We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00440318, .00184195) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .0124153, .0673567) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.0139069, .0237893}, {.0142638, .00871966}, {.0270277, .0135364}, ------------------------------------------------------------------------ {.0142262, .019697}, {.0138198, .0262892}, {.0148382, .0236412}, ------------------------------------------------------------------------ {.0140299, .0171916}, {.0149466, .0154683}, {.0216501, .0118432}, ------------------------------------------------------------------------ {.0161532, .0161201}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .016486255 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0176295896 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.