
signature_dispatch
Release 1.0.0

unknown

Mar 02, 2022

CONTENTS

1 Installation 3

2 Usage 5

3 Details 7

4 Applications 9

5 Alternatives 11

i

ii

signature_dispatch, Release 1.0.0

signature_dispatch is a simple python library for overloading functions based on their call signature and type
annotations.

CONTENTS 1

https://pypi.python.org/pypi/signature_dispatch
https://pypi.python.org/pypi/signature_dispatch
https://github.com/kalekundert/signature_dispatch/actions
https://coveralls.io/github/kalekundert/signature_dispatch?branch=master
https://github.com/kalekundert/signature_dispatch

signature_dispatch, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

Install from PyPI:

$ pip install signature_dispatch

Version numbers follow semantic versioning.

3

https://semver.org/

signature_dispatch, Release 1.0.0

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

Use the module itself to decorate multiple functions (or methods) that all have the same name:

>>> import signature_dispatch
>>> @signature_dispatch
... def f1(x):
... return x
...
>>> @signature_dispatch
... def f1(x, y):
... return x, y
...

When called, all of the decorated functions will be tested in order to see if they match the given arguments. The first
one that does will be invoked:

>>> f1(1)
1
>>> f1(1, 2)
(1, 2)

A TypeError will be raised if no matches are found:

>>> f1(1, 2, 3)
Traceback (most recent call last):

...
TypeError: can't dispatch the given arguments to any of the candidate functions:
arguments: 1, 2, 3
candidates:
(x): too many positional arguments
(x, y): too many positional arguments

Type annotations are taken into account when choosing which function to invoke:

>>> from typing import List
>>> @signature_dispatch
... def f2(x: int):
... return 'int', x
...
>>> @signature_dispatch
... def f2(x: List[int]):
... return 'list', x
...

5

signature_dispatch, Release 1.0.0

>>> f2(1)
('int', 1)
>>> f2([1, 2])
('list', [1, 2])
>>> f2('a')
Traceback (most recent call last):

...
TypeError: can't dispatch the given arguments to any of the candidate functions:
arguments: 'a'
candidates:
(x: int): type of x must be int; got str instead
(x: List[int]): type of x must be a list; got str instead
>>> f2(['a'])
Traceback (most recent call last):

...
TypeError: can't dispatch the given arguments to any of the candidate functions:
arguments: ['a']
candidates:
(x: int): type of x must be int; got list instead
(x: List[int]): type of x[0] must be int; got str instead

6 Chapter 2. Usage

CHAPTER

THREE

DETAILS

• When using the module directly as a decorator, every decorated function must have the same name and must
be defined in the same local scope. If this is not possible (e.g. the implementations are in different modules),
every function decorated with @signature_dispatch provides an overload() method that can be used
to add implementations defined elsewhere:

>>> @signature_dispatch
... def f3(x):
... return x
...
>>> @f3.overload
... def _(x, y):
... return x, y
...
>>> f3(1)
1
>>> f3(1, 2)
(1, 2)

• By default, the decorated functions are tried in the order they were defined. If for some reason this order is un-
desirable, both @signature_dispatch and @*.overload accept an optional numeric priority argument
that can be used to specify a custom order. Functions with higher priorities will be tried before those with lower
priorities. Functions with the same priority will be tried in the order they were defined. The default priority is 0:

>>> @signature_dispatch
... def f4():
... return 'first'
...
>>> @signature_dispatch(priority=1)
... def f4():
... return 'second'
...
>>> f4()
'second'

• The docstring will be taken from the first decorated function. All other docstrings will be ignored.

• It’s possible to use @signature_dispatch with class/static methods, but doing so is a bit of a special case.
Basically, the class/static method must be applied after all of the overloaded implementations have been defined:

>>> class C:
...
... @signature_dispatch
... def m(cls, x):
... return cls, x

(continues on next page)

7

signature_dispatch, Release 1.0.0

(continued from previous page)

...

... @signature_dispatch

... def m(cls, x, y):

... return cls, x, y

...

... m = classmethod(m)

...
>>> obj = C()
>>> obj.m(1)
(<class '__main__.C'>, 1)
>>> obj.m(1, 2)
(<class '__main__.C'>, 1, 2)

Let me know if you find this too annoying. It would probably be possible to special-case class/static methods
so that you could just apply both decorators to all the same functions, but that could be complicated and this
work-around seems fine for now.

• Calling @signature_dispatch may be more expensive than you think, because it has to find the scope that
it was called from. This is fast enough that it shouldn’t matter in most practical settings, but it does mean that
you should take care to not write your code in such a way that, e.g., the @signature_dispatch decorator
is called every time the function is invoked. Instead, decorate your functions once and then call the resulting
function as often as you’d like.

• You can get direct access to the core dispatching functionality provided by this library via the
signature_dispatch.dispatch() function. This will allow you to call one of several functions based
on a given set of arguments, without the need to use any decorators:

>>> import signature_dispatch
>>> candidates = [
... lambda x: x,
... lambda x, y: (x, y),
...]
>>> signature_dispatch.dispatch(candidates, args=(1,), kwargs={})
1
>>> signature_dispatch.dispatch(candidates, args=(1, 2), kwargs={})
(1, 2)

8 Chapter 3. Details

CHAPTER

FOUR

APPLICATIONS

Writing decorators that can optionally be given arguments is tricky to get right, but signature_dispatch makes
it easy. For example, here is a decorator that prints a message to the terminal every time a function is called and
optionally accepts an extra message to print:

>>> import signature_dispatch, functools
>>> from typing import Optional

>>> @signature_dispatch
... def log(msg: Optional[str]=None):
... def decorator(f):
... @functools.wraps(f)
... def wrapper(*args, **kwargs):
... print("Calling:", f.__name__)
... if msg: print(msg)
... return f(*args, **kwargs)
... return wrapper
... return decorator
...
>>> @signature_dispatch
... def log(f):
... return log()(f)

Using @log without an argument:

>>> @log
... def foo():
... pass
>>> foo()
Calling: foo

Using @log with an argument:

>>> @log("Hello world!")
... def bar():
... pass
>>> bar()
Calling: bar
Hello world!

9

https://stackoverflow.com/questions/653368/how-to-create-a-python-decorator-that-can-be-used-either-with-or-without-paramet

signature_dispatch, Release 1.0.0

10 Chapter 4. Applications

CHAPTER

FIVE

ALTERNATIVES

The dispatching library does almost the same thing as this one, with a few small differences:

• More boilerplate.

• Subscripted generic types (e.g. List[int]) are not supported.

• Annotations can be arbitrary functions.

PEP 3124 proposes to add something similar to @signature_dispatch to the python standard library, but appears
to have been stalled for over a decade.

11

https://github.com/Lucretiel/Dispatch

	Installation
	Usage
	Details
	Applications
	Alternatives

