We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00800076 seconds elapsed -- 0.0245117 seconds elapsed -- 0.000280419 seconds elapsed -- 0.000252798 seconds elapsed -- 0.000236786 seconds elapsed -- 0.000224274 seconds elapsed -- 0.00022417 seconds elapsed -- 0.000239888 seconds elapsed -- 0.000275645 seconds elapsed -- 0.000288292 seconds elapsed -- 0.00023611 seconds elapsed -- 0.000224806 seconds elapsed -- 0.000214722 seconds elapsed -- 0.000221182 seconds elapsed -- 0.00021634 seconds elapsed -- 0.000208829 seconds elapsed -- 0.000216609 seconds elapsed -- 0.000207386 seconds elapsed -- 0.000231683 seconds elapsed -- 0.000225728 seconds elapsed -- 0.000252395 seconds elapsed -- 0.00032035 seconds elapsed -- 0.000219405 seconds elapsed -- 0.000208032 seconds elapsed -- 0.000219776 seconds elapsed -- 0.000212635 seconds elapsed -- 0.000216362 seconds elapsed -- 0.000224424 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.