Bill Pence's general FITS IO library, CFITSIO is available from http://heasarc.gsfc.nasa.«
gov/fitsio/. |t is used optionally by some of the high-level WCSLIB test programs and is required by
two of the utility programs.

ASCL: https://ascl.net/1010.001
ADS: https://ui.adsabs.harvard.edu/abs/2010ascl.soft10001P

PGPLOT, Tim Pearson's Fortran plotting package on which PGSBOX is based, also used by some of the WCSLIB
self-test suite and a utility program, is available from http://astro.caltech.edu/~tJjp/pgplot/.

ASCL: https://ascl.net/1103.002
ADS: https://ui.adsabs.harvard.edu/abs/201lascl.soft03002P

Generated by Doxygen

https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://github.com/asgr/Rwcs/
http://hea-www.harvard.edu/RD/ds9/
https://ascl.net/0003.002
https://ui.adsabs.harvard.edu/abs/2000ascl.soft03002S
http://heasarc.gsfc.nasa.gov/ftools/fv/
https://ascl.net/1205.005
https://ui.adsabs.harvard.edu/abs/2012ascl.soft05005P
https://www.archlinux.org/packages/extra/i686/wcslib
http://packages.debian.org/search?keywords=wcslib
https://admin.fedoraproject.org/pkgdb/package/wcslib
http://www.freshports.org/astro/wcslib
http://packages.gentoo.org/package/sci-astronomy/wcslib
https://github.com/Homebrew/homebrew-science
http://rpmfind.net/linux/rpm2html/search.php?query=wcslib
http://www.rpmseek.com/rpm-pl/wcslib.html
http://www.rpmseek.com/rpm-pl/wcslib.html
https://launchpad.net/ubuntu/+source/wcslib
http://heasarc.gsfc.nasa.gov/fitsio/
http://heasarc.gsfc.nasa.gov/fitsio/
https://ascl.net/1010.001
https://ui.adsabs.harvard.edu/abs/2010ascl.soft10001P
http://astro.caltech.edu/~tjp/pgplot/
https://ascl.net/1103.002
https://ui.adsabs.harvard.edu/abs/2011ascl.soft03002P

4 Overview of WCSLIB 5

4 Overview of WCSLIB

WCSLIB is documented in the prologues of its header files which provide a detailed description of the purpose of
each function and its interface (this material is, of course, used to generate the doxygen manual). Here we explain
how the library as a whole is structured. We will normally refer to WCSLIB 'routines’, meaning C functions or Fortran
'subroutines’, though the latter are actually wrappers implemented in C.

WCSLIB is layered software, each layer depends only on those beneath; understanding WCSLIB first means un-
derstanding its stratigraphy. There are essentially three levels, though some intermediate levels exist within these:

» The top layer consists of routines that provide the connection between FITS files and the high-level WCSLIB
data structures, the main function being to parse a FITS header, extract WCS information, and copy it into
a wesprm struct. The lexical parsers among these are implemented as Flex descriptions (source files with .
suffix) and the C code generated from these by Flex is included in the source distribution.

— wecshdr.h,c — Routines for constructing wcsprm data structures from information in a FITS header and
conversely for writing a wesprm struct out as a FITS header.

— wespih.l — Flex implementation of wespih(), a lexical parser for WCS "keyrecords” in an image header.
A keyrecord (formerly called "card image") consists of a keyword, its value - the keyvalue - and an
optional comment, the keycomment.

— wecsbth.l — Flex implementation of wesbth() which parses binary table image array and pixel list headers
in addition to image array headers.

getwcstab.h,c — Implementation of a -TAB binary table reader in CFITSIO.

A generic FITS header parser is also provided to handle non-WCS keyrecords that are ignored by wcspih():

— fitshdr.h,| — Generic FITS header parser (not WCS-specific).

The philosophy adopted for dealing with non-standard WCS usage is to translate it at this level so that the
middle- and low-level routines need only deal with standard constructs:

— wesfix.h,c — Translator for non-standard FITS WCS constructs (uses wcsutrne()).

— wesutrn.l — Lexical translator for non-standard units specifications.

As a concrete example, within this layer the CTYPE i a keyvalues would be extracted from a FITS header and
copied into the ctypel] array within a wesprm struct. None of the header keyrecords are interpreted.

« The middle layer analyses the WCS information obtained from the FITS header by the top-level routines,
identifying the separate steps of the WCS algorithm chain for each of the coordinate axes in the image. It
constructs the various data structures on which the low-level routines are based and invokes them in the
correct sequence. Thus the wecsprm struct is essentially the glue that binds together the low-level routines
into a complete coordinate description.

— wcs.h,c — Driver routines for the low-level routines.

— wecsunits.h,c — Unit conversions (uses wcsulexe()).

— wecsulex.| — Lexical parser for units specifications.

To continue the above example, within this layer the ctypel[] keyvalues in a wesprm struct are analysed to
determine the nature of the coordinate axes in the image.

* Applications programmers who use the top- and middle-level routines generally need know nothing about
the low-level routines. These are essentially mathematical in nature and largely independent of FITS itself.
The mathematical formulae and algorithms cited in the WCS Papers, for example the spherical projection
equations of Paper Il and the lookup-table methods of Paper I, are implemented by the routines in this layer,
some of which serve to aggregate others:

Generated by Doxygen

— cel.h,c — Celestial coordinate transformations, combines prj.h,c and sph.h,c.

— spc.h,c — Spectral coordinate transformations, combines transformations from spx.h,c.

The remainder of the routines in this level are independent of everything other than the grass-roots mathe-
matical functions:

lin.h,c — Linear transformation matrix.

dis.h,c — Distortion functions.

log.h,c — Logarithmic coordinates.

prj.h,c — Spherical projection equations.

sph.h,c — Spherical coordinate transformations.

spx.h,c — Basic spectral transformations.

tab.h,c — Coordinate lookup tables.

As the routines within this layer are quite generic, some, principally the implementation of the spherical pro-
jection equations, have been used in other packages (AST, wcstools) that provide their own implementations
of the functionality of the top and middle-level routines.

+ At the grass-roots level there are a number of mathematical and utility routines.

When dealing with celestial coordinate systems it is often desirable to use an angular measure that provides
an exact representation of the latitude of the north or south pole. The WCSLIB routines use the following
trigonometric functions that take or return angles in degrees:

— cosd(), sind(), sincosd(), tand(), acosd(), asind(), atand(), atan2d()

These "trigd" routines are expected to handle angles that are a multiple of 90° returning an exact result.
Some C implementations provide these as part of a system library and in such cases it may (or may not!) be
preferable to use them. wcstrig.c provides wrappers on the standard trig functions based on radian measure,
adding tests for multiples of 90°.

However, wcstrig.h also provides the choice of using preprocessor macro implementations of the trigd
functions that don't test for multiples of 90° (compile with —-DWCSTRIG_MACRO). These are typically 20%
faster but may lead to problems near the poles.

— wcsmath.h — Defines mathematical and other constants.

— wecstrig.h,c — Various implementations of trigd functions.

— wecsutil.h,c — Simple utility functions for string manipulation, etc. used by WCSLIB.

Complementary to the C library, a set of wrappers are provided that allow all WCSLIB C functions to be called by
Fortran programs, see below.

Plotting of coordinate graticules is one of the more important requirements of a world coordinate system. WCSLIB
provides a PGPLOT-based subroutine, PGSBOX (Fortran), which handles general curvilinear coordinates via a
user-supplied function - PGWCSL provides the interface to WCSLIB. A C wrapper, cpgsbox(), is also provided, see
below.

Several utility programs are distributed with WCSLIB:

» wesgrid extracts the WCS keywords for an image from the specified FITS file and uses cpgsbox() to plot a
2-D coordinate graticule for it. It requires WCSLIB, PGSBOX and CFITSIO.

» wesware extracts the WCS keywords for an image from the specified FITS file and constructs wcsprm structs
for each coordinate representation found. The structs may then be printed or used to transform pixel coordi-
nates to world coordinates. It requires WCSLIB and CFITSIO.

Generated by Doxygen

5 WCSLIB data structures 7

» HPXcvt reorganises HEALPix data into a 2-D FITS image with HPX coordinate system. The input data may
be stored in a FITS file as a primary image or image extension, or as a binary table extension. Both NESTED
and RING pixel indices are supported. It uses CFITSIO.

« fitshdr lists headers from a FITS file specified on the command line, or else on stdin, printing them as 80-
character keyrecords without trailing blanks. It is independent of WCSLIB.

5 WCSLIB data structures

The WCSLIB routines are based on data structures specific to them: wesprm for the wces.h,c routines, celprm for
cel.h,c, and likewise spcprm, linprm, prjprm, tabprm, and disprm, with struct definitions contained in the corre-
sponding header files: wcs.h, cel.h, etc. The structs store the parameters that define a coordinate transformation
and also intermediate values derived from those parameters. As a high-level object, the wcsprm struct contains
linprm, tabprm, spcprm, and celprm structs, and in turn the linprm struct contains disprm structs, and the celprm
struct contains a prjprm struct. Hence the wcsprm struct contains everything needed for a complete coordinate
description.

Applications programmers who use the top- and middle-level routines generally only need to pass wcsprm structs
from one routine that fills them to another that uses them. However, since these structs are fundamental to WCSLIB

it is worthwhile knowing something about the way they work.

Three basic operations apply to all WCSLIB structs:

« Initialize. Each struct has a specific initialization routine, e.g. wcsinit(), celini(), spcini(), etc. These allocate
memory (if required) and set all struct members to default values.

Fill in the required values. Each struct has members whose values must be provided. For example, for
wcesprm these values correspond to FITS WCS header keyvalues as are provided by the top-level header
parsing routine, wespih().

» Compute intermediate values. Specific setup routines, e.g. wcsset(), celset(), spcset(), etc., compute inter-
mediate values from the values provided. In particular, wcsset() analyses the FITS WCS keyvalues provided,
fills the required values in the lower-level structs contained in wesprm, and invokes the setup routine for each
of them.

Each struct contains a flag member that records its setup state. This is cleared by the initialization routine and
checked by the routines that use the struct; they will invoke the setup routine automatically if necessary, hence it
need not be invoked specifically by the application programmer. However, if any of the required values in a struct
are changed then either the setup routine must be invoked on it, or else the flag must be zeroed to signal that the
struct needs to be reset.

The initialization routine may be invoked repeatedly on a struct if it is desired to reuse it. However, the flag member
of structs that contain allocated memory (wcsprm, linprm, tabprm, and disprm) must be set to -1 before the first
initialization to initialize memory management, but not subsequently or else memory leaks will result.

Each struct has one or more service routines: to do deep copies from one to another, to print its contents, and to
free allocated memory. Refer to the header files for a detailed description.

Generated by Doxygen

6 Memory management
The initialization routines for certain of the WCSLIB data structures allocate memory for some of their members:

» wcsinit() optionally allocates memory for the crpix, pc, cdelt, crval, cunit, ctype, pv, ps, cd, crota, colax,
cname, crder, and csyer arrays in the wesprm struct (using lininit() for certain of these). Note that wcsinit()
does not allocate memory for the tab array - refer to the usage notes for westab() in weshdr.h. If the pc matrix
is not unity, wesset() (via linset()) also allocates memory for the piximg and imgpix arrays.

« lininit(): optionally allocates memory for the crpix, pc, and cdelt arrays in the linprm struct. If the pc matrix is
not unity, linset() also allocates memory for the piximg and imgpix arrays. Typically these would be used by
wcsinit() and wesset().

« tabini(): optionally allocates memory for the K, map, crval, index, and coord arrays (including the arrays
referenced by index{]) in the tabprm struct. tabmem() takes control of any of these arrays that may have been
allocated by the user, specifically in that tabfree() will then free it. tabset() also allocates memory for the
sense, p0, delta and extrema arrays.

« disinit(): optionally allocates memory for the dtype, dp, and maxdis arrays. disset() also allocates memory for
a number of arrays that hold distortion parmeters and intermediate values: axmap, Nhat, offset, scale, iparm,
and dparm, and also several private work arrays: disp2x, disx2p, and tmpmem.

The caller may load data into these arrays but must not modify the struct members (i.e. the pointers) themselves or
else memory leaks will result.

wcsinit() maintains a record of memory it has allocated and this is used by wcsfree() which wcsinit() uses to free
any memory that it may have allocated on a previous invokation. Thus it is not necessary for the caller to invoke
wcsfree() separately if wesinit() is invoked repeatedly on the same wcsprm struct. Likewise, wesset() deallocates
memory that it may have allocated on a previous invokation. The same comments apply to lininit(), linfree(), and
linset(), to tabini(), tabfree(), and tabset(), and to disinit(), disfree() and disset().

A memory leak will result if a wesprm, linprm, tabprm, or disprm struct goes out of scope before the memory has
been free'd, either by the relevant routine, wcsfree(), linfree(), tabfree(), or disfree() or otherwise. Likewise, if one
of these structs itself has been malloc'd and the allocated memory is not free'd when the memory for the struct is
free'd. A leak may also arise if the caller interferes with the array pointers in the "private" part of these structs.

Beware of making a shallow copy of a wesprm, linprm, tabprm, or disprm struct by assignment; any changes made
to allocated memory in one would be reflected in the other, and if the memory allocated for one was free'd the other
would reference unallocated memory. Use the relevant routine instead to make a deep copy: wcssub(), lincpy(),
tabcpy(), or discpy().

7 Diagnostic output

All WCSLIB functions return a status value, each of which is associated with a fixed error message which may be
used for diagnostic output. For example

int status;
struct wcsprm wcCs;

if ((status = wcsset (&wcs)) {
fprintf (stderr, "ERROR %d from wcsset(): %s.\n", status, wcs_errmsg[status]);
return status;

}

Generated by Doxygen

8 Vector API 9

This might produce output like

ERROR 5 from wcsset (): Invalid parameter value.

The error messages are provided as global variables with names of the form cel_errmsg, prj_errmsg, etc. by
including the relevant header file.

As of version 4.8, courtesy of Michael Droettboom (pywcs), WCSLIB has a second error messaging system which
provides more detailed information about errors, including the function, source file, and line number where the error
occurred. For example,

struct wcsprm wcs;

/* Enable wcserr and send messages to stderr. */
wcserr_enable(1l);
wcsprintf_set (stderr);

if (wcsset (&wcs) |
wcsperr (&wcs) ;
return wcs.err—->status;

}

In this example, if an error was generated in one of the prjset() functions, wcsperr() would print an error traceback
starting with wcsset(), then celset(), and finally the particular projection-setting function that generated the error. For
each of them it would print the status return value, function name, source file, line number, and an error message
which may be more specific and informative than the general error messages reported in the first example. For
example, in response to a deliberately generated error, the twcs test program, which tests weserr among other
things, produces a traceback similar to this:

ERROR 5 in wcsset () at line 1564 of file wcs.c:
Invalid parameter value.

ERROR 2 in celset () at line 196 of file cel.c:
Invalid projection parameters.

ERROR 2 in bonset () at line 5727 of file prij.c:
Invalid parameters for Bonne’s projection.

Each of the structs in WCSLIB includes a pointer, called err, to a wcserr struct. When an error occurs, a struct is
allocated and error information stored in it. The wcserr pointers and the memory allocated for them are managed
by the routines that manage the various structs such as wcsinit() and wcsfree().

wcserr messaging is an opt-in system enabled via wcserr_enable(), as in the example above. If enabled, when
an error occurs it is the user's responsibility to free the memory allocated for the error message using wcsfree(),
celfree(), prifree(), etc. Failure to do so before the struct goes out of scope will result in memory leaks (if execution
continues beyond the error).

8 Vector API

WCSLIB's API is vector-oriented. At the least, this allows the function call overhead to be amortised by spreading
it over multiple coordinate transformations. However, vector computations may provide an opportunity for caching
intermediate calculations and this can produce much more significant efficiencies. For example, many of the spher-
ical projection equations are partially or fully separable in the mathematical sense, i.e. (z,y) = f(¢)g(0), so if 6
was invariant for a set of coordinate transformations then g(#) would only need to be computed once. Depending
on the circumstances, this may well lead to speedups of a factor of two or more.

WCSLIB has two different categories of vector API:

Generated by Doxygen

10

« Certain steps in the WCS algorithm chain operate on coordinate vectors as a whole rather than particular
elements of it. For example, the linear transformation takes one or more pixel coordinate vectors, multiples
by the transformation matrix, and returns whole intermediate world coordinate vectors.

The routines that implement these steps, wesp2s(), wess2p(), linp2x(), linx2p(), tabx2s(), tabs2x(), disp2x()
and disx2p() accept and return two-dimensional arrays, i.e. a number of coordinate vectors. Because WC-
SLIB permits these arrays to contain unused elements, three parameters are needed to describe them:

— naxis: the number of coordinate elements, as per the FITS NAXIS or WCSAXES keyvalues,
— ncoord: the number of coordinate vectors,

— nelem: the total number of elements in each vector, unused as well as used. Clearly, nelem must equal
or exceed naxis. (Note that when ncoord is unity, nelem is irrelevant and so is ignored. It may be set to
0.)

ncoord and nelem are specified as function arguments while naxis is provided as a member of the wesprm
(or linprm or disprm) struct.

For example, wcss2p() accepts an array of world coordinate vectors, world[ncoord][nelem]. In the following
example, naxis = 4, ncoord = 5, and nelem =7:

sl x1 yl t1
s2 x2 y2 t2
s3 x3 y3 t3
s4 x4 y4 t4
s5 x5 y5 t5 u

c e cc
ccc oo
cccocgo

where u indicates unused array elements, and the array is laid out in memory as

sl x1 yl t1 u u u s2 x2 y2

Note that the statf] vector returned by routines in this category is of length ncoord, as are the intermediate
phif] and theta[] vectors returned by wcsp2s() and wess2p().

Note also that the function prototypes for routines in this category have to declare these two-dimensional
arrays as one-dimensional vectors in order to avoid warnings from the C compiler about declaration of "in-
complete types". This was considered preferable to declaring them as simple pointers-to-double which gives
no indication that storage is associated with them.

Other steps in the WCS algorithm chain typically operate only on a part of the coordinate vector. For example,
a spectral transformation operates on only one element of an intermediate world coordinate that may also
contain celestial coordinate elements. In the above example, spcx2s() might operate only on the s (spectral)
coordinate elements.

Routines like spcx2s() and celx2s() that implement these steps accept and return one-dimensional vectors in
which the coordinate element of interest is specified via a starting address, a length, and a stride. To continue
the previous example, the starting address for the spectral elements is s7, the length is 5, and the stride is 7.

8.1 Vector lengths

Routines such as spcx2s() and celx2s() accept and return either one coordinate vector, or a pair of coordinate
vectors (one-dimensional C arrays). As explained above, the coordinate elements of interest are usually embedded
in a two-dimensional array and must be selected by specifying a starting point, length and stride through the array.
For routines such as spcx2s() that operate on a single element of each coordinate vector these parameters have a
straightforward interpretation.

However, for routines such as celx2s() that operate on a pair of elements in each coordinate vector, WCSLIB allows
these parameters to be specified independently for each input vector, thereby providing a much more general
interpretation than strictly needed to traverse an array.

This is best described by illustration. The following diagram describes the situation for cels2x(), as a specific
example, with ning = 5, and nlat = 3:

1Ing[0] 1ng[1] lng[2] 1ng[3] 1ng[4]
lat[0] | x%,y[0] x,y[1] x,y[2] x,y[3] x,y[4]
lat[1] I x,y[5] x,y[6] x,y[7] %x,yI[8] x,y[9]
lat[2] | x,y[10] x,y[11l] x,y[12] x,y[13] x,y[14]

Generated by Doxygen

8.2 Vector strides 11

In this case, while only 5 longitude elements and 3 latitude elements are specified, the world-to-pixel routine would
calculate ning % nlat = 15 (x,y) coordinate pairs. It is the responsibility of the caller to ensure that sufficient space
has been allocated in all of the output arrays, in this case phif], theta[], x[], y[] and stat{].

Vector computation will often be required where neither Ing nor lat is constant. This is accomplished by setting nlat
= 0 which is interpreted to mean nlat = ning but only the matrix diagonal is to be computed. Thus, for ning = 3 and
nlat = 0 only three (x,y) coordinate pairs are computed:

1ng[0] Ing[1l] Ing[2]
lat[0] | x,y[0]
lat[1] | x,y[1]
lat[2] | x,y[2]

The situation for celx2s() is similar; the x-coordinate (like Ing) varies fastest.

Similar comments can be made for all routines that accept arguments specifying vector length(s) and stride(s).
(tabx2s() and tabs2x() do not fall into this category because the —TAB algorithm is fully N-dimensional so there is
no way to know in advance how many coordinate elements may be involved.)

The reason that WCSLIB allows this generality is related to the aforementioned opportunities that vector computa-
tions may provide for caching intermediate calculations and the significant efficiencies that can result. The high-level
routines, wesp2s() and wess2p(), look for opportunities to collapse a set of coordinate transformations where one
of the coordinate elements is invariant, and the low-level routines take advantage of such to cache intermediate
calculations.

8.2 Vector strides

As explained above, the vector stride arguments allow the caller to specify that successive elements of a vector are
not contiguous in memory. This applies equally to vectors given to, or returned from a function.

As a further example consider the following two arrangements in memory of the elements of four (x,y) coordinate
pairs together with an s coordinate element (e.g. spectral):

* X1 x2x3x4y1y2y3y4s1s2s3s4
the address of x[] is x1, its stride is 1, and length 4,
the address of y[]is y1, its stride is 1, and length 4,
the address of sf]is s1, its stride is 1, and length 4.

o x1y1s1x2y2s2x3y35s3x4y4s4
the address of x[] is x1, its stride is 3, and length 4,
the address of y[]is y1, its stride is 3, and length 4,
the address of s[]is s1, its stride is 3, and length 4.

For routines such as cels2x(), each of the pair of input vectors is assumed to have the same stride. Each of the
output vectors also has the same stride, though it may differ from the input stride. For example, for cels2x() the input
Ing[] and latf] vectors each have vector stride sll, while the x[] and y/] output vectors have stride sxy. However, the
intermediate phif] and theta[] arrays each have unit stride, as does the stat/] vector.

If the vector length is 1 then the stride is irrelevant and so ignored. It may be set to 0.

Generated by Doxygen

12

9 Thread-safety

Thanks to feedback and patches provided by Rodrigo Tobar Carrizo, as of release 5.18, WCSLIB is now completely
thread-safe, with only a couple of minor provisos.

In particular, a number of new routines were introduced to preclude altering the global variables NPVMAX, NPS-
MAX, and NDPMAX, which determine how much memory to allocate for storing PVi_ma, PSi_ma, DPja, and DQia
keyvalues: wcsinit(), lininit(), lindist(), and disinit(). Specifically, these new routines are now used by various WC-
SLIB routines, such as the header parsers, which previously temporarily altered the global variables, thus posing a
thread hazard.

In addition, the Flex scanners were made reentrant and consequently should now be thread-safe. This was achieved
by rewriting them as thin wrappers (with the same API) over scanners that were modified (with changed API), as
required to use Flex's "reentrant" option.

For complete thread-safety, please observe the following provisos:

» The low-level routines wcsnpv(), wesnps(), and disndp() are not thread-safe, but they are not used within
WCSLIB itself other than to get (not set) the values of the global variables NPVMAX, NPSMAX, and NDPMAX.

wcsinit() and disinit() only do so to get default values if the relevant parameters are not provided as function
arguments. Note that wcsini() invokes wcsinit() with defaults which cause this behavior, as does disini()
invoking disinit().

The preset values of NPVMAX(=64), NPSMAX(=8), and NDPMAX(=256) are large enough to cover most
practical cases. However, it may be desirable to tailor them to avoid allocating memory that remains unused.
If so, and thread-safety is an issue, then use wcsinit() and disinit() instead with the relevant values speci-
fied. This is what WCSLIB routines, such as the header parsers wcspih() and wesbth(), do to avoid wasting
memory.

» wcserr_enable() sets a static variable and so is not thread-safe. However, the error reporting facility is not
intended to be used dynamically. If detailed error messages are required, enable wcserr when execution
starts and don't change it.

Note that diagnostic routines that print the contents of the various structs, namely celprt(), disprt(), linprt(), priprt(),
spcprt(), tabprt(), wesprt(), and wesperr() use printf() which is thread-safe by the POSIX requirement on stdio.
However, this is only at the function level. Where multiple threads invoke these routines simultaneously their output
is likely to be interleaved.

10 Limits

While the FITS WCS standard imposes a limit of 99 on the number of image coordinate axes, WCSLIB has a limit
of 32 on the number it can handle — enforced by wcsset(), though allowed by wcsinit(). This arises in wesp2s() and
wcss2p() from the use of the statf] vector as a bit mask to indicate invalid pixel or world coordinate elements.

In the unlikely event that it ever becomes necessary to handle more than 32 axes, it would be a simple matter
to modify the statf] bit mask so that bit 32 applies to all axes beyond 31. However, it was not considered worth
introducing the various tests required just for the sake of pandering to unrealistic possibilities.

In addition, wessub() has a hard-coded limit of 32 coordinate elements (matching the statf] bit mask), and likewise
for tabs2p() (via a static helper function, tabvox()). While it would be a simple matter to generalise this by allocating
memory from the heap, since tabvox() calls itself recursively and needs to be as fast as possible, again it was not
considered worth pandering to unrealistic possibilities.

Generated by Doxygen

11 Example code, testing and verification 13

11 Example code, testing and verification

WCSLIB has an extensive test suite that also provides programming templates as well as demonstrations. Test
programs, with names that indicate the main WCSLIB routine under test, reside in ./{C,Fortran}/test and each
contains a brief description of its purpose.

The high- and middle-level test programs are more instructive for applications programming, while the low-level tests
are important for verifying the integrity of the mathematical routines.

 High level:
twestab provides an example of high-level applications programming using WCSLIB and CFITSIO. It con-
structs an input FITS test file, specifically for testing TAB coordinates, partly using wcstab.keyrec, and
then extracts the coordinate description from it following the steps outlined in weshdr.h.

ipih1 and tpih2 verify wespih(). The first prints the contents of the structs returned by wcspih() using
wcesprt() and the second uses cpgsbox() to draw coordinate graticules. Input for these comes from a FITS
WCS test header implemented as a list of keyrecords, wcs . keyrec, one keyrecord per line, together with
a program, tofits, that compiles these into a valid FITS file.

tbth1 tests wcsbth() by reading a test header and printing the resulting wcsprm structs. In the process
it also tests wesfix().

tfitshdr also uses wcs . keyrec to test the generic FITS header parsing routine.

twesfix sets up a wesprm struct containing various non-standard constructs and then invokes wcsfix() to
translate them all to standard usage.

tweslint tests the syntax checker for FITS WCS keyrecords (wcsware -l) on a specially constructed header
riddled with invalid entries.

tdis3 uses wcsware to test the handling of different types of distortion functions encoded in a set of test
FITS headers.

» Middle level:
twes tests closure of wess2p() and wesp2s() for a number of selected projections. twesmix verifies wesmix()
on the 1° grid of celestial longitude and latitude for a number of selected projections. It plots a test grid
for each projection and indicates the location of successful and failed solutions. tdis2 and twcssub test the
extraction of a coordinate description for a subimage from a wecsprm struct by wessub().

tunits tests wesutrne(), wesunitse() and wesulexe(), the units specification translator, converter and parser,
either interactively or using a list of units specifications contained in units_test.

twescompare tests particular aspects of the comparison routine, wecscompare().

* Low level:
tdis1, tlin, tlog, tprj1, tspc, tsph, tspx, and ttab1 test "closure" of the respective routines. Closure tests
apply the forward and reverse transformations in sequence and compare the result with the original value.
Ideally, the result should agree exactly, but because of floating point rounding errors there is usually a small
discrepancy so it is only required to agree within a "closure tolerance".

tprj1 tests for closure separately for longitude and latitude except at the poles where it only tests for
closure in latitude. Note that closure in longitude does not deal with angular displacements on the sky. This
is appropriate for many projections such as the cylindricals where circumpolar parallels are projected at the
same length as the equator. On the other hand, tsph does test for closure in angular displacement.

The tolerance for reporting closure discrepancies is set at 10719 degree for most projections; this is
slightly less than 3 microarcsec. The worst case closure figure is reported for each projection and this is

Generated by Doxygen

14

usually better than the reporting tolerance by several orders of magnitude. tprj7 and tsph test closure at all
points on the 1° grid of native longitude and latitude and to within 5° of any latitude of divergence for those
projections that cannot represent the full sphere. Closure is also tested at a sequence of points close to the
reference point (fprj1) or pole (tsph).

Closure has been verified at all test points for SUN workstations. However, non-closure may be observed for
other machines near native latitude —90° for the zenithal, cylindrical and conic equal area projections (ZEA,
CEA and COE), and near divergent latitudes of projections such as the azimuthal perspective and stereo-
graphic projections (AZP and STG). Rounding errors may also carry points between faces of the quad-cube
projections (CSC, QSC, and TSC). Although such excursions may produce long lists of non-closure points,
this is not necessarily indicative of a fundamental problem.

Note that the inverse of the COBE quad-qube projection (CSC) is a polynomial approximation and its
closure tolerance is intrinsically poor.

Although tests for closure help to verify the internal consistency of the routines they do not verify them
in an absolute sense. This is partly addressed by fcel1, tcel2, tprj2, ttab2 and ttab3 which plot graticules for
visual inspection of scaling, orientation, and other macroscopic characteristics of the projections.

There are also a number of other special-purpose test programs that are not automatically exercised by
the test suite.

12 WCSLIB Fortran wrappers

The Fortran subdirectory contains wrappers, written in C, that allow Fortran programs to use WCSLIB. The wrappers
have no associated C header files, nor C function prototypes, as they are only meant to be called by Fortran code.
Hence the C code must be consulted directly to determine the argument lists. This resides in files with names of the
form x__f.c. However, there are associated Fortran INCLUDE files that declare function return types and various
parameter definitions. There are also BLOCK DATA modules, in files with names of the form *_dat a.f, used solely
to initialise error message strings.

A prerequisite for using the wrappers is an understanding of the usage of the associated C routines, in particular the
data structures they are based on. The principle difficulty in creating the wrappers was the need to manage these
C structs from within Fortran, particularly as they contain pointers to allocated memory, pointers to C functions, and
other structs that themselves contain similar entities.

To this end, routines have been provided to set and retrieve values of the various structs, for example WCSPUT
and WCSGET for the wesprm struct, and CELPUT and CELGET for the celprm struct. These must be used in
conjunction with wrappers on the routines provided to manage the structs in C, for example WCSINIT, WCSSUB,
WCSCOPY, WCSFREE, and WCSPRT which wrap wcsinit(), wessub(), wescopy(), wesfree(), and wespri().

Compilers (e.g. gfortran) may warn of inconsistent usage of the third argument in the various *xPUT and *GET
routines, and as of gfortran 10, these warnings have been promoted to errors. Thus, type-specific variants are
provided for each of the *PUT routines, *PTI, *PTD, and xPTC for int, double, or char{], and likewise *GT I, *GTD,
and xGTC for the *xGET routines. While, for brevity, we will here continue to refer to the xPUT and *GET routines,
as compilers are generally becoming stricter, use of the type-specific variants is recommended.

The various *PUT and *GET routines are based on codes defined in Fortran include files (x.inc). If your Fortran
compiler does not support the INCLUDE statement then you will need to include these manually in your code as
necessary. Codes are defined as parameters with names like WCS__ CRP IX which refers to wesprm::crpix (if your
Fortran compiler does not support long symbolic names then you will need to rename these).

The include files also contain parameters, such as WCSLEN, that define the length of an INTEGER array that
must be declared to hold the struct. This length may differ for different platforms depending on how the C compiler
aligns data within the structs. A test program for the C library, twcs, prints the size of the struct in sizeof(int) units
and the values in the Fortran include files must equal or exceed these. On some platforms, such as Suns, it is

Generated by Doxygen

12 WCSLIB Fortran wrappers

important that the start of the INTEGER array be aligned on a DOUBLE PRECISION boundary, otherwise a
mysterious BUS error may result. This may be achieved via an EQUIVALENCE with a DOUBLE PRECISION
variable, or by sequencing variables in a COMMON block so that the INTEGER array follows immediately after a

DOUBLE PRECISION variable.

The *PUT routines set only one element of an array at a time; the final one or two integer arguments of these
routines specify 1-relative array indices (N.B. not 0-relative as in C). The one exception is the prjprm::pv array.

The *xPUT routines also reset the flag element to signal that the struct needs to be reinitialized. Therefore, if you
wanted to set wesprm::flag itself to -1 prior to the first call to WCSINIT, for example, then that WCSPUT must be

the last one before the call.

The *GET routines retrieve whole arrays at a time and expect array arguments of the appropriate length where
necessary. Note that they do not initialize the structs, i.e. via wcsset(), priset(), or whatever.

A basic coding fragment is

INTEGER LNGIDX, STATUS
CHARACTER CTYPE1x72

INCLUDE ’'wcs.inc’

* WCSLEN is defined as a parameter in wcs.inc.
INTEGER WCS (WCSLEN)
DOUBLE PRECISION DUMMY
EQUIVALENCE (WCS, DUMMY)

* Allocate memory and set default values for 2 axes.
STATUS = WCSPTI (WCS, WCS_FLAG, -1, 0, 0)
STATUS = WCSINI (2, WCS)

* Set CRPIX1l, and CRPIX2; WCS_CRPIX is defined in wcs.inc.

STATUS = WCSPTD (WCS, WCS_CRPIX, 512D0, 1, 0)
STATUS = WCSPTD (WCS, WCS_CRPIX, 512D0, 2, 0)

* Set PC1_2 to 5.0 (I =1, J = 2).
STATUS = WCSPTD (WCS, WCS_PC, 5D0, 1, 2)

* Set CTYPEl to "RA---SIN’; N.B. must be given as CHARACTERx72.

CTYPE1l = 'RA-—-SIN’
STATUS = WCSPTC (WCS, WCS_CTYPE, CTYPE1l, 1, O0)

* Use an alternate method to set CTYPE2.
STATUS = WCSPTC (WCS, WCS_CTYPE, ’'DEC--SIN’//CHAR(O),

* Set PV1_3 to -1.0 (I =1, M = 3).
STATUS = WCSPTD (WCS, WCS_PV, -1D0O, 1, 3)

etc.

* Initialize.
STATUS = WCSSET (WCS)
IF (STATUS.NE.O) THEN
CALL FLUSH (6)
STATUS = WCSPERR (WCS, ’'EXAMPLE: ’//CHAR(0))
ENDIF

* Find the "longitude" axis.
STATUS = WCSGTI (WCS, WCS_LNG, LNGIDX)

* Free memory.
STATUS = WCSFREE (WCS)

Refer to the various Fortran test programs for further programming examples. In particular, twcs and twesmix show
how to retrieve elements of the celprm and prjprm structs contained within the wcsprm struct.

Generated by Doxygen

16

Treatment of CHARACTER arguments in wrappers such as SPCTYPE, SPECX, and WCSSPTR, depends on
whether they are given or returned. Where a CHARACTER variable is returned, its length must match the de-
clared length in the definition of the C wrapper. The terminating null character in the C string, and all following it up
to the declared length, are replaced with blanks. If the Fortran CHARACTER variable were shorter than the declared
length, an out-of-bounds memory access error would result. If longer, the excess, uninitialized, characters could
contain garbage.

If the CHARACTER argument is given, a null-terminated CHARACTER variable may be provided as input, e.g.
constructed using the Fortran CHAR (0) intrinsic as in the example code above. The wrapper makes a character-
by-character copy, searching for a NULL character in the process. If it finds one, the copy terminates early, resulting
in a valid C string. In this case any trailing blanks before the NULL character are preserved if it makes sense to
do so, such as in setting a prefix for use by the *PERR wrappers, such as WCSPERR in the example above. If a
NULL is not found, then the CHARACTER argument must be at least as long as the declared length, and any trailing
blanks are stripped off. Should a CHARACTER argument exceed the declared length, the excess characters are
ignored.

There is one exception to the above caution regarding CHARACTER arguments. The WCSLIB_VERSION wrapper
is unusual in that it provides for the length of its CHARACTER argument to be specified, and only so many characters
as fit within that length are returned.

Note that the data type of the third argument to the *PUT (or *xPTI, *PTD, or xPTC) and *GET (or *GTI, *GTD, or
*GTC) routines differs depending on the data type of the corresponding C struct member, be it int, double, or char].
It is essential that the Fortran data type match that of the C struct for int and double types, and be a CHARACTER
variable of the correct length for char]] types, or else be null-terminated, as in the coding example above. As a
further example, in the two equivalent calls

STATUS
STATUS

PRJGET (PRJ, PRJ_NAME, NAME)
PRJGTC (PRJ, PRJ_NAME, NAME)

which return a character string, NAME must be a CHARACTER variable of length 40, as declared in the prjprm
struct, no less and no more, the comments above pertaining to wrappers that contain CHARACTER arguments also
applying here. However, a few exceptions have been made to simplify coding. The relevant xPUT (or *PTC) wrap-
pers allow unterminated CHARACTER variables of less than the declared length for the following: pr jprm: : code
(3 characters), spcprm: : type (4 characters), spcprm: : code (3 characters), and fitskeyid: :name (8
characters). It doesn't hurt to specify longer CHARACTER variables, but the trailing characters will be ignored.
Notwithstanding this simplification, the length of the corresponding variables in the *GET (or *GTC) wrappers must
match the length declared in the struct.

When calling wrappers for C functions that print to stdout, such as WCSPRT, and WCSPERR, or that may print to
stderr, such as WCSPIH, WCSBTH, WCSULEXE, or WCSUTRNE, it may be necessary to flush the Fortran 1/O buffers
beforehand so that the output appears in the correct order. The wrappers for these functions do call ff1ush («
NULL), but depending on the particular system, this may not succeed in flushing the Fortran 1/O buffers. Most
Fortran compilers provide the non-standard intrinsic FLUSH () , which is called with unit number 6 to flush stdout
(as in the example above), and unit 0 for stderr.

A basic assumption made by the wrappers is that an INTEGER variable is no less than half the size of a DOUBLE
PRECISION.

13 PGSBOX

PGSBOX, which is provided as a separate part of WCSLIB, is a PGPLOT routine (PGPLOT being a Fortran graph-
ics library) that draws and labels curvilinear coordinate grids. Example PGSBOX grids can be seen at http«
://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html.

Generated by Doxygen

http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html

14 WCSLIB version nhumbers 17

The prologue to pgsbox.f contains usage instructions. pgtest.f and cpgtest.c serve as test and demonstration
programs in Fortran and C and also as well- documented examples of usage.

PGSBOX requires a separate routine, EXTERNAL NLFUNC, to define the coordinate transformation. Fortran sub-
routine PGCRFN (pgcrfn.f) is provided to define separable pairs of non-linear coordinate systems. Linear, logarithmic
and power-law axis types are currently defined; further types may be added as required. A C function, pgwcsl—
_(), with Fortran-like interface defines an NLFUNC that interfaces to WCSLIB 4.x for PGSBOX to draw celestial
coordinate grids.

PGPLOT is implemented as a Fortran library with a set of C wrapper routines that are generated by a software
tool. However, PGSBOX has a more complicated interface than any of the standard PGPLOT routines, especially
in having an EXTERNAL function in its argument list. Consequently, PGSBOX is implemented in Fortran but with a
hand-coded C wrapper, cpgsbox().

As an example, in this suite the C test/demo program, cpgtest, calls the C wrapper, cpgsbox(), passing it a pointer
to pgwes!_(). In turn, cpgsbox() calls PGSBOX, which invokes pgwes! () as an EXTERNAL subroutine. In this
sequence, a complicated C struct defined by cpgtest is passed through PGSBOX to pgwes! () as an INTEGER
array.

While there are no formal standards for calling Fortran from C, there are some fairly well established conventions.
Nevertheless, it's possible that you may need to modify the code if you use a combination of Fortran and C compilers
with linkage conventions that differ from that of the GNU compilers, gcc and g77.

14 WCSLIB version numbers

The full WCSLIB/PGSBOX version number is composed of three integers in fields separated by periods:

» Major: the first number changes only when the ABI changes, a rare occurence (and the API never changes).
Typically, the ABI changes when the contents of a struct change. For example, the contents of the linprm
struct changed between 4.25.1 and 5.0.

In practical terms, this number becomes the major version number of the WCSLIB sharable library, libwes.«—
so.<major>. To avoid possible segmentation faults or bus errors that may arise from the altered ABI, the
dynamic (runtime) linker will not allow an application linked to a sharable library with a particular major version
number to run with that of a different major version number.

Application code must be recompiled and relinked to use a newer version of the WCSLIB sharable library with
a new major version number.

» Minor: the second number changes when existing code is changed, whether due to added function-
ality or bug fixes. This becomes the minor version number of the WCSLIB sharable library, libwcs.«
so.<major>.<minor>.

Because the ABI remains unchanged, older applications can use the new sharable library without needing to
be recompiled, thus obtaining the benefit of bug fixes, speed enhancements, etc.

Application code written subsequently to use the added functionality would, of course, need to be recompiled.

» Patch: the third number, which is often omitted, indicates a change to the build procedures, documentation,
or test suite. It may also indicate changes to the utility applications (wcsware, HPXcvt, etc.), including the
addition of new ones.

However, the library itself, including the definitions in the header files, remains unaltered, so there is no point
in recompiling applications.

The following describes what happens (or should happen) when WCSLIB's installation procedures are used on a
typical Linux system using the GNU gcc compiler and GNU linker.

The sharable library should be installed as libwcs.so.<major>.<minor>, say libwcs.s0.5.4 for concreteness, and a
number of symbolic links created as follows:

Generated by Doxygen

18

libwcs.so -> libwcs.so.5
libwcs.so.5 -> libwcs.so0.5.4
libwcs.so.5.4

When an application is linked using '-lwcs', the linker finds libwcs.so and the symlinks lead it to libwcs.so.5.4.
However, that library's SONAME is actually 'libwcs.so.5', by virtue of linker options used when the sharable library
was created, as can be seen by running

readelf -d libwcs.so.5.4

Thus, when an application that was compiled and linked to libwcs.s0.5.4 begins execution, the dynamic linker, Id.so,
will attempt to bind it to libwcs.s0.5, as can be seen by running

1dd <application>

Later, when WCSLIB 5.5 is installed, the library symbolic links will become

libwcs.so -> libwcs.so.5
libwcs.so.5 -> libwcs.so0.5.5
libwcs.so.5.4
libwcs.so0.5.5

Thus, even without being recompiled, existing applications will link automatically to libwcs.s0.5.5 at runtime. In fact,
libwcs.s0.5.4 would no longer be used and could be deleted.

If WCSLIB 6.0 were to be installed at some later time, then the libwcs.so0.6 libraries would be used for new compila-
tions. However, the libwcs.so.5 libraries must be left in place for existing executables that still require them:

libwcs.so -> libwcs.so.6
libwcs.so.6 -> libwcs.s0.6.0
libwcs.so0.6.0

libwcs.so.5 -> libwcs.so0.5.5
libwcs.so0.5.5

15 Deprecated List

Global celini_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.
Global celprt_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.
Global cels2x_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.
Global celset_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.
Global celx2s_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global cylfix_errmsg
Added for backwards compatibility, use wcsfix_errmsg directly now instead.

Generated by Doxygen

15 Deprecated List

19

Global FITSHDR_CARD
Added for backwards compatibility, use FITSHDR_KEYREC instead.

Global lincpy_errmsg
Added for backwards compatibility, use lin_errmsg directly now instead.

Global linfree_errmsg
Added for backwards compatibility, use lin_errmsg directly now instead.

Global linini_errmsg
Added for backwards compatibility, use lin_errmsg directly now instead.

Global linp2x_errmsg
Added for backwards compatibility, use lin_errmsg directly now instead.

Global linprt_errmsg
Added for backwards compatibility, use lin_errmsg directly now instead.

Global linset_errmsg
Added for backwards compatibility, use lin_errmsg directly now instead.

Global linx2p_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.
Global prjini_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjprt_errmsg
Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjs2x_errmsg
Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjset_errmsg
Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjx2s_errmsg
Added for backwards compatibility, use prj_errmsg directly now instead.

Global spcini_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcprt_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcs2x_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcset_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcx2s_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global tabcpy_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabfree_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabini_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabprt_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Generated by Doxygen

20

Global tabs2x_errmsg
Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabset_errmsg
Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabx2s_errmsg
Added for backwards compatibility, use tab_errmsg directly now instead.

Global wcscopy_errmsg
Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsfree_errmsg
Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsini_errmsg
Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsmix_errmsg
Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsp2s_errmsg
Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wesprt_errmsg
Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcss2p_errmsg
Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsset_errmsg
Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcssub_errmsg
Added for backwards compatibility, use wecs_errmsg directly now instead.

16 Data Structure Index

16.1 Data Structures

Here are the data structures with brief descriptions:

auxprm

Additional auxiliary parameters 22
celprm

Celestial transformation parameters 23
disprm

Distortion parameters 26
dpkey

Store for DP ja and DQia keyvalues 30
fitskey

Keyword/value information 31
fitskeyid

Keyword indexing 35

Generated by Doxygen

17 File Index 21

linprm

Linear transformation parameters 36
priprm

Projection parameters 40
pscard

Store for PSi_ma keyrecords 44
pvcard

Store for PVi_ma keyrecords 45
spcprm

Spectral transformation parameters 46
spxprm

Spectral variables and their derivatives 49
tabprm

Tabular transformation parameters 54
wcserr

Error message handling 58
wcsprm

Coordinate transformation parameters 59
wtbarr

Extraction of coordinate lookup tables from BINTABLE 76

17 File Index

17.1 File List

Here is a list of all files with brief descriptions:

cel.h 78
dis.h 91
fitshdr.h 119
getwcstab.h 129
lin.h 133
log.h 154
prj.h 159
spc.h 195
sph.h 222
spx.h 228
tab.h 246

Generated by Doxygen

22

wces.h 264
wceserr.h 312
wesfix.h 320
wceshdr.h 340
wcsmath.h 382
wesprintf.h 384
westrig.h 388
wcesunits.h 395
wcesutil.h 409
wtbarr.h 424
wcslib.h 426

18 Data Structure Documentation

18.1 auxprm Struct Reference

Additional auxiliary parameters.

#include <wcs.h>

Data Fields
« double rsun_ref
« double dsun_obs
« double crin_obs

+ double hgin_obs
+ double hglt_obs

18.1.1 Detailed Description

The auxprm struct holds auxiliary coordinate system information of a specialist nature. It is anticipated that this
struct will expand in future to accomodate additional parameters.

All members of this struct are to be set by the user.

18.1.2 Field Documentation

Generated by Doxygen

18.2 celprm Struct Reference 23

18.1.2.1 rsun_ref double auxprm::rsun_ref

(Given, auxiliary) Reference radius of the Sun used in coordinate calculations (m).

18.1.2.2 dsun_obs double auxprm::dsun_obs

(Given, auxiliary) Distance between the centre of the Sun and the observer (m).

18.1.2.3 crin_obs double auxprm::crln_obs

(Given, auxiliary) Carrington heliographic longitude of the observer (deg).

18.1.2.4 hgIn_obs double auxprm::hgln_obs

(Given, auxiliary) Stonyhurst heliographic longitude of the observer (deg).

18.1.2.5 hglt_obs double auxprm::hglt_obs

(Given, auxiliary) Heliographic latitude (Carrington or Stonyhurst) of the observer (deg).

18.2 celprm Struct Reference

Celestial transformation parameters.

#include <cel.h>

Data Fields

« intflag

* int offset
 double phi0

+ double thetal

* double ref [4]

« struct prjprm prj
» double euler [5]
« int latpreq

« int isolat

« struct weserr x err
* void * padding

18.2.1 Detailed Description

The celprm struct contains information required to transform celestial coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). Some of the latter
are supplied for informational purposes and others are for internal use only.

Returned celprm struct members must not be modified by the user.

Generated by Doxygen

24

18.2.2 Field Documentation

18.2.2.1 flag int celprm::flag

(Given and returned) This flag must be set to zero whenever any of the following celprm struct members are set or
changed:

* celprm::offset,
* celprm::phi0,

* celprm::theta0,
 celprm:ref[4],

 celprm::prj:

priprm::code,

priprm::r0,
priprm::pv(],
priprm::phio,

priprm::theta0.

This signals the initialization routine, celset(), to recompute the returned members of the celprm struct. celset() will
reset flag to indicate that this has been done.

18.2.2.2 offset int celprm::offset

(Given) If true (non-zero), an offset will be applied to (x,y) to force (x,y) = (0,0) at the fiducial point, (¢q, 6p).
Default is O (false).

18.2.2.3 phi0 double celprm::phi0

(Given) The native longitude, ¢q [deg], and ...

18.2.2.4 theta0 double celprm::thetal

(Given) ... the native latitude, 8y [deg], of the fiducial point, i.e. the point whose celestial coordinates are given
in celprm:ref[1:2]. If undefined (set to a magic value by prjini()) the initialization routine, celset(), will set this to a
projection-specific default.

Generated by Doxygen

18.2 celprm Struct Reference 25

18.2.2.5 ref double celprm::ref

(Given) The first pair of values should be set to the celestial longitude and latitude of the fiducial point [deg] - typically
right ascension and declination. These are given by the CRVALia keywords in FITS.

(Given and returned) The second pair of values are the native longitude, ¢, [deg], and latitude,), [deg], of the
celestial pole (the latter is the same as the celestial latitude of the native pole, ¢,) and these are given by the FITS
keywords LONPOLEa and LATPOLEa (or by PVi_2a and PVi_3a attached to the longitude axis which take
precedence if defined).

LONPOLEa defaults to ¢ (see above) if the celestial latitude of the fiducial point of the projection is greater than or
equal to the native latitude, otherwise ¢ + 180 [deg]. (This is the condition for the celestial latitude to increase in
the same direction as the native latitude at the fiducial point.) ref[2] may be set to UNDEFINED (from wcsmath.h)
or 999.0 to indicate that the correct default should be substituted.

6, the native latitude of the celestial pole (or equally the celestial latitude of the native pole, d,,) is often determined
uniquely by CRVALia and LONPOLEa in which case LATPOLEa is ignored. However, in some circumstances
there are two valid solutions for ¢, and LATPOLEa is used to choose between them. LATPOLEa is set in ref[3]
and the solution closest to this value is used to reset ref[3]. It is therefore legitimate, for example, to set ref[3] to
+90.0 to choose the more northerly solution - the default if the LATPOLEa keyword is omitted from the FITS header.
For the special case where the fiducial point of the projection is at native latitude zero, its celestial latitude is zero,
and LONPOLEa = %+ 90.0 then the celestial latitude of the native pole is not determined by the first three reference
values and LATPOLEa specifies it completely.

The returned value, celprm::latpreq, specifies how LATPOLEa was actually used.

18.2.2.6 pl‘j struct prjprm celprm::prj

(Given and returned) Projection parameters described in the prologue to prj.h.

18.2.2.7 euler double celprm::euler
(Returned) Euler angles and associated intermediaries derived from the coordinate reference values. The first three

values are the Z-, X-, and Z'-Euler angles [deg], and the remaining two are the cosine and sine of the X-Euler
angle.

18.2.2.8 latpreq int celprm::latpreq

(Returned) For informational purposes, this indicates how the LATPOLEa keyword was used

+ 0: Not required, 6, (== d,,) was determined uniquely by the CRVALia and LONPOLEa keywords.
+ 1: Required to select between two valid solutions of §,,.

« 2: 0, was specified solely by LATPOLEa.

18.2.2.9 isolat int celprm::isolat

(Returned) True if the spherical rotation preserves the magnitude of the latitude, which occurs iff the axes of the
native and celestial coordinates are coincident. It signals an opportunity to cache intermediate calculations common
to all elements in a vector computation.

Generated by Doxygen

26

18.2.2.10 err struct wcserr * celprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.2.2.11 padding void * celprm::padding
(An unused variable inserted for alignment purposes only.)

Global variable: const char xcel_errmsg][] - Status return messages Status messages to match the status value
returned from each function.

18.3 disprm Struct Reference

Distortion parameters.

#include <dis.h>

Data Fields

* intflag

* int naxis

* char(x dtype)[72]

+ int ndp

* int ndpmax

« struct dpkey * dp
 double * maxdis

+ double totdis

* int x docorr

« int x Nhat

* int xx axmap

* double *x* offset
 double *xx* scale

* int xx iparm

« double *x dparm

* inti_naxis

* int ndis

» struct wcserr x err

* int(xx disp2x)(DISP2X_ARGS)
* int(x* disx2p)(DISX2P_ARGS)
« double * tmpmem

« intm_flag

* int m_naxis

+ char(x m_dtype)[72]
« struct dpkey * m_dp
» double * m_maxdis

18.3.1 Detailed Description

The disprm struct contains all of the information required to apply a set of distortion functions. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned). While the
addresses of the arrays themselves may be set by disinit() if it (optionally) allocates memory, their contents must be
set by the user.

Generated by Doxygen

18.3 disprm Struct Reference 27

18.3.2 Field Documentation

18.3.2.1 flag int disprm::flag

(Given and returned) This flag must be set to zero whenever any of the following members of the disprm struct are
set or modified:

* disprm::naxis,

* disprm::dtype,

* disprm::ndp,

* disprm::dp.
This signals the initialization routine, disset(), to recompute the returned members of the disprm struct. disset() will
reset flag to indicate that this has been done.
PLEASE NOTE: flag must be set to -1 when disinit() is called for the first time for a particular disprm struct in order

to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks may
result.

18.3.2.2 naxis int disprm::naxis
(Given or returned) Number of pixel and world coordinate elements.

If disinit() is used to initialize the disprm struct (as would normally be the case) then it will set naxis from the value
passed to it as a function argument. The user should not subsequently modify it.

18.3.2.3 dtype disprm::dtype

(Given) Pointer to the first element of an array of char[72] containing the name of the distortion function for each
axis.

18.3.24 ndp int disprm::ndp

(Given) The number of entries in the disprm::dp[] array.

18.3.2.5 ndpmax int disprm::ndpmax
(Given) The length of the disprm::dp[] array.

ndpmax will be set by disinit() if it allocates memory for disprm::dp[], otherwise it must be set by the user. See also
disndp().

Generated by Doxygen

28

18.3.2.6 dp struct dpkey disprm::dp
(Given) Address of the first element of an array of length ndpmax of dpkey structs.
As a FITS header parser encounters each DP ja or DQia keyword it should load it into a dpkey struct in the array

and increment ndp. However, note that a single disprm struct must hold only DP ja or DQ1ia keyvalues, not both.
disset() interprets them as required by the particular distortion function.

18.3.2.7 maxdis double * disprm::maxdis

(Given) Pointer to the first element of an array of double specifying the maximum absolute value of the distortion for
each axis computed over the whole image.

It is not necessary to reset the disprm struct (via disset()) when disprm::maxdis is changed.

18.3.2.8 totdis double disprm::totdis

(Given) The maximum absolute value of the combination of all distortion functions specified as an offset in pixel
coordinates computed over the whole image.

It is not necessary to reset the disprm struct (via disset()) when disprm::totdis is changed.

18.3.2.9 docorr int * disprm::docorr

(Returned) Pointer to the first element of an array of int containing flags that indicate the mode of correction for each
axis.

If docorr is zero, the distortion function returns the corrected coordinates directly. Any other value indicates that
the distortion function computes a correction to be added to pixel coordinates (prior distortion) or intermediate pixel
coordinates (sequent distortion).

18.3.2.10 Nhat int * disprm::Nhat

(Returned) Pointer to the first element of an array of int containing the number of coordinate axes that form the
independent variables of the distortion function for each axis.

18.3.2.11 axmap int *x disprm::axmap

(Returned) Pointer to the first element of an array of intx containing pointers to the first elements of the axis mapping
arrays for each axis.

An axis mapping associates the independent variables of a distortion function with the 0-relative image axis number.
For example, consider an image with a spectrum on the first axis (axis 0), followed by RA (axis 1), Dec (axis2), and
time (axis 3) axes. For a distortion in (RA,Dec) and no distortion on the spectral or time axes, the axis mapping
arrays, axmaplj][], would be

j=0: [-1, -1, -1, -1] ...no distortion on spectral axis,
1: [1, 2, -1, -1] ..RA distortion depends on RA and Dec,
2: 12, 1, -1, -1] ...Dec distortion depends on Dec and RA,
3: [-1, -1, -1, -11] ..no distortion on time axis,

where -1 indicates that there is no corresponding independent variable.

Generated by Doxygen

18.3 disprm Struct Reference 29

18.3.2.12 offset double #% disprm::offset

(Returned) Pointer to the first element of an array of doublex containing pointers to the first elements of arrays of
offsets used to renormalize the independent variables of the distortion function for each axis.

The offsets are subtracted from the independent variables before scaling.

18.3.2.13 scale double #* disprm::scale

(Returned) Pointer to the first element of an array of doublex containing pointers to the first elements of arrays of
scales used to renormalize the independent variables of the distortion function for each axis.

The scale is applied to the independent variables after the offsets are subtracted.

18.3.2.14 iparm int ** disprm::iparm

(Returned) Pointer to the first element of an array of intx containing pointers to the first elements of the arrays of
integer distortion parameters for each axis.

18.3.2.15 dparm double #** disprm::dparm

(Returned) Pointer to the first element of an array of doublex containing pointers to the first elements of the arrays
of floating point distortion parameters for each axis.

18.3.2.16 i_naxis int disprm::i_naxis

(Returned) Dimension of the internal arrays (normally equal to naxis).

18.3.2.17 ndis int disprm::ndis

(Returned) The number of distortion functions.

18.3.2.18 err struct wcserr % disprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.3.2.19 disp2x int (¥* disprm::disp2x) (DISP2X_ARGS)

(For internal use only.)

18.3.2.20 disx2p int (x* disprm::disx2p) (DISX2P_ARGS)

(For internal use only.)

18.3.2.21 tmpmem double x disprm::tmpmem

(For internal use only.)

Generated by Doxygen

30

18.3.2.22 m_flag int disprm::m_flag

(For internal use only.)

18.3.2.23 m_naxis int disprm::m_naxis

(For internal use only.)

18.3.2.24 m_dtype disprm::m_dtype

(For internal use only.)

18.3.2.25 m_dp double ** disprm::m_dp

(For internal use only.)

18.3.2.26 m_maxdis double % disprm::m_maxdis

(For internal use only.)

18.4 dpkey Struct Reference

Store for DP ja and DQ1 a keyvalues.

#include <dis.h>

Data Fields

* char field [72]
« intj
* int type
* union {
inti
double f
} value

18.4.1 Detailed Description

The dpkey struct is used to pass the parsed contents of DP ja or DQi a keyrecords to disset() via the disprm struct.
A disprm struct must hold only DP ja or DQia keyvalues, not both.

All members of this struct are to be set by the user.

18.4.2 Field Documentation

Generated by Doxygen

18.5 fitskey Struct Reference 31

18.4.2.1 field char dpkey::field

(Given) The full field name of the record, including the keyword name. Note that the colon delimiter separating the

field name and the value in record-valued keyvalues is not part of the field name. For example, in the following:
DP3A = ’'AXIS.1l: 2/

the full record field name is "DP3A .AXIS. 1", and the record's value is 2.

18.4.2.2 | int dpkey::j

(Given) Axis number (1-relative), i.e. the jin DPja oriin DQia.

18.4.2.3 type int dpkey::type

(Given) The data type of the record's value

» 0: Integer (stored as an int),

» 1: Floating point (stored as a double).

18.4.2.4 i int dpkey::i

18.4.25 f double dpkey::f

18.4.2.6 value union dpkey::value

(Given) A union comprised of

+ dpkey::i,
» dpkey:f,

the record's value.

18.5 fitskey Struct Reference

Keyword/value information.

#include <fitshdr.h>

Generated by Doxygen

32

Data Fields

* int keyno

* int keyid

* int status

« char keyword [12]

* inttype

+ int padding

* union {
inti
int64 k
int 1 [8]
double f
double ¢ [2]
char s [72]

} keyvalue

« int ulen

» char comment [84]

18.5.1 Detailed Description

fitshdr() returns an array of fitskey structs, each of which contains the result of parsing one FITS header keyrecord.
All members of the fitskey struct are returned by fitshdr(), none are given by the user.

18.5.2 Field Documentation

18.5.2.1 keyno int fitskey::keyno

(Returned) Keyrecord number (1-relative) in the array passed as input to fitshdr(). This will be negated if the keyword
matched any specified in the keyids[] index.

18.5.2.2 keyid int fitskey::keyid

(Returned) Index into the first entry in keyids[] with which the keyrecord matches, else -1.

18.5.2.3 status int fitskey::status

(Returned) Status flag bit-vector for the header keyrecord employing the following bit masks defined as preprocessor
macros:

FITSHDR_KEYWORD: lllegal keyword syntax.

FITSHDR_KEYVALUE: lllegal keyvalue syntax.

FITSHDR_COMMENT: lllegal keycomment syntax.

« FITSHDR_KEYREC: lllegal keyrecord, e.g. an END keyrecord with trailing text.

FITSHDR_TRAILER: Keyrecord following a valid END keyrecord.

The header keyrecord is syntactically correct if no bits are set.

Generated by Doxygen

18.5 fitskey Struct Reference 33

18.5.2.4 keyword char fitskey::keyword
(Returned) Keyword name, null-filled for keywords of less than eight characters (trailing blanks replaced by nulls).

Use
sprintf (dst, "%.8s", keyword)

to copy it to a character array with null-termination, or
sprintf (dst, "%$8.8s", keyword)

to blank-fill to eight characters followed by null-termination.

18.5.2.5 type int fitskey::type

(Returned) Keyvalue data type:

» 0: No keyvalue (both the value and type are undefined).
» 1: Logical, represented as int.

: 32-bit signed integer.

: 64-bit signed integer (see below).

: Very long integer (see below).

: Integer complex (stored as double[2]).

2
3
4
» 5: Floating point (stored as double).
6
7: Floating point complex (stored as double[2]).
8

: String.
+ 8+10xn: Continued string (described below and in fitshdr() note 2).

A negative type indicates that a syntax error was encountered when attempting to parse a keyvalue of the particular
type.
Comments on particular data types:

* 64-bit signed integers lie in the range
(-9223372036854775808 <= int64 < -2147483648) ||
(+2147483647 < int64 <= +9223372036854775807)

A native 64-bit data type may be defined via preprocessor macro WCSLIB_INT64 defined in wesconfig.h, e.g.
as 'long long int'; this will be typedef'd to 'int64' here. If WCSLIB_INT64 is not set, then int64 is typedef'd to

int[3] instead and fitskey::keyvalue is to be computed as
((keyvalue.k([2]) % 1000000000 +

keyvalue.k[1]) = 1000000000 +

keyvalue.k[0]

and may reported via
- (keyvalue.k[2]) {
printf ("%d%09d%09d", keyvalue.k[2], abs(keyvalue.k[1l]),
abs (keyvalue.k[0]));
}oel {
printf ("%d%09d", keyvalue.k[1l], abs(keyvalue.k[0]));
}

where keyvalue.k[0] and keyvalue.k[1] range from -999999999 to +999999999.

» Very long integers, up to 70 decimal digits in length, are encoded in keyvalue.l as an array of int[8], each of
which stores 9 decimal digits. fitskey::keyvalue is to be computed as

(((((((keyvalue.1l[7]) = 1000000000 +
keyvalue.l1[6]) % 1000000000 +
keyvalue.l[5]) = 1000000000 +
keyvalue.1l[4]) = 1000000000 +
keyvalue.1l[3]) = 1000000000 +
keyvalue.l1[2]) % 1000000000 +
keyvalue.l[1]) = 1000000000 +
keyvalue.1l[0]

Continued strings are not reconstructed, they remain split over successive fitskey structs in the keys[] array
returned by fitshdr(). fitskey::keyvalue data type, 8 + 10n, indicates the segment number, n, in the continua-
tion.

Generated by Doxygen

34

18.5.2.6 padding int fitskey::padding

(An unused variable inserted for alignment purposes only.)

18.5.2.7 i int fitskey::i

(Returned) Logical (fitskey::type == 1) and 32-bit signed integer (fitskey::type == 2) data types in the fitskey::keyvalue
union.

18.5.2.8 Kk int64 fitskey::k

(Returned) 64-bit signed integer (fitskey::type == 3) data type in the fitskey::keyvalue union.

185.29 | int fitskey::1

(Returned) Very long integer (fitskey::type == 4) data type in the fitskey::keyvalue union.

18.5.2.10 f double fitskey::f

(Returned) Floating point (fitskey::type == 5) data type in the fitskey::keyvalue union.

18.5.2.11 ¢ double fitskey::c

(Returned) Integer and floating point complex (fitskey::type == 6 || 7) data types in the fitskey::keyvalue union.

18.5.2.12 s char fitskey::s

(Returned) Null-terminated string (fitskey::type == 8) data type in the fitskey::keyvalue union.

18.5.2.13 keyvalue union fitskey::keyvalue

(Returned) A union comprised of

« fitskey::i,
« fitskey:k,
« fitskey::l,
« fitskey:f,
» fitskey::c,

« fitskey::s,

used by the fitskey struct to contain the value associated with a keyword.

Generated by Doxygen

18.6 fitskeyid Struct Reference 35

18.5.2.14 ulen int fitskey::ulen

(Returned) Where a keycomment contains a units string in the standard form, e.g. [m/s], the ulen member indicates
its length, inclusive of square brackets. Otherwise ulen is zero.

18.5.2.15 comment char fitskey::comment

(Returned) Keycomment, i.e. comment associated with the keyword or, for keyrecords rejected because of syntax
errors, the compete keyrecord itself with null-termination.

Comments are null-terminated with trailing spaces removed. Leading spaces are also removed from keycomments
(i.e. those immediately following the '/’ character), but not from COMMENT or HISTORY keyrecords or keyrecords
without a value indicator ("= " in columns 9-80).

18.6 fitskeyid Struct Reference

Keyword indexing.

#include <fitshdr.h>

Data Fields
» char name [12]

« int count
« intidx [2]

18.6.1 Detailed Description

fitshdr() uses the fitskeyid struct to return indexing information for specified keywords. The struct contains three
members, the first of which, fitskeyid::name, must be set by the user with the remainder returned by fitshdr().

18.6.2 Field Documentation

18.6.2.1 name char fitskeyid::name

(Given) Name of the required keyword. This is to be set by the user; the '." character may be used for wildcarding.
Trailing blanks will be replaced with nulls.

18.6.2.2 count int fitskeyid::count

(Returned) The number of matches found for the keyword.

Generated by Doxygen

36

18.6.2.3 idx int fitskeyid::idx

(Returned) Indices into keys[], the array of fitskey structs returned by fitshdr(). Note that these are O-relative array
indices, not keyrecord numbers.

If the keyword is found in the header the first index will be set to the array index of its first occurrence, otherwise it
will be set to -1.

If multiples of the keyword are found, the second index will be set to the array index of its last occurrence, otherwise
it will be set to -1.

18.7 linprm Struct Reference

Linear transformation parameters.

#include <lin.h>

Data Fields

« intflag

* int naxis

» double * crpix

+ double * pc

+ double * cdelt

« struct disprm x* dispre
* struct disprm * disseq
* double * piximg

+ double * imgpix

* inti_naxis

* int unity

« int affine

* int simple

* struct wcserr * err
 double x tmpcrd

» intm_flag

* int m_naxis

« double x m_crpix

» double * m_pc

« double x m_cdelt

+ struct disprm x m_dispre
« struct disprm x m_disseq

18.7.1 Detailed Description

The linprm struct contains all of the information required to perform a linear transformation. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).

18.7.2 Field Documentation

Generated by Doxygen

18.7 linprm Struct Reference 37

18.7.2.1 flag int linprm::flag

(Given and returned) This flag must be set to zero whenever any of the following members of the linprm struct are
set or modified:

* linprm::naxis (g.v., not normally set by the user),
* linprm::pc,

* linprm::cdelt,

* linprm::dispre.

* linprm::disseq.

This signals the initialization routine, linset(), to recompute the returned members of the linprm struct. linset() will
reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when lininit() is called for the first time for a particular linprm struct in

order to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks
may result.

18.7.2.2 naxis int linprm::naxis
(Given or returned) Number of pixel and world coordinate elements.

If lininit() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from the value
passed to it as a function argument. The user should not subsequently modify it.

18.7.2.3 crpix double * linprm::crpix
(Given) Pointer to the first element of an array of double containing the coordinate reference pixel, CRPIXja.

It is not necessary to reset the linprm struct (via linset()) when linprm::crpix is changed.

18.7.2.4 pcCc double * linprm::pc

(Given) Pointer to the first element of the PCi_ ja (pixel coordinate) transformation matrix. The expected order is
struct linprm lin;
lin.pc = {PC1_1, PCl1l_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via
double m([2][2] = {{PC1_1, PCl_2},
{PC2_1, PC2_2}};

which is equivalent to
double m[2][2];

m[0][0] = PCI_1;
m[0][1] = PCl_2;
m[1][0] = PC2_1;
m[1][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence

lin.pc = *m;

would be legitimate.

Generated by Doxygen

38

18.7.2.5 cdelt double % linprm::cdelt

(Given) Pointer to the first element of an array of double containing the coordinate increments, CDELT1ia.

18.7.2.6 dispre struct disprm * linprm::dispre

(Given) Pointer to a disprm struct holding parameters for prior distortion functions, or a null (0x0) pointer if there are
none.

Function lindist() may be used to assign a disprm pointer to a linprm struct, allowing it to take control of any memory
allocated for it, as in the following example:

void add_distortion(struct linprm =x1lin)
{
struct disprm xdispre;
dispre = malloc (sizeof (struct disprm));
dispre->flag = -1;
lindist (1, 1lin, dispre, ndpmax);
(Set up dispre.)

7

Here, after the distortion function parameters etc. are copied into dispre, dispre is assigned using lindist() which
takes control of the allocated memory. It will be freed later when linfree() is invoked on the linprm struct.

Consider also the following erroneous code:
void bad_code (struct linprm x1in)
{
struct disprm dispre;
dispre.flag = -1;
lindist (1, lin, &dispre, ndpmax); // WRONG.

7

Here, dispre is declared as a struct, rather than a pointer. When the function returns, dispre will go out of scope and
its memory will most likely be reused, thereby trashing its contents. Later, a segfault will occur when linfreg() tries
to free dispre's stale address.

18.7.2.7 disseq struct disprm * linprm::disseq

(Given) Pointer to a disprm struct holding parameters for sequent distortion functions, or a null (0x0) pointer if there
are none.

Refer to the comments and examples given for disprm::dispre.

18.7.2.8 piximg double * linprm::piximg

(Returned) Pointer to the first element of the matrix containing the product of the CDELT 1 a diagonal matrix and the
PCi_ ja matrix.

18.7.2.9 imgpix double * linprm::imgpix

(Returned) Pointer to the first element of the inverse of the linprm::piximg matrix.

18.7.2.10 i_naxis int linprm::i_naxis

(Returned) The dimension of linprm::piximg and linprm::imgpix (normally equal to naxis).

Generated by Doxygen

18.7 linprm Struct Reference

39

18.7.2.11 unity int linprm::unity

(Returned) True if the linear transformation matrix is unity.

18.7.2.12 affine int linprm::affine

(Returned) True if there are no distortions.

18.7.2.13 simple int linprm::simple

(Returned) True if unity and no distortions.

18.7.2.14 err struct wcserr % linprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see

wcserr_enable().

18.7.2.15 tmpcerd double * linprm::tmpcrd

(For internal use only.)

18.7.2.16 m_flag int linprm::m_flag

(For internal use only.)

18.7.2.17 m_naxis int linprm::m_naxis

(For internal use only.)

18.7.2.18 m_crpix double * linprm::m_crpix

(For internal use only.)

18.7.2.19 m_pc double * linprm::m_pc

(For internal use only.)

18.7.2.20 m_cdelt double * linprm::m_cdelt

(For internal use only.)

18.7.2.21 m_dispre struct disprm x linprm::m_dispre

(For internal use only.)

Generated by Doxygen

40

18.7.2.22 m_disseq struct disprm * linprm::m_disseq

(For internal use only.)

18.8 prjprm Struct Reference

Projection parameters.

#include <prj.h>

Data Fields

« int flag

 char code [4]

« double r0

+ double pv [PVN]

* double phi0

+ double theta0

* int bounds

+ char name [40]

* int category

* int pvrange

* int simplezen

* int equiareal

* int conformal

+ int global

* int divergent

+ double x0

» double y0

* struct wcserr * err
* void * padding

» double w [10]

e intm

e intn

* int(x prix2s)(PRJX2S_ARGS)
* int(x pris2x)(PRJS2X_ARGS)

18.8.1 Detailed Description

The prjprm struct contains all information needed to project or deproject native spherical coordinates. It consists
of certain members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the latter are supplied for informational purposes while others are for internal use only.

18.8.2 Field Documentation

Generated by Doxygen

18.8 prjprm Struct Reference 41

18.8.2.1 flag int prjprm::flag

(Given and returned) This flag must be set to zero whenever any of the following prjprm struct members are set or
changed:

* prjprm::code,
* priprm::r0,

* priprm:pv(],
* priprm::phio0,

* priprm::theta0.

This signals the initialization routine (prjset() or ???set()) to recompute the returned members of the prjprm struct.
flag will then be reset to indicate that this has been done.

Note that flag need not be reset when prjprm::bounds is changed.

18.8.2.2 code char prjprm::code

(Given) Three-letter projection code defined by the FITS standard.

18.8.2.3 r0 double priprm::r0

(Given) The radius of the generating sphere for the projection, a linear scaling parameter. If this is zero, it will be
reset to its default value of 180° /7 (the value for FITS WCS).

18.8.2.4 pv double prjprm::pv

(Given) Projection parameters. These correspond to the PVi_ma keywords in FITS, so pv[0] is PVi_0a, pv[1]is
PVi_1la, etc., where i denotes the latitude-like axis. Many projections use pv[1] (PVi_1la), some also use pv[2]
(PVi_2a) and SZP uses pv[3] (PVi_3a). ZPN is currently the only projection that uses any of the others.

Usage of the pv[] array as it applies to each projection is described in the prologue to each trio of projection routines
in prj.c.

18.8.2.5 phi0 double prjprm::phi0

(Given) The native longitude, ¢ [deg], and ...

18.8.2.6 thetal double priprm::thetal

(Given) ... the native latitude, 6, [deg], of the reference point, i.e. the point (z,y) = (0,0). If undefined (set to a
magic value by prjini()) the initialization routine will set this to a projection-specific default.

Generated by Doxygen

42

18.8.2.7 bounds int prijprm::bounds

(Given) Controls bounds checking. If bounds&1 then enable strict bounds checking for the spherical-to-Cartesian
(s2x) transformation for the AZP, SZP, TAN, SIN, ZPN, and COP projections. If bounds&2 then enable strict bounds
checking for the Cartesian-to-spherical transformation (x2s) for the HPX and XPH projections. If bounds&4 then the
Cartesian- to-spherical transformations (x2s) will invoke prjbchk() to perform bounds checking on the computed
native coordinates, with a tolerance set to suit each projection. bounds is set to 7 by prjini() by default which
enables all checks. Zero it to disable all checking.

It is not necessary to reset the prjprm struct (via prjset() or ???set()) when prjprm::bounds is changed.

The remaining members of the prjprm struct are maintained by the setup routines and must not be modified
elsewhere:

18.8.2.8 name char prjprm::name
(Returned) Long name of the projection.

Provided for information only, not used by the projection routines.

18.8.2.9 category int prijprm::category

(Returned) Projection category matching the value of the relevant global variable:

* ZENITHAL,

+ CYLINDRICAL,

+ PSEUDOCYLINDRICAL,
+ CONVENTIONAL,

« CONIC,

+ POLYCONIC,

« QUADCUBE, and

« HEALPIX.

The category name may be identified via the prj_categories character array, e.g.
struct prjprm prij;

printf("$s\n", prj_categories[prj.category]);

Provided for information only, not used by the projection routines.

18.8.2.10 pvrange int prjprm::pvrange

(Returned) Range of projection parameter indices: 100 times the first allowed index plus the number of parameters,
e.g. TAN is 0 (no parameters), SZP is 103 (1 to 3), and ZPN is 30 (0 to 29).

Provided for information only, not used by the projection routines.

Generated by Doxygen

18.8 prjprm Struct Reference 43

18.8.2.11 simplezen int prjprm::simplezen
(Returned) True if the projection is a radially-symmetric zenithal projection.

Provided for information only, not used by the projection routines.

18.8.2.12 equiareal int priprm::equiareal
(Returned) True if the projection is equal area.

Provided for information only, not used by the projection routines.

18.8.2.13 conformal int prjprm::conformal
(Returned) True if the projection is conformal.

Provided for information only, not used by the projection routines.

18.8.2.14 global int prijprm::global
(Returned) True if the projection can represent the whole sphere in a finite, non-overlapped mapping.

Provided for information only, not used by the projection routines.

18.8.2.15 divergent int prjprm::divergent
(Returned) True if the projection diverges in latitude.

Provided for information only, not used by the projection routines.

18.8.2.16 X0 double prjprm::x0

(Returned) The offset in z,and ...

18.8.2.17 yO double prjprm::y0

(Returned) ... the offset in y used to force (z,y) = (0,0) at (¢, bo)-

18.8.2.18 err struct wcserr % prijprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.8.2.19 padding void * prjprm::padding

(An unused variable inserted for alignment purposes only.)

Generated by Doxygen

44

18.8.2.20 W double priprm::w

(Returned) Intermediate floating-point values derived from the projection parameters, cached here to save recom-
putation.

Usage of the w([] array as it applies to each projection is described in the prologue to each trio of projection routines
in prj.c.

18.8.221 m int prijprm::m

18.8.222 n int prjprm::n

(Returned) Intermediate integer value (used only for the ZPN and HPX projections).

18.8.2.23 prix23 prjprm: :prjx2s

(Returned) Pointer to the spherical projection ...

18.8.2.24 pris2x prjprm::prjs2x

(Returned) ... and deprojection routines.

18.9 pscard Struct Reference
Store for PSi_ma keyrecords.

#include <wcs.h>

Data Fields

o inti
e intm
« char value [72]

18.9.1 Detailed Description

The pscard struct is used to pass the parsed contents of PSi_ma keyrecords to wcsset() via the wesprm struct.

All members of this struct are to be set by the user.

18.9.2 Field Documentation

Generated by Doxygen

18.10 pvcard Struct Reference

45

18.9.21 i int pscard::i

(Given) Axis number (1-relative), as in the FITS PSi_ma keyword.

18.9.22 m int pscard::m

(Given) Parameter number (non-negative), as in the FITS PSi_ma keyword.

18.9.2.3 value char pscard::value

(Given) Parameter value.

18.10 pvcard Struct Reference

Store for PVi_ma keyrecords.

#include <wcs.h>

Data Fields
e inti

e intm
» double value

18.10.1 Detailed Description

The pveard struct is used to pass the parsed contents of PVi_ma keyrecords to wcsset() via the wesprm struct.

All members of this struct are to be set by the user.

18.10.2 Field Documentation

18.10.21 i int pvcard::i

(Given) Axis number (1-relative), as in the FITS PVi_ma keyword. If i == 0, wcsset() will replace it with the latitude

axis number.

18.10.2.2 m int pvcard::m

(Given) Parameter number (non-negative), as in the FITS PVi_ma keyword.

18.10.2.3 value double pvcard::value

(Given) Parameter value.

Generated by Doxygen

46

18.11 spcprm Struct Reference

Spectral transformation parameters.

#include <spc.h>

Data Fields

« int flag

* char type [8]

 char code [4]

 double crval

« double restfrq

+ double restwav

* double pv [7]

» double w [6]

* intisGrism

+ int padding1

« struct weserr x err

* void * padding2

* int(x spxX2P)(SPX_ARGS
* int(x spxP2S)(SPX_ARGS
int(x spxS2P)(SPX_ARGS
int(x spxP2X)(SPX_ARGS

= L L =

18.11.1 Detailed Description

The spcprm struct contains information required to transform spectral coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). Some of the latter
are supplied for informational purposes while others are for internal use only.

18.11.2 Field Documentation

18.11.21 flag int spcprm::flag

(Given and returned) This flag must be set to zero whenever any of the following spcprm structure members are
set or changed:

* spcprm::type,

* spcprm::code,

» spcprm::crval,

» spcprm::restfrq,
* spcprm:irestwav,
* spcprm::pv[].

This signals the initialization routine, spcset(), to recompute the returned members of the spcprm struct. spcset()
will reset flag to indicate that this has been done.

Generated by Doxygen

18.11 spcprm Struct Reference

47

18.11.2.2 type char spcprm::type

(Given) Four-letter spectral variable type, e.g "ZOPT" for CTYPEia = 'ZOPT-F2W'
alignment reasons.)

18.11.2.3 code char spcprm::code

(Given) Three-letter spectral algorithm code, e.g "F2W" for CTYPEia = ' ZOPT-F2W'.

18.11.2.4 crval double spcprm::crval

(Given) Reference value (CRVALia), Sl units.

18.11.2.5 restfrq double spcprm::restfrg

(Given) The rest frequency [Hz], and ...

18.11.2.6 restwav double spcprm::restwav

. (Declared as char[8] for

(Given) ... the rest wavelength in vacuo [m], only one of which need be given, the other should be set to zero.
Neither are required if the X and S spectral variables are both wave-characteristic, or both velocity-characteristic,

types.

18.11.2.7 pv double spcprm::pv

(Given) Grism parameters for 'GRI' and 'GRA' algorithm codes:

 0: G, grating ruling density.

* 1: m, interference order.

. @, angle of incidence [deg].

: n,, refractive index at the reference wavelength, ...

2
3
« 4:n'., dn/d) at the reference wavelength, A, (/m).
5: €, grating tilt angle [deg].

6

: 6, detector tilt angle [deg].

The remaining members of the spcprm struct are maintained by spcset() and must not be modified elsewhere:

18.11.2.8 W double spcprm::w

(Returned) Intermediate values:

+ 0: Rest frequency or wavelength (SI).
« 1: The value of the X-type spectral variable at the reference point (Sl units).

+ 2: dX/dS at the reference point (SI units).

The remainder are grism intermediates.

Generated by Doxygen

48

18.11.2.9 isGrism int spcprm::isGrism

(Returned) Grism coordinates?

* 0: no,
* 1:in vacuum,

e 2:in air.

18.11.2.10 paddingl int spcprm::paddingl

(An unused variable inserted for alignment purposes only.)

18.11.2.11 err struct wcserr * spcprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.11.2.12 paddingZ void * spcprm::padding?2

(An unused variable inserted for alignment purposes only.)

18.11.2.13 SpXX2P spcprm: : sSpxX2P

(Returned) The first and ...

18.11.2.14 spxP2S spcprm::spxP2S
(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain X ~»

P — S'in the pixel-to-spectral direction where the non-linear transformation is from X to P. The argument list,
SPX_ARGS, is defined in spx.h.

18.11.2.15 spxS2P spcprm::spxS2P

(Returned) The first and ...

18.11.2.16 SpXP2X spcprm: : spxP2X

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain S —
P ~ X in the spectral-to-pixel direction where the non-linear transformation is from P to X. The argument list,
SPX_ARGS, is defined in spx.h.

Generated by Doxygen

18.12 spxprm Struct Reference

49

18.12 spxprm Struct Reference

Spectral variables and their derivatives.

#include <spx.h>

Data Fields

+ double restfrq
 double restwav

* int wavetype

* int velotype

» double freq

+ double afrq

» double ener

» double wavn
 double vrad

» double wave

+ double vopt
 double zopt

» double awav
 double velo

+ double beta

+ double dfreqafrq
« double dafrgfreq
« double dfregener
 double denerfreq
 double dfreqwavn
+ double dwavnfreq
+ double dfreqvrad
+ double dvradfreq
+ double dfreqwave
+ double dwavefreq
+ double dfreqawav
+ double dawavfreq
+ double dfreqvelo
» double dvelofreq
» double dwavevopt
+ double dvoptwave
 double dwavezopt
+ double dzoptwave
» double dwaveawav
» double dawavwave
+ double dwavevelo
» double dvelowave
» double dawavvelo
» double dveloawav
+ double dvelobeta
 double dbetavelo
 struct wcserr * err
* void * padding

Generated by Doxygen

50

18.12.1 Detailed Description

The spxprm struct contains the value of all spectral variables and their derivatives. It is used solely by specx()
which constructs it from information provided via its function arguments.

This struct should be considered read-only, no members need ever be set nor should ever be modified by the user.

18.12.2 Field Documentation

18.12.2.1 restfrq double spxprm::restfrg

(Returned) Rest frequency [Hz].

18.12.2.2 restwav double spxprm::restwav

(Returned) Rest wavelength [m].

18.12.2.3 wavetype int spxprm::wavetype

(Returned) True if wave types have been computed, and ...

18.12.2.4 velotype int spxprm::velotype
(Returned) ... true if velocity types have been computed; types are defined below.
If one or other of spxprm::restfrq and spxprm::restwav is given (non-zero) then all spectral variables may be com-

puted. If both are given, restfrq is used. If restfrq and restwav are both zero, only wave characteristic xor velocity
type spectral variables may be computed depending on the variable given. These flags indicate what is available.

18.12.2.5 freq double spxprm::freq

(Returned) Frequency [Hz] (wavetype).

18.12.2.6 afrq double spxprm::afrg

(Returned) Angular frequency [rad/s] (wavetype).

18.12.2.7 ener double spxprm::ener

(Returned) Photon energy [J] (wavetype).

18.12.2.8 wavn double spxprm::wavn

(Returned) Wave number [/m] (wavetype).

Generated by Doxygen

18.12 spxprm Struct Reference

51

18.12.2.9 vrad double spxprm::vrad

(Returned) Radio velocity [m/s] (velotype).

18.12.2.10 wave double spxprm::wave

(Returned) Vacuum wavelength [m] (wavetype).

18.12.2.11 vopt double spxprm::vopt

(Returned) Optical velocity [m/s] (velotype).

18.12.2.12 zopt double spxprm::zopt

(Returned) Redshift [dimensionless] (velotype).

18.12.2.13 awav double spxprm::awav

(Returned) Air wavelength [m] (wavetype).

18.12.2.14 velo double spxprm::velo

(Returned) Relativistic velocity [m/s] (velotype).

18.12.2.15 beta double spxprm::beta

(Returned) Relativistic beta [dimensionless] (velotype).

18.12.2.16 dfreqafrq double spxprm::dfreqgafrq

(Returned) Derivative of frequency with respect to angular frequency [/rad] (constant, = 1/27), and ...

18.12.2.17 dafrqfreq double spxprm::dafrgfreq

(Returned) ... vice versa [rad] (constant, = 2, always available).

18.12.2.18 dfreqener double spxprm::dfregener

(Returned) Derivative of frequency with respect to photon energy [/J/s] (constant, = 1/h), and ...

18.12.2.19 denerfreq double spxprm::denerfreq

(Returned) ... vice versa [Js] (constant, = h, Planck's constant, always available).

Generated by Doxygen

52

18.12.2.20 dfreqwavn double spxprm::dfreqwavn

(Returned) Derivative of frequency with respect to wave number [m/s] (constant, = ¢, the speed of light in vacuo),
and ...

18.12.2.21 dwavnfreq double spxprm::dwavnfreq

(Returned) ... vice versa [s/m] (constant, = 1/¢, always available).

18.12.2.22 dfreqvrad double spxprm::dfregvrad

(Returned) Derivative of frequency with respect to radio velocity [/m], and ...

18.12.2.23 dvradfreq double spxprm::dvradfreq

(Returned) ... vice versa [m] (wavetype && velotype).

18.12.2.24 dfreqwave double spxprm::dfreqwave

(Returned) Derivative of frequency with respect to vacuum wavelength [/m/s], and ...

18.12.2.25 dwavefreq double spxprm::dwavefreq

(Returned) ... vice versa [m s] (wavetype).

18.12.2.26 dfreqawav double spxprm::dfregawav

(Returned) Derivative of frequency with respect to air wavelength, [/m/s], and ...

18.12.2.27 dawavfreq double spxprm::dawavfreq

(Returned) ... vice versa [m s] (wavetype).

18.12.2.28 dfreqvelo double spxprm::dfregvelo

(Returned) Derivative of frequency with respect to relativistic velocity [/m], and ...

18.12.2.29 dvelofreq double spxprm::dvelofreq

(Returned) ... vice versa [m] (wavetype && velotype).

18.12.2.30 dwavevopt double spxprm::dwavevopt

(Returned) Derivative of vacuum wavelength with respect to optical velocity [s], and ...

Generated by Doxygen

18.12 spxprm Struct Reference 53

18.12.2.31 dvoptwave double spxprm::dvoptwave

(Returned) ... vice versa [/s] (wavetype && velotype).

18.12.2.32 dwavezopt double spxprm::dwavezopt

(Returned) Derivative of vacuum wavelength with respect to redshift [m], and ...

18.12.2.33 dzoptwave double spxprm::dzoptwave

(Returned) ... vice versa [/m] (wavetype && velotype).

18.12.2.34 dwaveawav double spxprm::dwaveawav

(Returned) Derivative of vacuum wavelength with respect to air wavelength [dimensionless], and ...

18.12.2.35 dawavwave double spxprm::dawavwave

(Returned) ... vice versa [dimensionless] (wavetype).

18.12.2.36 dwavevelo double spxprm::dwavevelo

(Returned) Derivative of vacuum wavelength with respect to relativistic velocity [s], and ...

18.12.2.37 dvelowave double spxprm::dvelowave

(Returned) ... vice versa [/s] (wavetype && velotype).

18.12.2.38 dawavvelo double spxprm::dawavvelo

(Returned) Derivative of air wavelength with respect to relativistic velocity [s], and ...

18.12.2.39 dveloawav double spxp