Smoldyn Code Documentation
for Smoldyn version 2.63

Steve Andrews

(©December, 2020

Contents

1 Programmer’s introduction

1.1
1.2

2.1

2.2

2.3

2.4
2.5
2.6

2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
44

What is Smoldyn?
Smoldyn design philosophy L

Smoldyn code and build system

Repositories
2.1.1 Primary site.
2.1.2 Source code e e
2.1.3 Documentation e
2.1.4 Python e e
Source code e e e
2.2.1 Source directories e
2.2.2 Dependencies e
CMake build system L
2.3.1 Basicbuilding
2.3.2 CMake build system code Lo
2.3.3 CMake subdirectorieso
2.3.4 Cross-compiling for Windows with MinGW
2.3.5 Building for Windows on Windows with MinGW
2.3.6 Building for Windows on Windows with Visual C.
Unit and regression testing L e
GPU Smoldyn e
Code techniques and tricks
2.6.1 Formatting
2.6.2 Code merging e e
Documentation L e e e
Continuous Integration L

Python binding code

module.Cpp L. e
Smoldyn.cpp and Smoldyn.ho
Callbackfunc.cpp and Callbackfunc.h
Python scripts in smoldyn directory
Python module after building

C code: files, macros, variables, etc.

Smoldyn source files L
Constants and global variables L
Macros o e e e
Local variables L

21
21
21
23
24
24

4

CONTENTS

5 C Code: structures and functions

51 Header files e
5.2 Molecules (functions in smolmolec.c) Lo
5.3 Walls (functions in smolwall.c) Lo
5.4 Reactions (functions in smolrxn.c) L L
5.5 Rules (functions in smolrule.c) L Lo
5.6 Surfaces (functions in smolsurf.c) L
5.7 Boxes (functions in smolboxes.c)
5.8 Compartments (functions in smolcompart.c) Lo Lo
5.9 Ports (functions in smolport.c) L
5.10 Lattices (functions in smollattice.c) Lo L
5.11 Filaments (functions in smolfilament.c) Lo oL oL
5.12 BioNetGen (functions in smolbng.c) L L
5.13 Complexes (not written yet)
5.14 Graphics (functions in smolgraphics.c) L
5.15 Simulation structure (functions in smolsim.c) Lo Lo oL
5.16 Commands (functions in smolemd.c) Lo
5.17 Top-level code (functions in smoldyn.c) L e

Code design

6.1 Memory managemento b e e e e e e e e e e e e e
6.2 Data structure preparation and updating
6.3 Simulation algorithm sequence
6.4 Wildcards, species groups, and patterns L L oo

Smoldyn modifications

The wish/ to do list
8.1 Bugsandissuestofix e
8.2 Desired features L.

Chapter 1

Programmer’s introduction

1.1 What is Smoldyn?

Smoldyn is a Brownian dynamics simulator. It represents space as a 1-, 2-, or 3-dimensional continuum,
as opposed to a lattice, and it steps through time using finite length time steps. Smoldyn represents
molecules as individual point-like particles and membranes as infinitely thin surfaces. Smoldyn simulates
molecular diffusion, chemical reactions between individual molecules, and a wide variety of molecule-surface
interactions. So far, Smoldyn has been used primarily for either detailed biophysics research problems, such
as on diffusion-influenced reaction dynamics, or for investigating the effects of spatial organization on simple
biological systems, such as the Fscherichia coli chemotaxis system.

Smoldyn is also a community development project. I wrote nearly all of the core code, Jim Schaff
and his colleagues at UCHC added some code for integrating Smoldyn into VCell, Nathan Addy wrote a
rule-based modeling module called Libmoleculizer that almost worked, Lorenzo Dematte and Denis Gladkov
independently parallelized Smoldyn to run on graphics processing units (GPUs), and Martin Robinson added
adjacent-space hybrid simulation capabilities to Smoldyn.

In order to maintain and enhance Smoldyn’s value for computational biologists, as opposed to letting it
become a hodgepodge of mismatched code, it is helpful to carefully define what Smoldyn is, and what it
isn’t.

1.2 Smoldyn design philosophy

Central to Smoldyn’s design philosophy is the concept of two distinct levels of approximation between physical
reality and numerical simulation.

In the first level, physical reality is approximated to a perfectly defined model system. Smoldyn’s model
system builds on the one that Smoluchowski developed in 1917. It uses continuous space and continuous
time. Depending on the context, molecules are represented as either point-like particles or as perfect spheres.
In particular, they are (usually) point-like particles without excluded volume when considering diffusion and
they are perfect spheres when considering chemical reactions. Model molecules do not have orientations,
momenta, or kinetic energies because these aspects equilibrate in solution on much shorter time scales than
the dynamics that the Smoluchowski model focuses on. As an example of the approximation from physical
reality to the model system, molecular diffusion in reality is driven by a very high rate of intermolecular
collisions and relies on van der Waals and steric molecular interactions. However, it is approximated in the
model system as mathematically perfect Brownian motion, where each molecule behaves independently of
every other molecule and moves with an infinitely detailed trajectory.

In the second level of approximation, the dynamics of the model system are approximated using numerical
algorithms to yield the simulated system. In particular, Smoldyn approximates the model system through
the use of finite simulation time steps. For example, Smoldyn simulates Brownian motion using Gaussian-
distributed displacements at each time step. Because Smoldyn uses finite size time steps, it is nonsensical to
ask about the state of the simulated system during time steps. Instead, the simulation produces what can

6 CHAPTER 1. PROGRAMMER’S INTRODUCTION

be seen as simulation system snapshots at the end of each time step. When the results in these snapshots
are completely indistinguishable from those found with the ideal model system, to within computer round-
off error, then the simulation algorithms are called “exact”. Note that exactness only refers to agreement
between the simulated system and the model system; correspondence between the model system and physical
reality is a completely separate issue, and one which depends very much on the specific dynamics that the
modeler wishes to investigate.

The Smoldyn software represents a balance between algorithms that are exact for the Smoluchowski model
system and those that are computationally efficient. Often, these goals are actually complementary because
highly accurate algorithms enable the use of long simulation time steps and hence enable fast simulations.
However, there are also often tradeoffs, where better accuracy leads to slower simulations. The challenge
with seeking a balanced approach between accuracy and computational efficiency is that the software users
(i.e. modelers) generally aren’t comfortable trusting software that is known to be inaccurate. For this reason,
every algorithm in Smoldyn is exact in two ways. First, the simulated rates of all isolated algorithms are
exact for any length time step. For example, in a simulation of the irreversible bimolecular reaction A +
B — C, Smoldyn always gets the macroscopic reaction rate exactly correct, although the exact positions of
the molecules are not necessarily in perfect agreement with those found for the model system. This focus on
rates is important for Smoldyn to yield accurate equilibrium constants. Secondly, all simulated dynamics,
regardless of how many algorithms are used in a simulation, approach exactness as simulation time steps are
reduced towards zero. In the process, of course, simulation run times approach infinity, so exactness isn’t
actually achievable. However, having results that can approach exactness is important because it enables
modelers to understand and quantify their simulation errors.

Chapter 2

Smoldyn code and build system

2.1 Repositories

2.1.1 Primary site

Smoldyn’s primary website is http://www.smoldyn.org. This website has information about the software
and offers downloads of the current release, whether as pre-compiled versions or tar/zip/tgz files with the
source code and other parts of the package.

2.1.2 Source code

Smoldyn’s code repository is github at https://github.com/ssandrews/Smoldyn. This repository was named
Smoldyn_Official from its first github upload with version 2.57, up to version 2.62.dev, and was then renamed
to just Smoldyn. Prior code repositories used Subversion servers that are now discontinued. I also started
a SourceForge account at some point for Smoldyn, which I have not maintained. There are several other
github repositories that have Smoldyn in their names, all of which are for the same overall software, but are
not maintained by myself and don’t have the official releases.

2.1.3 Documentation

The most current documentation is included in the download package as Word and pdf files for the User’s
Manual and as LaTeX and pdf files for the code documentation (this file).

Also, Dilawar Singh started a readthedocs website for Smoldyn at https://readthedocs.org/projects/
smoldyn/downloads/. I'll try to maintain that site but, for now, it’s not as current as the documentation
that’s packaged with the downloads. In addition, note that the documentation is stored on the same github
site as the code, so if you really want the latest un-released documentation, then you can get it at the github
site.

Yet another readthedocs website is https://smoldyn.readthedocs.io/en/latest/doxygen/html/
classes.html.

2.1.4 Python

Dilawar started a PyPI site for Smoldyn at https://pypi.org/project/smoldyn/. I'm not sure if it
includes the latest code through nightly builds, or if it takes manual upload. If the latter, then this doesn’t
include the latest code.

8 CHAPTER 2. SMOLDYN CODE AND BUILD SYSTEM

2.2 Source code

2.2.1 Source directories

All of Smoldyn’s code is in subdirectories within the “source” directory. These subdirectories and their
contents are listed below.

There is also one file in the source directory, which is smoldynconfigure.h.in. This file is used as a template
by the CMake build system for creating a header file that describes the actual build configuration.

BioNetGen I think this is the complete BioNetGen download, from about 2016. Smoldyn uses the BNG2.pl
perl file for rule-based modeling when using the BNG language. This code is not included in Smoldyn
during building, but a link is made to this file. Also, this entire BioNetGen directory gets copied to an
install location (typically /usr/local/bin for Mac or Linux) when Smoldyn is installed. (This copying
occurs if installing with the install script, but it doesn’t appear to happen if installing using the “make
install” target in the CMake build process.)

libSteve This is a library of code that I wrote, which is used throughout the Smoldyn software. All of it
is plain C, but can be compiled as C++ as well. Essentially none of the code here is specifically for
Smoldyn or, more importantly, essentially none of the code here calls functions that are part of the core
Smoldyn program (e.g. smolsim.c, smolreact.c, etc.). I think that the sole exception is SimCommand.c,
which can call smolemd.c but can also be run without calling it. In addition to the code that I wrote,
the SFMT directory contains code for the Mersenne Twister random number generator, which I did
not write.

MSVClibs These are headers and libraries needed for compiling Smoldyn with the MSVC compiler, on
Windows. All of the code here was downloaded on a Windows computer, compiled with MSVC, and
then copied over to this directory. This code is only used when compiling with MSVC. Not all of the
code here is actually used.

NextSubVolume This is code that Martin Robinson wrote for hybrid Smoldyn, for simulating adjacent
spatial regions with differing levels of detail. It is only used when building with the “OPTION_NSV”
option turned on.

pybind11 This is an external library on which Smoldyn’s Python bindings are built. It has its own
CMakeLists.txt file. I have not modified anything in here, and I think it is just the pybind11 download
with no modifications.

python This directory has all of Dilawar’s code for Smoldyn’s Python bindings. It has its own
CMakeLists.txt file, which I have not tried to understand.

SmolCrowd This is not compiled into Smoldyn, but a separate text-based utility. It generates random
crowders for importing into Smoldyn configuration files.

Smoldyn This directory includes the core of the Smoldyn program. Essentially all of the code here has a
“.c” suffix, becuase it was originally written in C and is still mostly just C. However, some files have
slight C++ additions, so I now compile it with a C++ compiler. The file smoldynlib.py was written
by Sean Garbett in 2013 and appears to be a Python interface for libSmoldyn. I haven’t used it.

SmolEmulate This is a separate utility, which is not compiled into Smoldyn. It emulates Smoldyn
algorithms, for calibrating reaction rates. This code evolved from versions that I wrote to derive 3D
reaction parameters for the Andrews and Bray, 2004 paper, and then to derive 1D surface interaction
parameters for the Andrews, 2009 paper. It also supports 2D reactions, but I haven’t finished that
work yet (as of 2020).

vcell This directory containts code used for linking Smoldyn into VCell. It was written by the VCell team,
and I just keep it here for future use by them.

vtk This is a wrapper for an external library for the VTK visualization toolkit. It’s used by the NSV code.
I’'m not sure if VTK needs to be installed on the host computer for Smoldyn to offer VIK functionality.

2.2. SOURCE CODE 9

wrl2smol This is another utility that is not compiled into Smoldyn. It converts VRML language triangle
data into Smoldyn style triangle input.

2.2.2 Dependencies

As much as possible, Smoldyn is compiled statically so that its dependencies are automatically included in
the binary distributions. However, if you compile Smoldyn yourself, then you may need to get them.

Smoldyn’s code dependencies have changed some over time, but are mostly shown below in a tree
structure, such that the each file depends on the files that are indented below it. This tree might not be fully
accurate for the current version. As much as possible, Smoldyn builds and runs without its dependencies,
but offers fewer features if they aren’t available. In particular, I've struggled some with getting some of them
to work on Windows.

Smoldyn
OpenGL
OpenGL-glut
libTiff
zlib
libiconv
NSV

VTK
pybind11

Getting the code for these dependencies has ranged from easy to impossible, so my approaches to solve
these issues are listed below.

glut is complicated. It’s part of the standard OpenGL libraries on Macs, but doesn’t seem to be standard on
Windows. Also, glut itself is obsolete, having been replaced by, which is a superset of glut; nevertheless,
the glut.h header file is supposed to be used, unless one wants functions that are only available in
freeglut.

For Windows with MSVC, I downloaded freeglut 3.2.1 from http://freeglut.sourceforge.net and
built it on a Windows computer using the Visual Studio compiler. To build, I created and then
moved to a build directory, entered “cmake ..”, and entered “msbuild freeglut.sln”. This created
the files lib/Debug/freeglutd.lib, lib/Debug/freeglut_staticd.lib, and bin/Debug/freeglutd.dll. The “d”
characters show that these are the debug versions of the library. These work in Smoldyn but aren’t ideal.
I then found that I can create the release versions of the library with the same CMake step and then
“msbuild freeglut.sln /p:Configuration=Release”. I put the compiled libraries in the source/MSVClibs
directory, along with a header file from the same freeglut download.

For Windows with MinGW, I found that the MinGW cross-compiler download that I use (see below)
has freeglut included in its collection of libraries. Thus, I link to that. Everything seems to work and
Smoldyn builds well, but the resulting smoldyn.exe doesn’t actually run.

To address this, I also tried to compile the freeglut 3.2.1 download on a Windows computer
but with the MinGW compiler. This didn’t work. Thus, instead, I downloaded the
freeglut 3.2.1 source code to my Mac and cross-compiled it for Windows using “cmake .. -
DCMAKE_TOOLCHAIN_FILE=../Toolchain-mingw32.cmake”. This actually worked and produced
libfreeglut_static.a, libfreeglut.dll.a, libfreeglut.dll, and many more files. I was able to build Smoldyn
while linking to these files, but the result was the same as before in that I got smoldyn.exe just fine,
but it didn’t run.

For Mac, I've been using regular glut, not freeglut, which works easily but has the drawback that
control never returns to Smoldyn after it is handed over to glutmainloop. To address this, I
installed freeglut using MacPorts, which was trivial. However, entering port contents freeglut
showed the files that were installed, and none were a static library. I tried for a while to link
to it anyhow using the CMakeLists.txt file, without luck. Next, I downloaded freeglut from http:

10 CHAPTER 2. SMOLDYN CODE AND BUILD SYSTEM

//freeglut.sourceforge.net, as [did for Windows, and tried to build using CMake. This failed at
the linking stage. There was a prior report of it not working for Macs, with the same error and no
solution given, so this seems to be a building bug and not easily fixed.

libtiff is optional. It is used for saving graphics images as TIFF files.

For Mac, I downloaded version 3.9.6, which was the latest of the 3.9 series, from http://download.
osgeo.org/libtiff/. Because I didn’t want the zlib dependency of libtiff, I configured with
“./configure —disable-zlib”, and then entered “make” and “sudo make install” as usual.

For Windows with MSVC, I downloaded version 3.8.0 from http://download.osgeo.org/libtiff/,
but it required Autotools to compile, which didn’t work for me on Windows. So, I downloaded version
4.1.0, which uses CMake. It already has a “build” directory, so I worked in a new directory called
“mybuild”. T configured using the option “cmake .. -DBUILD_SHARED_LIBS=FALSE” and built
with “msbuild tiff.sln /p:Configuration=Release”. This created the libraries, libtiff /Release/tiff.1ib and
libtiff /Release/tiffxx.lib. I copied these libraries over to source/MSVClibs, and also included several
header files (tiff.h, tiffio.h, tiffvers.h, tiffconf.h). The result works.

libiconv is a library that converts between different character encodings. I don’t know why it’s necessary,
or even if it is necessary (the default Smoldyn build option settings have the iconv option turned off),
but I cared about it at some point. I downloaded it from http://www.gnu.org/software/libiconv/.
I got version 1.14. T configured with “./configure —enable-static” so that I'd get the static library.

libXML+4+ is a wrapper for the libxml2 XML parser. Again, I don’t know why it’s necessary or even if it
is necessary, but I cared about it at some point. It might have been a dependency for libMoleculizer,
which was a disasterous Smoldyn module that I eventually got rid of.

Anyhow, I downloaded libXML++ from http://libxmlplusplus.sourceforge.net/. While more
recent versions are available, this is likely to be a major mistake because they have loads of
dependencies, and the dependencies have dependencies, and so on. Instead, get libXML++ version
1.0.5. This is fully sufficient, and it works well. After downloading, extract the archive, change
to the libxml++-1.0.5 directory, enter “./configure”, “make”, and “sudo make install”. This was
straightforward for me.

vtk is the Visualization Toolkit, useful for graphical visualization. This functionality was added to Smoldyn
with the NSV addition, but I'm not sure if it only applies to the NSV portion of Smoldyn, or to all
graphics.

I downloaded my Mac version from http://www.vtk.org/VTK/resources/software.html, getting
version 5.10.1. To build it, I created subdirectory called “build” within the vtk download directory,
changed to the build directory, and entered ”"cmake ..” followed by ”"make”. This is a very large
package which took about a half hour to build. Lots of warnings were emitted, but the build completed
successfully. Then, ”sudo make install” installed the result. Quite a lot of files were installed. As part
of including VTK in the project, there is a “source/vtk” directory within Smoldyn, which has just a
few files.

For Windows, I downloaded VTK from https://vtk.org/download/, getting the VITK-9.0.1.tar.gz
file. I then extracted at the command line with “tar -xvef VTK-9.0.1.tar.gz”, created a build
subdirectory, moved into it, and ran “cmake ..” and “msbuild VITK.sln”. This required almost
3 hours to build on my very slow Windows computer. I copied the build directory over to
“source/VTKIlibs”, and planned to link it in, following advice at https://vtk.org/Wiki/VTK/
Tutorials/CMakeListsFile. However, I discovered that this VTK build directory is truly enormous
(3.8 Gb) and it offers very little additional capability to Smoldyn, so I decided to leave it out for the
Windows build.

2.3. CMAKE BUILD SYSTEM 11
2.3 CMake build system

2.3.1 Basic building

Smoldyn builds with CMake, which can be downloaded from http://www.cmake.org. I use version 3.16, but
any version above 3.4 should work (lower versions don’t work due to requirements from pybind11). CMake
installs trivially (at least on Mac), with a standard installer and no building required.

CMake can be run from either a command line interface (my preference) or with a GUI. At a command
line interface, change directories to cmake. Every time you change CMake settings, you’ll probably want to
do a clean build. To do so, enter “rm -r *”, while in the cmake directory (verify that you're in this directory!),
to remove any prior build results. If you're asked about whether manifest.txt should be removed, say yes;
this file shows the directories where Smoldyn was installed previously, thus providing information for you to
remove it. For a default build, enter “cmake ..”. A few test results will be printed out, and then configuring
will be complete. See below for custom builds. The other option is to use the CMake GUI. It can be started
by entering “cmake-gui” at a command line. Either way, when CMake is done, it will have written a lot of
stuff to the cmake directory. Important files are “Makefile” | which is the standard Makefile for the code and
also smoldynconfigure.h, which is a C header file that the Smoldyn code uses for knowing what the build
parameters are. On Windows with the MSVC compiler, there’s no makefile, but smoldyn.sln instead; this is
the “solution” file for compiling.

Once configuring is complete, enter “make” (on Mac or Linux, or “msbuild smoldyn.sln
/p:Configuration=Release” on Windows with MSVC). Hopefully, Smoldyn will build, again with build files
being put into the cmake directory. Smoldyn can be run at this point. If you want to install, enter “sudo
make install” and enter your password, to install Smoldyn to the usual place (/usr/local/bin on Linux and
Mac systems).

Here is the summary of the building process:

> cd Smoldyn

> mkdir build

> cd build # empty the directory if necessary with: rm -r *
> cmake .. # add any options here

> make

> sudo make install

For custom builds, you need to set various options to non-default settings. This is straightforward in
the CMake GUI. There, you just check or uncheck boxes, as desired. Alternatively, from a command line
interface, you can start CMake with “cmake .. -i” for interactive mode, and then CMake will ask you about
each option. For each, you can just press return to select the default, or enter in values of your choice. Finally,
you can also list each non-default option directly on the command line (preceded with a ‘D’, presumably for
define).

Following are all of the build options in the Smoldyn CMake files, plus some of the more helpful standard
ones.

Smoldyn option default effect when ON

-DSMOLDYN_VERSION 2.62.dev Smoldyn version number
-DOPTION_TARGET_SMOLDYN ON Build stand-alone Smoldyn program
-DOPTION_TARGET_LIBSMOLDYN ON Build LibSmoldyn library
-DOPTION_VCELL OFF Build for inclusion within VCell
-DOPTION_MINGW OFF Build for MinGW compiler (not working currently)
-DOPTION_NSV ON Build with Next Subvolume support
-DOPTION_VTK ON Build with support for VTK visualization
-DOPTION_STATIC OFF Build using static libraries
-DOPTION_USE_OPENGL ON Build with graphics support
-DOPTION_USE_LIBTIFF ON Build with libtiff support
-DOPTION_USE_ICONV OFF Build with Libiconv support (use default)
-DOPTION_USE_ZLIB OFF Build with zlib support (use default)

-DOPTION_PYTHON ON Build Python module

12 CHAPTER 2. SMOLDYN CODE AND BUILD SYSTEM

-DOPTION_EXAMPLES OFF Run Libsmoldyn tests

-DOPTION_STRICT_BUILD OFF Treat warnings as errors and enable address sanitizer
CMake option default function

-DCMAKE BUILD_TYPE Release Choose CMake build type

options are: None, Debug, Release, RelWithDebInfo, and MinSizeRel

-DCMAKE _CXX _COMPILER:FILEPATH clang Compile with specific compiler
for example: /usr/bin/g++
-DCMAKE _TOOLCHAIN FILE None Cross-compiling toolchain file

for example: ../Toolchain-mingw32.cmake

2.3.2 CMake build system code

The CMake code for Smoldyn, in CMakeLists.txt in the top-most directory, is relatively straightforward,
but has still caused me vastly more grief than it should have. For that reason, this section gives a detailed
look at the cmake code, focusing particularly on the variable definitions.

Some aspects of this file use somewhat deprecated approaches. For example, it uses the “use_directories”
statement, but one is supposed to use “target_use_directories” instead. The advantage to the latter approach
is that it’s better about keeping variables within their scope, but this file is simple enough that I'm not
bothering to change things.

Basic setup
Defines the project name, lists the CMake minimum version number, and sets the Smoldyn version
number. Also tells CMake which version of C++ to use.

Variable Description
SMOLDYN_VERSION Smoldyn version number string
CMAKE_CXX_STANDARD C++ version number

Targets to build Whether to build Smoldyn, Libsmoldyn, or both.

Variable Description
OPTION_TARGET_SMOLDYN Create stand-along Smoldyn program
OPTION_TARGET_LIBSMOLDYN Create LibSmoldyn library

Compiling options Most of the compiling options are listed here. They determine which components to
include and what the code is being built for. The default values listed in the code sometimes get
overridden later in this same section, depending on other settings. Hopefully, the code outputs a
warning if a user-requested value gets overridden.

Variable Description

OPTION_VCELL Compile Smoldyn for VCell

OPTION_MINGW Cross-compile for Windows using MinGW compiler
OPTION_NSV Compile Smoldyn with NextSubvolume functionality
OPTION_VTK Compile Smoldyn with VTK functionality

OPTION_STATIC
OPTION_USE_OPENGL
OPTION_USE_ZLIB
OPTION_USE_LIBTIFF
OPTION_USE_ICONV
OPTION_PYTHON
OPTION_EXAMPLES
OPTION_LATTICE
HAVE_ZLIB

Compile Smoldyn with static libraries
Build with OpenGL support

Build with Zlib support

Whether to include the LibTIFF library
Whether to include the Libiconv library
Build Python module

Run Libsmoldyn tests

Whether to build lattice code

Already have Zlib library

2.3. CMAKE BUILD SYSTEM 13

HAVE_ICONV Already have Libiconv library

Core code information This section lists all of the Smoldyn header files and source files, plus a few extra

header files from some of the optional features (e.g. vtkwrapper.h). Some of the source files are only
included for some of the options. All of the source and main files properties are set to the C++
language, which is necessary because most of them have a “.c” ending (note that this setting only
applies to the files listed so far, and does not apply to any subsequently listed files). The include
directories are set here to all of the directories with header files.

Variable Description
HEADER_FILES List of all header files
SRC_FILES List of all source files

MAIN_FILES Name of the main file

Compiler flags This section sets most of the compiler flags for the build. It starts by determining

what type of build this is, where the options are ‘Release’, ‘Debug’, ‘None’, ‘RelWithDeblInfo’, and
‘MinSizeRel’; it sets the value to ‘Release’ as a default. This is a built-in CMake variable, so CMake
defines several compiler flags automatically based on this build type, without them needing to be
set here. This section also addresses the strict-build option, setting the build type to “Debug”
and setting CMAKE_CXX_FLAGS_DEBUG and CMAKE_LINKER FLAGS DEBUG to address sanitizing options.
However, neither neither variable is used anywhere else in this file, so I'm questioning if it actually
does anything useful. Next, this section creates a list of possible build platforms and goes through
the list of possible platforms, adding to the compiler flags as needed as it goes along. As far as this
is concerned, “MinGW” means cross-compile from Mac to Windows using the MinGW compiler, and
“Windows” means compile on Windows using the Visual Studio compiler. This section also sets the
path to the BNG2 perl script.

Variable Description

CMAKE_BUILD_TYPE Build type (default: Release)
CMAKE_C_FLAGS C compiler flags string

CMAKE _CXX_FLAGS C++ compiler flags string
DEP_LIBS Library dependencies for linking
VCELL_BUILD Build for VCell (ON or OFF)
APPLE BUILD Build for Apple (ON or OFF)
NIX_BUILD Build for Unix or Linux (ON or OFF)
MINGW_BUILD Build for MinGW (ON or OFF)
WINDOWS_BUILD Build for Windows (ON or OFF)
BNG2_PATH Path to BNG2 perl script

OpenGL (gl and glu, not glut) OpenGL is a bit of a challenge to include correctly, and platform

dependent. The gl and glu libraries are usually built in, while the glut library is not necessarily,
so this section just focuses on the gl and glu libraries. OpenGL is becoming deprecated, but I still use
it, so this code starts by stating that it uses legacy preferences. The include (FindOpenGL) statement
is used where possible; it automatically defines the variables OPENGL_FOUND, OPENGL_INCLUDE_DIR,
and OPENGL_LIBRARIES. However, the code overrides the include directories for Windows because the
automatic system doesn’t seem to find the built-in gl.h header file, and a different version of the header
file from the Smoldyn directory seems to work well.

Variable Description Purpose

HAVE_OPEN_GL TRUE if available, FALSE if not smoldynconfig.h
HAVE GL_H TRUE for header file gl.h smoldynconfig.h
HAVE GL_GL_H TRUE for header file GL/gl.h smoldynconfig.h

HAVE_OPENGL_GL_H TRUE for header file OpenGL/gl.h smoldynconfig.h

14 CHAPTER 2. SMOLDYN CODE AND BUILD SYSTEM

HAVE_GLU_H TRUE for header file glu.h smoldynconfig.h
HAVE_GL_GLU_H TRUE for header file GL/glu.h smoldynconfig.h
HAVE_OPENGL_GLU_H TRUE for header file OpenGL/glu.h smoldynconfig.h
OPENGL_FOUND TRUE if OpenGL is found local only
OPENGL_INCLUDE DIR Include directory local only
OPENGL_LIBRARIES OpenGL Library directory local only
GLU32_LIBRARIES glu library directory local only
DEP_LIBS Library dependencies for linking Appended

OpenGL glut The OpenGL glut libraries are found and added next. They are standard libraries on Mac
and Linux, but aren’t included on Windows. As a result, this uses the freeglut library for Windows,
using a version provided with the Smoldyn package. From the freeglut documentation, one is supposed
to use glut.h if only glut functionality is wanted, and freeglut.h is additional functionality is used that
is only supported by freeglut; thus, this should only use glut.h, although parts of it incorrectly use
freeglut.h. The include(FindGLUT) statement is used where possible; it automatically defines the
variables GLUT_FOUND, GLUT_INCLUDE_DIR, and GLUT_LIBRARIES.

Variable Description Purpose
HAVE_GLUT_H TRUE for header file gutl.h smoldynconfig.h
HAVE_GL_GLUT_H TRUE for header file GL/gutl.h smoldynconfig.h

HAVE _GLUT_GLUT_H TRUE for header file GLUT/gutl.h smoldynconfig.h
HAVE GL _FREEGLUT.H TRUE for header file GL/freeglut.h smoldynconfig.h

GLUT_FOUND) TRUE if glut is found local only
GLUT_INCLUDE DIR Include directory local only
GLUT_LIBRARIES glut library directory local only
DEP_LIBS Library dependencies for linking Appended

LibX11 This section used to add the LibX11 library, which was apparently only needed for a static build
on a Mac. However, the section is fully commented out at present, so it presumably wasn’t needed.

LibTiff This section adds the LibTiff library, to enable the user to save TIFF format images of the
simulation. I haven’t been able to get LibTiff to work correctly on Windows yet, so this section
only applies to non-Windows systems.

Variable Description

HAVE LIBTIFF TRUE if LibTiff is found, FALSE if not
TIFF_INCLUDEDIR Include directory

TIFF_LIBRARY Library directory

DEP_LIBS Appended: library dependencies for linking

Zlib This section adds the Zlib library.

Variable Description

HAVE_ZLIB TRUE if Zlib is found, FALSE if not
ZLIB_INCLUDE DIRS Include directory

ZLIB_LIBRARIES Library directory

DEP_LIBS Appended: library dependencies for linking

Libiconv This section adds the Libiconv library.

Variable Description
HAVE_INCONV TRUE if Libiconv is found, FALSE if not
ICONV_INCLUDE DIRS Include directory

2.3. CMAKE BUILD SYSTEM 15

ICONV_LIBRARIES Library directory
DEP_LIBS Appended: library dependencies for linking

VTK This section adds the VTK library, used for saving graphical output to VITK format files. The VTK
source code is in the Smoldyn source/vtk subdirectory.

Variable Description

VTK_FOUND TRUE if VTK is found, FALSE if not
VTK_INCLUDE DIRS Include directory

DEP_LIBS Appended: library dependencies for linking

NextSubvolume This section adds the code for hybrid simulation using lattices, which is the nsv
code written by Martin Robinson. All of the source code is in the Smoldyn subdirectory
source/NextSubVolume. This section used to call the CMakeLists file in source/NextSubVolume with
the add_subdirectory statement, but then I simplified the build by moving all of that source into this
CMakeLists.txt file. The result is a fairly simple build. This section adds code for signal.h if MinGW
is used, and adds a boost include directory. It also appends the lists of source files and header files
with the NSV code.

Variable Description

SIGNAL _H DIR Directory to signal.h, only for MinGW
Boost_INCLUDE DIR Include directory for Boost, which is in the NSV source
SRC_FILES Appended: Smoldyn source files

HEADER_FILES Appended: Smoldyn header files

Targets Here, the target building is set up. The two targets are Smoldyn and Libsmoldyn. Smoldyn has
an executable, with source files, main files, and header files. Libsmoldyn comes in both shared and
static versions, both of which have source files and header files. No variables are defined here.

Python module This section simply adds two CMake subdirectories, for pybind11l and the python code
that Dilawar Singh wrote.

Install This section describes how to install the software. Just the Smoldyn executable is installed if that is
the only target. If the Libsmoldyn target is built as well, then this also installs: the shared and static
Libsmoldyn library files and the header files: libsmoldyn.h, smoldyn.h, smoldynconfigure.h.

Package This was an effort to create a nice package with CPack. I haven’t finished this topic yet.

Testing Here are a few tests of Libsmoldyn. This section adds the examples subdirectory.

2.3.3 CMake subdirectories

The CMakeLists file lists a few subdirectories.

(1) The subdirectory “source/pybind11” includes the pybind11 library, which offers “Seamless operability
between C++11 and Python... pybindll is a lightweight header-only library that exposes C++ types in
Python and vice versa, mainly to create Python bindings of existing C++ code”. It is widely used and
can be downloaded from github. It does not require pre-compiling like the other dependencies because it is
compiled with the rest of Smoldyn. There is no custom code here, but only code from the pybind11 project.

(2) The subdirectory “source/python” includes Python binding code and was written, by Dilawar,
specifically for Smoldyn.

(3) The subdirectory “examples” is for automatic testing, which has been partially set up but not
completed. To run these examples, enter “make examples”.

Several different targets can be built. The core software has the Smoldyn and LibSmoldyn
targets, which are selected or unselected using the CMake options OPTION_TARGET_SMOLDYN and

16 CHAPTER 2. SMOLDYN CODE AND BUILD SYSTEM

OPTION_TARGET_LIBSMOLDYN, described above. I'm not sure if smoldyn_static and smoldyn_shared qualify
as targets or not, but they are both built as part of LibSmoldyn. When building, these targets create
a Smoldyn executable, called just smoldyn on a Mac or smoldyn.exe on Windows, and static and shared
libraries called libsmoldyn_static.a and libsmoldyn_shared.dylib on a Mac. Also, one can write make install,
although this isn’t really a different target. In addition, make examples does some testing.

Within the python subdirectory, additional targets are: wheel, pyinstall, pyinstall_venv,
pyuninstall, pydevel, and doc_api html. I don’t think that most of these targets need to be called
specifically, but are instead called automatically when running just “make”. These targets are fairly simple,
just running a line of Python code in most cases.

2.3.4 Cross-compiling for Windows with MinGW

Smoldyn was cross-compiled for Windows from Mac using MinGW up to version 2.58, although it didn’t
work well for the last several of those versions. Versions 2.59 to 2.61 used a different build system in which I
copied source code files from Mac to Windows and then built on a Windows computer using my own compile
script and the MinGW compiler. For version 2.62, I downloaded the MSVC compiler and returned to using
CMake, but now running on the Windows computer. I'd like to get back to cross-compiling, but it’s not
working currently. Following are cross-compiling notes.

In one failed attempt, I got MinGW from MacPorts using “port install mingw-w64”. This installed the
meta-package mingw-w64, along with two sets of other packages: 1686-w64-mingw32-... and x86_64-w64-
mingw32-..., where the ... refers to the following 5 endings: binutils, crt, gcc, headers, and winpthreads.
The 1686-w64-mingw32-gcc compiler sort of works, but not really. I wrote the standard hello.c, which
compiled nicely on my Mac with “gcc -Wall hello.c -o hello”. To cross-compile, I tried to compile with “i686-
w64-mingw32-gcc -Wall hello.c -0 hello.exe” but this returned the error message “i686-w64-mingw32-gcc:
error trying to exec 'ccl’: execvp: No such file or directory”. However, this did work when I prefaced the
instruction with “sudo” and then entered my password. This clearly implied that the issue had to do with
permissions, but I was never able to figure out what was wrong and my query to Stack Overflow about this
was useless.

I had success with MinGW when I switched to compiling with the x86_64-w64-mingw32-gcc compiler,
which I also downloaded with MacPorts (this didn’t work in 2018 and 2019, but magically did again
in 2020). It installed files with the same root but ending in -binutils, -ctr, -headers, and -winpthreads.
Compiling hello world using the line “x86_64-w64-mingw32-gcc -Wall hello.c -0 hello.exe” worked without
permission issues. This also successfully built the wrl2smol utility with simply “x86_64-w64-mingw32-gcc
-Wall ../source/wrl2smol/wrl2smol.c -o wrl2smol.exe”. It works excellently with non-graphics applications,
including wrl2smol, SmolCrowd, and Smoldyn without OpenGL. Adding in OpenGL still builds properly,
but the result won’t run on a Windows computer, returning an error that it won’t run. Debugging this
with a tool called “Dependency walker” indicated that lots of Windows libraries were missing, such as
“api-ms-win-appmodel-runtime”. I wasn’t able to solve the problem.

Part of the MacPorts MinGW download is a lot of library code that’s pre-compiled for MinGW. The useful
portions seem to be in /opt/local/x86_64-w64-mingw32/include/ for the header files and /opt/local /x86_64-
w64-mingw32/lib/ for the source files. These include most of the libraries that Smoldyn uses. It didn’t used
to include glut, but the 2020 version does. Back when it didn’t include glut, I downloaded the “freeglut
3.0.0 MinGW Package” from https://www.transmissionzero.co.uk/software/freeglut-devel/. The download
was in the Smoldyn source directory, from which I copied the include and lib directory contents to the
/opt/local /x86_64-w64-mingw32 directories.

For Libtiff, T had several failed attempts. I copied the i386 tiff*.h files from MinGW directory to
/opt/local /x86...include directory. They seem ok, but they're clearly for a different architecture. I also
tried the i386 libtiff.a static libtiff library, but Smoldyn building complained that it wasn’t compatible. I
also tried downloading libtiff.a from many different websites, but got the same result every time, that they
weren’t compatible. I gave up on offering tiff support for Windows, but I now think that I might be able to
download the Libtiff source code and cross-compile myself. I successfully compiled the Libtiff source code
on Windows with MSVC, but haven’t tried yet for MinGW.

2.4. UNIT AND REGRESSION TESTING 17
2.3.5 Building for Windows on Windows with MinGW

I think I have two different versions of MinGW on my Windows computer. For the second one, I downloaded
MinGW using the mingw-get-setup.exe installer, from osdn.net, which was remarkably hard to figure out. I
next ran “mingw-get.exe install mingw32-gec” and it seemed to install the compiler.

For versions 2.59 to 2.61, I built Windows versions on a Windows computer with MinGW. I hadn’t
figured out CMake there yet, so I copied the smoldynconfigure.h file and all of the source files to the
Windows computer, compiled, copied the .exe file back to the Mac, and continued with the build process. I
distributed old version of SmolCrowd and wrl2smol in the Windows package (they only change very rarely,
so the old ones were also the current ones).

2.3.6 Building for Windows on Windows with Visual C

For version 2.62 and maybe future versions, I'm compiling the Windows version on a Windows computer
using the Visual C compiler (MSVC). After lots of work, this now functions using the CMake build system.
The method starts with creating a build directory, as usual (I haven’t figured out how to remove all of the
contents of the build directory, so I clean it out by moving up to the Smoldyn directory, removing build
with “rmdir /s build”, and then recreating it with “mkdir build”, “cd build”). Then, in the build directory,
“cmake ..” as usual, with any options, and “msbuild smoldyn.sln /p:Configuration=Release”. The final
option is essential because Visual Studio ignores the CMake directive to make this a release build, creating
a debug build instead, which then needs to link to debug libraries that most people don’t have. This option
tells Visual Studio that it should actually be a release build.

I haven’t figured out how to build alternate targets yet. The CMake documentation for build_command
(and an email from Ciaran) suggests that this might be possible with “cmake .. —target wheel”,
but this doesn’t work for me. Also, the Microsoft documentation at https://docs.microsoft.com/
en-us/visualstudio/msbuild/msbuild-command-line-reference?view=vs-2019 say that I can build
with “msbuild smoldyn.sln -target:wheel”. This doesn’t seem totally wrong, but it says that the target
doesn’t exist. Yet another approach is to change directories to build/source/python and enter “msbuild
wheel.vexproj”. This seemed promising for me but led to the error “invalid command ‘bdist_wheel”’, which
a Google search seemed to suggest arose from not using pip. Also, I can’t seem to figure out how to get pip
to work on that computer, so perhaps that’s the problem.

Here is some more advice, from Dilawar on 11/26/20.

e cmake .. -DOPTION_PYTHON=ON -DOPTION_EXAMPLES=0N
e cmake --build . --config Release
e ctest -C Release

The build step should install the wheel.

2.4 Unit and regression testing

Smoldyn does not include unit tests in their purest form. Instead, I tested Smoldyn’s algorithms, both for
qualitative and quantitative performance, using simple Smoldyn configuration files, which function as unit
tests. Many of these test files are in the examples directory. Individual files focus on specific algorithms,
such as diffusion, unimolecular reactions, absorbing surface interactions, etc. Simply watching the simulation
graphics is typically adequate for assessing qualitative performance, while data analysis and comparison
against analytical theory is generally required for assessing quantitative performance.

The examples/S95_regression directory includes files used for regression testing. This directory includes
many of the original unit tests, although typically modified for longer time steps, shorter total run times,
and a fixed random number seed. In addition, I removed the original output for these unit tests and instead
instructed them to output all molecule positions at the end of the simulation. The idea is that this is a very
sensitive way of detecting whether all interactions during the simulation were the same between two runs, or
not. This directory also includes a Python script regression.py. This script runs all unit tests, outputs their

18 CHAPTER 2. SMOLDYN CODE AND BUILD SYSTEM

results to a subdirectory, and compares the results to those that there previously generated. All differences
are reported, enabling detection of potential bugs.

To add a new unit test to the regression testing suite, simply make sure that the unit test runs relatively
quickly (a few seconds) and has no text output. Then, copy and paste the top few lines from any of the
current unit tests (e.g. bounce2.txt), so that the new unit test will output molecule positions or other
relevant output. Finally, list the unit test name in the Python script.

2.5 GPU Smoldyn

Two versions of GPU Smoldyn have been written, one by Lorenzo Dematté, and one by Denis Gladkov. I
never managed to get either of them to work. However, here are some dependencies that I downloaded while
trying to get Denis’s version to work

For GPU Smoldyn, you will need some other things too. First is the CUDA library, which is from
NVIDIA at https://developer.nvidia.com/cuda-downloads. This downloaded and installed itself. Next
is the GLEW library (OpenGL Extension Wrangler library), which is from http://glew.sourceforge.net.
This builds with simply “make” and “make install” (no “./configure” required). Next, the CUDPP library
is from http://code.google.com/p/cudpp/. It builds with CMake (make a build directory, change to that
directory, enter “cmake ..”, “make”, and “sudo make install”). For some reason, my build did not install
the cudpp_config.h file, so I had to do so by hand. From the CUDPP build directory, I entered “sudo cp
../include/cudpp_config.h /usr/local/include/” and that fixed problems.

The Boost library is from http://www.boost.org/users/download/. This doesn’t get installed with
an installer, but instead the whole directory gets copied over. It didn’t work when I put it in a
system location, but did work when I copied the “boost” subdirectory into the GPU code directory
(Smoldyn/trunk/GPU/Gladkov/smoldyn-gpu-dg/).

2.6 Code techniques and tricks

2.6.1 Formatting

I like a very compact source code style, where the indentation shows the code depth rather than the braces.
It just was that way for the most part, but then the VCell team added code in their style, and then
Dilawar reformatted the code to yet another style. I figured out how to partially revert to my style, and
also standardize others’ additions. I use the “uncrustify” software, which I downloaded from SourceForge
at https://sourceforge.net/projects/uncrustify/. The package currently resides in my Smoldyn top
level directory. I wrote a configuration file called ssa.cfg, which I use to format code; it is in the uncrustify
directory.

To reformat smolreact.c, enter: wuncrustify -c ../../uncrustify/ssa.cfg smolreact.c. This
creates a new file, smolreact.c.uncrustify. However, this still leaves lots of things that I like to fix. First,
remove closing braces on their own lines. To do so, do a find and replace, first replace all “ }” with “}”,
repeating as many times as necessary. Then replace all “\n}” with “}”. Another thing to look for is multi-line
for statements. It would be nice if these could be removed by uncrustify, but it doesn’t.

2.6.2 Code merging

Here are some options for merging code.
Minimalist text based merging can be done as follows:

mydir="../../../gccCode/Library"
set variable

diff Geometry.c $mydir
compares local version with version in $mydir, and prints out differences.

grep -n ’Geo_Sphere Normal’ ../Smoldyn/source/*.c
finds all lines of Smoldyn source code that call Geo_Sphere_Normal.

2.7. DOCUMENTATION 19

Alternatively, XCode offers FileMerge.app, which is at /Developer/Applications/Utilities/FileMerge.app.
It’s very easy to use. Yet another option is Eclipse, at www.eclipse.org, which works well.

2.7 Documentation

Smoldyn is documented in three hand-written files, which are the User’s Manual, the LibSmoldyn user’s
manual, and this programmers documentation. In addition, it has partially complete documentation
generation with Doxygen. It reads the file docs/Doxyfile.in to build the documentation. I don’t know
where the results get put.

Other files in the docs directory are markdown file versions of the Smoldyn documentation that I wrote.
Dilawar made them from the original pdf, tex, and docx files in the documentation folder using pandoc and
then edited them manaully. The mkdocs file generates a website from the ‘docs’ folder, and mkdocs.yml
is the configuration file for this, using the tool: https://squidfunk.github.io/mkdocs-material/. Dilawar’s
readthedocs web site shows the results.

2.8 Continuous Integration

Another new directory is called “scripts”. It includes development related scripts for building Smoldyn on
online platforms like Travis, Open Build Service, OSX, and docker. I don’t believe that these are complete
yet. The build_wheels_osx.sh script has stuff about homebrew, which I avoid, so this is going to take some
work before I'll want to run it.

20

CHAPTER 2. SMOLDYN CODE AND BUILD SYSTEM

Chapter 3

Python binding code

This section focuses on the code in the source/python directory, essentially all of which was written by
Dilawar Singh. Most of this code is in C++ but it’s here to support the Python bindings.

3.1 module.cpp

int init_and run(const string &filepath, const string &flags, bool wflag, bool quit_at_end
= false)]
This function is an alternate point of entry to main, from my smoldyn.c code. It is called by
PYBIND11_MODULE with the loadModel low-level Python function.

Send in the filepath, including both the path and the filename in filepath and the Smoldyn flags
in flags. In addition, wflag is another copy of the suppress warnings flag, perhaps only for
whether output files should be overwritten, and quit_at_end is a flag for whether Smoldyn should
just quit when the simulation is done. This function passes these things on to simInitAndLoad and
simUpdateAndDisplay (both in smolsim.c). Here, cursim_ is the current simulation structure. This
also opens output files and runs the simulation with smolsimulate or smolsimulategl, as appropriate.
At the end, it frees the simulation structure and returns. Returns 0 for success or an error code for
failure.

PYBIND11_MODULE(_smoldyn, m)

This is a macro that creates a function for the interface between C code and Python. From the
website https://pybindll.readthedocs.io/en/stable/basics.html, with some edits to make it
apply to the code here: “The PYBIND11 MODULE() macro creates a function that will be called when
an import statement is issued from within Python. The module name (_smoldyn) is given as the first
macro argument. The second argument (m) defines a variable of type py: :module_ which is the main
interface for creating bindings. The method module_: :def () generates binding code that exposes the
Smoldyn functions to Python.”

This code exposes the enumerated types, the members of the simulation structure, and the C API to
the Python interface. Most of this function is simply a wrapper of the C API. The python functions
created at the end of this function are not in the C API, but probably should be. Most of their code
is in Smoldyn.cpp.

3.2 Smoldyn.cpp and Smoldyn.h

Most of the the functions in Smoldyn.cpp are simple utilities, which really should be in the C API but
weren’t added to it. Most of these functions are called by the PYBIND11 _MODULE function. Many of these
functions could also be usefully merged into the PYBIND11 MODULE code to improve overall simplicity.

The Smoldyn.h header file includes global variables and declarations for all of these functions. In addition,
Smoldyn.h includes a few inline utility functions, including splitPath for splitting a filename path into

21

22 CHAPTER 3. PYTHON BINDING CODE

separate root and filename strings (used in module.cpp init_and run) and color2RGBA for converting a
color string to RGBA numbers (this calls my graphicsreadcolor function).

bool connect(const py::function& func, const py::object& target, const size_t step, const
py::list& args)
Creates a python callback for the Smoldyn main simulation loop. func is the function to be called,
target is some sort of target for it (I don’t know what this is), step is the number of time steps
between callbacks, and args are arguments for the function that is called.

bool addToSimptrVec(simptr ptr)
Adds ptr, which is a simulation pointer, to the list of simulation pointers called simptrs_, which is
declared as a global variable in this file. Doesn’t do anything if the pointer was already in the list.
Returns true if it was added and false if it was already there.

bool deleteSimptr(simptr ptr)
Searches for ptr in the list of simulation pointers simptrs_. If found, it is deleted. Also, the memory
is cleared. Returns true if found and deleted and false if not found.

size_t getDim()
Returns the simulation dimensionality, using the value in the global dim_ variable. This should probably
be a C API function as well.

void setDim(size_t dim)
Sets the dimensionality of the current simulation structure, as well as the global dim_ variable. This
function should only be called when a simulation structure is first being set up. Otherwise, it is
a dangerous function because lots of memory allocation in the simulation structure depends on the
dimensionality, so really shouldn’t be modified without completely erasing and rebuilding the simulation
structure.

void printSimptrNotInitWarning(const char* funcname)
Simply prints a warning to say that the function named funcname is complaining about the simptr not
being initialized.

void setRandomSeed(size_t seed)
Sets the random number seed for the current simulation to seed if this value is greater than or equal to
0, or to a randomly chosen value otherwise. This could be but isn’t a wrapper for the C API function
of the same name.

size_t getRandomSeed(void)
Returns the current random number seed. This should be in C APIL

bool initialize()
This creates a new simulation structure, putting it into the global variable cursim_, using information
stored in other global variables lowbounds, highbounds, and dim (this last one is retrieved through
getDim). Returns true for success or false for failure.

void runUntil(const double breaktime, const double dt, bool display)
Runs the simulation until time breaktime using time step dt. Output is sent to the display if display
is true. This is a wrapper for smolRunSimUntil.

bool run(double stoptime, double dt, bool display)
Runs the simulation up to time stoptime. This is a wrapper for smolRunSim.

void setBoundaries(const vector<pair<double, double>>& bounds)

void setBoundaries(const vector<double>& lowbounds, const vector<double>& highbounds)
Both functions set the boundaries for a simulation by writing them to global variables and then calling
initialize to add them to the simulation structure.

3.3. CALLBACKFUNC.CPP AND CALLBACKFUNC.H 23

pair<vector<double>, vector<double>> getBoundaries()
Gets and returns the boundaries.

ErrorCode setDt(double dt)
Sets the simulation time step.

ErrorCode getDt(double dt)
Returns the simulation time step.

bool setModelpath(const string& modelpath)
This takes in the path for the model, including the model filename, and splits it into the path and
filename separately. It then assigns the results to the current simulation filepath and filename. The
function always returns true.

3.3 Callbackfunc.cpp and Callbackfunc.h

These files include the code for the Python callback functions. Use things like setFuncName, setStep,
setTarget, setFunc, and setArgs to register and set up callback functions.

CallbackFunc: :CallbackFunc ()
Constructor.

CallbackFunc:: CallbackFunc()
Destructor.

bool CallbackFunc::evalAndUpdate(double t)
Evaluate the callback function at time t. This also calls the target function if there is one, and otherwise
uses a “magic string”, which I didn’t understand.

bool CallbackFunc::isValid() const
Returns whether the callback function has a size greater than zero, meaning that it’s valid.

void CallbackFunc::setFunc(const py::function& func)
Sets the callback function to func.

py::function CallbackFunc::getFunc() const
Gets and returns the callback function.

void CallbackFunc: :setFuncName(const string& fname)
Sets the callback function name to name.

string CallbackFunc::getFuncName() const
Gets and returns the callback function name.

void CallbackFunc::setStep(size_t step)
Sets the step size for the callback function to step.

size_t CallbackFunc::getStep() const
Gets and returns the stepsize for the callback function.

void CallbackFunc::setTarget(const py::handle& target)
Sets the target function for the callback function to target.

py::handle CallbackFunc::getTarget() const
Gets and returns the target for the callback function.

void CallbackFunc::setArgs(const py::list& args)
Sets the arguments for the callback function to the list args.

py::list CallbackFunc::getArgs() const
Gets the arguments for the callback function.

24 CHAPTER 3. PYTHON BINDING CODE
3.4 Python scripts in smoldyn directory

I tried to determine which scripts get imported and in what order by adding print statements to the beginning
of them. If I start a Python session and then enter “import smoldyn”, it runs the following scripts, in
order: __init__.py, smoldyn.py, types.py, utils.py. My understanding is that each of these imports the next
in sequence, so __init__.py imports smoldyn.py, which then imports types.py, which then imports utils.py.
Running a Python Smoldyn simulation goes through the same files when the “import smoldyn” statement is
reached, and they are not imported again, at least from the top. It doesn’t appear that __main__.py is ever
imported at all. The files are listed below in the same order that they actually imported.

_init__.py

This file only has a few lines since it’s only role is to import smoldyn.py. When I’'m in a Python session and
enter “smoldyn._file_”, the result is a path to the __init__.py file, again showing that this is the top-level
file.

smoldyn.py

This file creates the “user API” for the Python bindings. In the process, it defines all of the user API classes,
and the setting and getting functions.

types.py

This declares a color type as a union of a string name, and a RGBA vector. It also defines the class Color,
which can convert name to RGBA.

utils.py

This defines a load_.model function with a path and arguments, which then sends the information onto
the compiled Smoldyn code. It also converts colors from string to RGBA, using matplotlib if available or
Smoldyn color conversion if not.

__main__.py

This file parses the command line arguments using the argparse standard library and then runs the model
using smoldyn.load model(). This file includes the Python command-line options, including “overwrite”,
“quit-at-end”, and “args”. This code doesn’t necessarily run. According to Dilawar, if Smoldyn is started
with “python3 -m smoldyn template.txt”, then this will execute the __main__.py file, with command line
arguments passed to it. Here, the Python package is being used as a proxy for the Smoldyn executable.

3.5 Python module after building

After building Smoldyn, in the build directory at /path/to/Smoldyn/build, the python module ends
up at /path/to/Smoldyn/build/py. The actual code that runs is in the smoldyn subdirectory of
this location, but that’s not directly relevant. = The module can be imported into Python from
this directory (.../build/py). Add this directory to your PYTHONPATH temporarily with export
PYTHONPATH=/path/to/Smoldyn/build/py: $PYTHONPATH. With this, the module can be accessed from any
directory. Also, somehow, it’s possible to add the module directory to sys.path, which is then a permanent
solution.

Note that it’s possible to see where the library is imported from by checking smoldyn.__file__ while
in Python. For example,

>>> import smoldyn
>>> print(smoldyn.__file__)
/home/dilawars/Work/FORKES/Smoldyn/build/py/smoldyn/__init__.py

Chapter 4

C code: files, macros, variables, etc.

The Smoldyn code is separated into several sets of files. (1) Library files, such as math2.c, are general-
purpose C library files, nearly all of which I wrote. Smoldyn uses some of the functions in them, but far from
all. (2) Each of these library files has a header, such as math2.h, that declares the structures and functions
within that library file. These library files and headers are documented in separate documents, such as the
file math2_doc.pdf. (3) The core Smoldyn source code is in files that begin with “smol”, such as smolmolec.c.
Smoldyn uses all of these functions. The main entry point to the program is in the file smoldyn.c, in the
main function. This file also includes some high level functions for running the simulation. The other files
take care of different portions of the simulation, such as molecules, virtual boxes, or surfaces. I have tried
to encapsulate the code so that functions in any file are allowed to read directly from any structure, but
only the functions in the file that corresponds to a structure is allowed to write to it. (4) The Smoldyn
core source code files share a single header file, which is called smoldyn.h. It declares all data structures
and function declarations. This header and the core Smoldyn files are documented here and in part I of the
documentation.

4.1 Smoldyn source files

file function

smolboxes.c virtual boxes

smolcmd.c runtime interpreter commands
smolcomparts.c compartments

smoldyn.c top level functions

smoldyn.h data structures and function declarations
smolgraphics.c ~ OpenGL graphics

smolmolec.c molecules

smolport.c ports

smolreact.c reactions

smolsim.c simulation structure and high level functions
smolsurface.c surfaces

smolwall.c walls

4.2 Constants and global variables

smoldyn.h

#define SMOLDYN_VERSION 2.16 // current Smoldyn version number
This is the current version number of Smoldyn.

25

26 CHAPTER 4. C CODE: FILES, MACROS, VARIABLES, ETC.

#define DIMMAX 3
This is the maximum dimensionality permitted.

#define VERYCLOSE 1.0e-12
Distance that is certain to be safe from round-off error during calculations.

enum StructCond {SCinit,SCok,SCparams,SClists};
This is used in multiple structures to report the structure condition. SCinit is for just initialized, or
initial initialization; SCok is for fully updated and ready for use; SCparams is for complete except that
internal parameters need computation; and SClists is for structure lists and maybe also parameters
need computation.

smoldyn.c

simptr Sim;
Sim is a global variable for the current simulation structure. This is only used when graphics are
being shown using OpenGL, because OpenGL does not allow variables to be passed in the normal way
between functions.

4.3 Macros

#define CHECK(A) if(!(A)) goto failure; else (void)O

This is a useful macro for several routines in which any of several problems may occur, but all problems
result in freeing structures and leaving. Program flow goes to the label failure if A is false. Many people
would consider both the use of a macro function and the use of a goto statement to be bad programming
practice, and especially bad when used together. However, in this case it significantly improves code
readability. As usual, partially defined structures should always be kept traversable and in good order
so they can be freed at any time. The “else (void)0” termination of the macro is used so that if
CHECK(...) is followed by an else, that else will refer to the prior if, and not to the CHECK. Because
of the trailing else, compilers may complain if the CHECK macro follows an if and is not surrounded
by braces.

#define CHECKS(A,B) if(!(A)) strncpy(erstr,B,STRCHAR);goto failure; else (void)O
This is identical to CHECK, except that it also copies the included string to the variable erstr if a
failure occurs. It is useful for error reporting.

4.4 Local variables

It has proven useful to use consistent names for local variables for code readability. In places, there are
exceptions, but the following table lists the typical uses for most local variables. This table is also quite out
of date.

variable type use

a double binding radius for bimolecular reaction
b,b2 int box address

blist boxptr* list of boxes, index is [b]

boxs boxssptr pointer to box superstructure

bptr boxptr pointer to box

bval double unbinding radius for bimolecular reaction
c int index of compartment

ch char generic character

cmd cmdptr pointer to a command

cmds cmdssptr pointer to the command superstructure
cmpt compartptr pointer to a compartment

4.4. LOCAL VARIABLES

cmptss
d
dc1l,dc2
dead
difc
dsum
dim

dt

er
erstr
face
f1t1,f1t2
fptr
got

i
il1,i2,...
indx
itct

J

k

lctr
line
line?2
live

11
m,m2,m3
ml,m2,m3
mlist
mols
mptr
mptrl,mptr2
ms

name
nbox
ni2o
nident
nl
nm,nm2
nmol
npnl
npts
nprod
nrxn
nsrf

02

optr
order
%

p

pfp
pgemptr
point
pos
prod

compartssptr
int

double
moleculeptr*
doublex*
double

int

double

int

charx*

enum PanelFace
double

FILE*

int[]

int

int

int*

int

int

int

int

char[]

charx*
moleculeptr*x*
int

int

int*
moleculeptrx*
molssptr
moleculeptr
moleculeptr
enum MolecState
char**

int

int

int

int*

char[]

int

int

int

int*,int
int*

int

int

intx*

int

int

int
ParseFilePtr
doublex*
doublexx*
doublex*
moleculeptr*x*

27

pointer to a compartment superstructure
dimension number

diffusion coefficients for molecules

list of dead molecules, index [m]

list of diffusion coefficients, index [i

sum of diffusion coefficients
dimensionality of space

time step

error code

error string

face of a panel

generic double variable

file stream

flag for if parameter is known yet
molecule identity, reactant number, or generic integer
molecule identities

dim dimensional index of box position
count of number of items read from a string
number of reaction for certain i

index of points within a compartment
line number counter for reading text file
complete line of text

pointer to unparsed portion of string

list of live molecules, index [11][m]

index of live list

index of molecule in list

scratch space matrices of size dimxdim
list of molecules, index is [m]

pointer to molecule superstructure
pointer to molecule

pointer to more molecules

molecule state

names of molecules, index is [i]

number of boxes

value of nidentorder

number of molecule identities

number of live molecules in a live list, index [l1]
name of molecule, reaction, or surface
number of molecules in list

number of panels for a surface

number of points for a surface panel
number of products for reaction [r]
number of reactions for [i]

number of surfaces

order of second reaction

pointer to the order of reaction

order of reaction

reaction product number

panel number for surfaces

configuration file pointer and information
pointer to probability of geminate recombination
list of points that define a panel [p][pt]

a position

list of products for reaction [r], index is [p]

28

pnl
pnls
ps

pt

r

r2
rate
rate2
rate3
rev
rname
rpar
rpart
rptr
rxn
rxn2
s
side
sim
smptr
srf
srfss
step
stril
table
topd
total
vl,v2,v3
w
wlist
word
wptr

CHAPTER 4. C CODE: FILES, MACROS, VARIABLES, ETC.

panelptr
panelptr*
enum PanelShape
int

int

int
doublex*
doublex
double

int

charxx*
double,doublex*
char,char*
intx*
rxnptr
rxnptr

int

int*
simptr
simptr*
surfaceptr
surfacessptr
double
char (]
int**

int

int

int*

int
wallptr*
char (]
wallptr

pointer to a panel

list of panels

panel shape

index for points, for surfaces

reaction number

reaction number for second reaction
requested rate of reaction [r]

internal rate parameter of reaction [r]
actual rate of reaction

code for reaction reversibility; see findreverserxn
names of reactions, index is [r]
reversible parameter, index is [r]
reversible parameter type, index is [r]
pointer to reaction number

pointer to a reaction structure

pointer to a second reaction structure
surface number

number of boxes on each side of space, index [d]
pointer to simulation structure

pointer to pointer to simulation structure
pointer to a surface structure

pointer to a surface superstructure

rms step length of molecule or molecules
generic string

table of reaction numbers for [i][j]

top of empty molecules in dead list

total number of reactions in list

scratch space vectors of size dim

index of wall

list of walls, index is [w]

first word of a line of text

pointer to wall

Chapter 5

C Code: structures and functions

Smoldyn is written in C, with a C style. The proper maintenance of structures, which are described below, is
a central aspect of the program. In general, the basic objects are molecules, walls, surfaces, and virtual boxes,
each of which has its own structure. In many cases, these items are grouped together into superstructures,
which are basically just a list of fundamental elements, along with some more information that pertains to
the whole list. Reactions, compartments, and ports aren’t really objects, but are also among the core data
structures. Finally, a simulation structure is a high level structure which contains all the parameters and
the current state of the simulation.

An aspect of structures that is important to note, especially if changes are made, is which structures own
what elements. For example, a molecule owns its position vector, meaning that that piece of memory was
allocated with the molecule and will be freed with the molecule. On the other hand, a molecule does not
own a virtual box, but merely points to the one that it is in.

All allocation routines return either a pointer to the structure that was allocated, or NULL if memory
wasn’t available. Assuming that they succeed, all structure members are initialized, typically to 0 or NULL
depending on the member type. All the memory freeing routines are robust in that they don’t mind NULL
inputs or NULL internal pointers. However, this is only useful and robust if allocation is done in an order that
always keeps the structure traversable and keeps pointers set to NULL until they are ready to be initialized.

Both the code and the description below are sorted into categories: molecules, walls, reactions, boxes,
surfaces, compartments, ports, and the simulation structure. In many cases, functions within each category
work with only their respective object. However, the core program is highly integrated so that functions in
one category may use objects in another category. Functions in one category (defined by the file that they
are listed in) are not supposed to write to objects in other categories, although some exceptions may exist.

5.1 Header files

Smoldyn has several header files. They are: (i) smoldyn.h, which lists all of the structure declarations,
(i) smoldynfuncs.h, which lists all of the basic Smoldyn function declarations, (4ii) libsmoldyn.h, which
lists all declarations for Libsmoldyn, and (iv) smoldyn_config.h, which is automatically generated during the
configuration process and which lists the compilation configure options.

5.2 Molecules (functions in smolmolec.c)

Each individual molecule is stored with a moleculestruct structure, pointed to by a moleculeptr. This
contains information about the molecule’s position, identity, and other characteristics that are specific to
each individual molecule. These molecules are organized using a molecule superstructure, which contains lists
of the active molecules, a list of unused molecule storage space called dead molecules, and other information
about the molecules in general.

#define MSMAX 5
#define MSMAX1 6

29

30 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

enum MolecState {MSsoln,MSfront,6 MSback, MSup,MSdown,MSbsoln,MSall,MSnonel;
enum MolListType { ,MLTport ,MLTnonel};

#define PDMAX 6

enum PatternData {PDalloc,PDnresults,PDnspecies ,PDmatch,PDsubst,PDrule};

MolecState enumerates the physical states that a molecule can be in, which are respectively: in solution
(i.e. not bound to a surface), bound to the front of a surface, bound to the back of a surface, transmembrane
in the up direction, and transmembrane in the down configuration. MSMAX is the number of enumerated
elements. While not a state that molecules are allowed to be in, MSbsoln is useful for reactions or surface
actions to differentiate between in solution on the front of a surface versus on the back of a surface; MSsoln
and MSbsoln are used for these, respectively. MSMAX1 accounts for the additional destination state. Also,
MSall and MSnone are useful enumerations for some functions to use as inputs or outputs.

MolListType enumerates the types of lists of molecules. MLTsystem is for molecules that are in the
simulation system and MLTport is for molecule buffers for porting. MLTnone is not a type but is the absence
of any type.

The PatternData enumeration, of which there are PDMAX options, are for the first PDMAX elements of
the mols->patindex array, called the header. This array, as explained below, lists the species indices that
match to text patterns. Each listing requires some information to describe how long the listing is, what’s
stored in it, and what it corresponds to, which is included in the header. These header elements should be
retreived using the enumerated values. See below for their description and see the Wildcards section of the
Code Design chapter.

typedef struct moleculestruct {

unsigned long long serno; // serial number

int list; // destination list number (11)

double *pos; // dim dimensional wvector for position [d]
double *posx; // dim dimensional wvector for old position/[d]
double *via; // location of last surface interaction [d]
double *posoffset; // position offset arising from jumps [d]

int ident; // species of molecule; 0 s empty (%)

enum MolecState mstate; // physical state of molecule (ms)

struct boxstruct *box; // pointer to boz which molecule is 1in

struct panelstruct *pnl; // panel that molecule %s bound to if any
struct panelstruct *pnlx; // old panel that molecule was bound to <f any

} *moleculeptr;

moleculestruct is a structure used for each molecule.

serno is the unique serial number that each live molecule is given; it is assigned by the utility function
getnextmol, which should be used to add new live molecules to the system. If a molecule is being imported
from elsewhere, it is legitimate to overwrite the serial number with the previous value. The serial number
should normally never exceed a long int, except when using single molecule tracking when two serial numbers
are concatenated into one, which then requires an unsigned long long int.

list is the master list number that the molecule should be listed in (-1 for dead, other values for live
lists); this is modified with molkill, molchange, or one of the addmol functions.

pos and posx, both of which are owned by the structure, are always valid positions, although not
necessarily within the system volume. posx is the position from the previous time step, used to determine
if a molecule crossed a wall or surface. posoffset is the cumulative position offset that should be added to
the position to correct for jumps and periodic boundaries (it replaced the wrap element). via is the location
of the most recent surface interaction. It is work space and so should not be assumed to represent anything,
unless it was just set to that value.

ident should always be between 0 and nident-1, inclusive. A molecule type of 0 is an empty molecule
for transfer to the dead list (and should also have 1list equal to -1).

Except during set up, box should always point to a valid box.

mstate is the physical state of the molecule, which might be solvated or any of several surface-bound
positions.

If this molecule is bound to a surface, pnl points to that surface panel. Also, pnlx points to the panel
that posx was on.

5.2. MOLECULES (FUNCTIONS IN SMOLMOLEC.C) 31

typedef struct molsuperstruct {
enum StructCond condition;
struct simstruct *sim;

// structure condition
// simulation structure

int maxspecies; // mazimum number of species

int nspecies; // number of species, including empty mols.
char **spname; // mames of molecular species

int maxpattern; // maximum number of patterns

int npattern; // actual number of patterns

char **patlist; // list of patterns [pat]

int **patindex; // species indices for patterns [pat][j]
char **patrname; // pattern reaction name if any [pat]
double #**difc; // diffustion constants [t1][ms]

double **difstep; // rms diffusion step [i][ms]

double #***xdifm; // diffusion matriz [i][ms][d]

double #**xdrift; // drift wvector [<1][ms][d]

double ***xx*xsurfdrift; // surface drift [i][ms][s][ps][d]

double *#*display; // display size of molecule [<1][ms]

double ***xcolor; // RGB color wector [i1][ms]

int **exist; // flag for 4if molecule could ezist [4][ms]
moleculeptr *dead; // list of dead molecules [m]

int maxdlimit; // mazimum allowed size of dead list

int maxd; // size of dead molecule list

int nd; // total number of molecules in dead list

int topd; // index for dead list; above are resurrected
int maxlist; // allocated number of live lists

int nlist; // number of live lists

int **xlistlookup; // lookup table for live lists [i][ms]

char *xlistname; // mames of molecule lists [ll]

enum MolListType *listtype; // types of molecule lists [Lll]

moleculeptr **live; // live molecule lists [11][m]

int *maxl; // size of molecule lists [ll]

int *nl; // number of molecules in live lists [l1l]
int *topl; // live list index; above are reborn [l1l]
int *sortl; // live list indexz; above mneed sorting [l1l]
int *diffuselist; // 1 if any listed molecs diffuse [11]
unsigned long serno; // serial number for next resurrected molec.
int ngausstbl; // number of elements in gausstbl

double *gausstbl; // random mnumbers for diffusion

int *expand; // whether species ezpand with libmzr [t]
long int touch; // counter for molecule modification

} *molssptr;

molsuperstruct contains and owns information about molecular properties and it also contains and
owns lists of molecules. condition is the current condition of the superstructure and sim is a pointer to the
simulation structure that owns this superstructure. maxspecies is the number of molecular species for which
the arrays are allocated, nspecies is the actual number of defined species, and spname is the list of names
for those species. Other superstructures that have maxspecies elements, such as surfaces, are intended to
be copies of the one here for internal use, while this one remains the master.

The definitive version of the pattern stuff is described in the Wildcards section of the Code Design
chapter. However, a little is described here, too. Patterns represent one or more species names. Each string
that is used gets recorded here. This list is only updated when it is used. maxpattern slots are allocated
for patterns, of which npattern are actually used. The actual list of patterns is called patlist; these are
sorted by alphabetical order. Sorted in parallel are the lists patindex which is a list of lists, and patrname,
which is a list of reaction names. patrname is only used if the pattern represents a reaction, and is used to
differentiate between multiple different reactions that have identical patterns. In patindex, the outer list
corresponds to the patterns. In the sublists, the first several elements, called the header, give important
information about the list. The header occupies the first PDMAX list elements.

Diffusion is described with difc, a list of diffusion constants; difstep is a vector of the rms displacements

32 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

on each coordinate during one time step if diffusion is isotropic; and difm is a list where each element is
either a NULL value if diffusion is isotropic or a dimxdim size diffusion matrix (actually the square root of the
matrix). drift is the vector for molecular drift, relative to system coordinates. surfdrift is for molecular
drift relative to the local surface panel coordinates; this memory is only allocated as required. All of these
are arrays on the molecule identity, followed by arrays on the molecule state (size MSMAX). display is simply
the size of molecules for graphical output (which scales differently for different output styles) and color is
the 3-dimensional color vector for each molecule; again size of sate list is MSMAX.

exist is 1 for each identity and state that could be a part of the system and 0 for those that are not part
of the system. This is set in molsupdate, were any molecules and states that exist then are recorded, as are
all reaction products. If commands create molecules, they should also set the exist flag with molsetexist.

expand is a flag for on-the-fly rule-based modeling. It is initialized to 0 and stays that way so long as
there have never been any molecules of this species, it is increased to 1 if at least one molecule of this species
has been created but it has not yet been used for rule expansion, and is set to either 2 or 3 if it has been
used for expansion.

touch is a counter that counts the number of times that the list of molecules has been modified. No
meaning is ascribed to any particular value. Instead, it can be used to determine if the molecule state has
changed between one call of a function and another call of a function, used to prevent recomputing things if
it hasn’t changed. The touch value should be incremented by any function that directly changes molecules,
whether it creates new ones, kills existing ones, or moves them. Functions that call other functions for these
purposes (e.g. that call addmol, molkill, or molchangeident) do not increment touch. Molecules are not
considered to be changed if they are merely re-sorted between molecule lists or re-assigned to boxes.

The molecule lists are separated into two parts. The first set is the live list, which are those molecules
that are actually in the system or that are being stored for transfer elsewhere (i.e. buffers for ports are
also live lists); the others are in the dead list, are empty molecules, and have no influence on the system.
If more molecules are needed in the system than the total number allocated, the program sends an error
message and ends; in the future, it may be possible to dynamically create larger lists. Upon initialization,
all molecules are created as empty molecules in the dead list, whereas during program execution, all lists
are typically partially full. After sorting, each live list, 11, has active molecules from element 0 to element
nl[11]-1, inclusive, and has undefined contents from nl[11] to max1[11]-1. Similarly, the dead list is filled
with empty molecules from 0 to nd-1, and has undefined contents from nd to maxd-1; in this case, topd
equals nd.

Functions other than molsort, such as chemical reactions, are allowed to kill live molecules (with molkill)
or resurrect dead ones (with getnextmol, addmol, or addsurfmol) but they should not move molecules or
change the list indices. With new molecules that are gotten with getnextmol, set the molecule identity, state,
list (with mols->listlookup), position, old position, panel if appropriate, and box. Set the box element of
the molecule to point to the proper box, but do not add the molecule to that box’s molecule list. It is now
in the resurrected list, which is the top of the dead list between topd and nd-1, inclusive. Routines should
be written so that these mis-sorted molecules do not cause problems. They are sorted with molsort, which
moves the empty molecules in the live lists to the dead list, moves the resurrected ones to the top of the
proper live list, compacts the live lists (molecule order is not maintained), and identifies the newly reborn
molecules in the live lists by setting topl[11]; the reborn molecules extend from topl[11] to nl[11].

Example of the lists:

index live[0] live[1] dead
8 ? ?7 maxd?
7 max1[0] ? ? -
6 - ? -
5 max1[1] 7 -
4 _ - _
3 nl[0] - - nd -
2 2 topl[1]l,nl[1] - topdl
1 topl[0] 1 0 0
0 0 3 0

5.2. MOLECULES (FUNCTIONS IN SMOLMOLEC.C) 33

Here, each list has max=8, and so is indexed with m from 0 to 7. A ‘?’ is memory that is not part of that
which was allocated, a ‘-’ is a NULL value, a ‘0’ is an empty molecule, and other numbers are other identities
(‘1’ and ‘2’ are mobile, whereas ‘3’ is immobile). The ‘0’s in the the two live lists are to be transferred to
the dead list during the next sort, while the ‘1’ in the dead list has been resurrected and is to be moved to
mobile live list. Based on the topl[0] index, it can be seen that the ‘1’ and ‘2’ in the mobile live list were
just put there during the last sorting, and so are reborn molecules.

There is one dead list and there are nlist live lists. The dead list has total size maxd and is filled to level
nd. The index topd, which is between 0 and nd, separates the dead molecules (list element is -1) with indices
from 0 to topd-1 from the resurrected molecules (list elements 0) that have indices between topd and nd-1.
The dead list is automatically expanded up to size maxdlimit if this value is positive, and is automatically
expanded without limit if maxdlimit is negative (the default). Live list 11 has total size max1[11] and is
filled to level n1[11]. The index topl[11], which is between 0 and nl[11] separates the molecules that
were there on the prior time step that have smaller indices from those that were created in the last time
step, called the reborn molecules, which have higher indices.

enumerated type functions

enum MolecState molstring2ms(char *string);
Returns the enumerated molecule state value, given a string input. Permitted input strings are

“solution”, “aq” (aqueous), “front”, “back”, “up”, “down”, “fsoln”, “bsoln”, and “all”. Returns
MSnone if input is “none” or is not recognized.

char *molms2string(enum MolecState ms,char *string);
Returns the string that corresponds to the enumerated molecule state ms in string, which must be
pre-allocated. Also, the address of string is returned to allow for function nesting.

enum MolListType molstring2mlt(char *string);
Returns the enumerated molecule list type, given a string input. Permitted input strings are “system”
and “port”. Returns MLTnone for all other input.

char *molmlt2string(enum MolListType mlt,char *string);
Returns the string that corresponds to the enumerated molecule list type m1t. The string needs to be
pre-allocaed; it is returned to allow function nesting.

low level utilities

char *molserno2string(unsigned long long serno,char *string);
Writes the molecule serial number to a pre-allocated string, returning the pointer to that string. If
the serial number is not a concatenated number, then just writes that number to the string. If the
serial number has been concatenated, then this writes the left portion, a period, and then the right
portion. Note that this uses the defined string LLUFORMAT because Windows doesn’t use the standard
%Ilu format specifier for some reason.

unsigned long long molstring2serno(char *string); Converts a string with a
serial number value to a serial number. If the string is simply a number, then this reads the number
and returns it. If the string has two numbers separated by a period, then this takes the left number,
shifts it left 32 places, and adds the right number, to create a concatenated serial number. Returns 0
on failure (serial numbers equal to 0 are not allowed).

unsigned long long molfindserno(simptr sim,unsigned long long def,long int
pserno,unsigned long long rlserno,unsigned long long r2serno,unsigned long long
*sernolist); Computes a serial number for a new molecule,
based upon coded instructions in pserno, a default value in def, reactant serial numbers in riserno
and r2serno, and previously assigned product serial numbers in sernolist. This does not use sim at
all, except if the coded instructions are for a serial number with the format “new.new”, in which case

34

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

this uses the default value as the first new value and then gets the next one off of sim->mols->serno
and also increments the value. This function does no checking to make sure that inputs are valid.

A positive value of pserno indicates that it is an actual serial number and a negative value indicates
that it is a bit-inverted code, labeled the bitcode here. The bitcode is 4 hex numbers, with the first
two for the left half of the serial number and the second two for the right half of the serial number.
The other functions that deal with bitcodes are rxnstring2sernocode and rxnsernocode2string.

bits mask use

1,2,3 0xEO not used
4 0x10 O for right side, 1 for left side
5 0x08 1 for p, 0 for r or new
6 0x04 1 for r, O for p or new

7,8 0x03 which p or r, or 1 for new

int molismobile(simptr sim,int species,enum MolecState ms);

Returns 1 if molecules of species species and state ms are mobile at all and 0 if they are not. Mobility
includes isotropic and anisotropic diffusion, drift, and surface drift. MSbsoln is an allowed input, which
always returns the same result as a MSsoln input.

int molstring2pattern(const char *str,enum MolecState *msptr,char *pat,int mode);

This assembles a species pattern string from molecule species strings. For example, if the user enters
a reaction as A*(front) + B|C(soln) -> A*{B|C}(front), then the function that reads this string
(which are molstring2indexl and rxnparsereaction) will send the A*(front), BIC(soln), and
Ax{B|C} (front) strings to this function for them to be assembled in the pattern A*+B|C\nA*{B|C},
and for the states to be returned to the calling function. The pattern is then generally sent off to
molpatternindex.

Enter str as a string of which the first word is the species name or pattern to be processed. The
state, if listed at the end of the name string, is returned in msptr. Enter mode as 0 if this is a new
pattern, 1 if the current text being added to the pattern is part of the “match” side of the pattern
(the first two words in the above example), or 2 if the current text being added to the pattern is part
of the “substitute” side of the pattern (the last word in the above example). The pat string needs to
allocated beforehand to size STRCHAR.

Returns 0 for success, -1 if str or pat are missing or if there is no first word in str, -2 if the parentheses
in str don’t match up, -3 if the molecule state could not be read, or -4 if the pattern length exceeds
the maximum number of allowed characters (which is STRCHAR).

int molreversepattern(simptr sim,const char *pattern,char *patternrev);

Takes in a reaction pattern in pattern and reverses it for the reverse reaction, returning the result in
the string patternrev. This only works for patterns that represent reactions. This simply writes the
reverse pattern as the products of the original and then the reactants. Returns 0 for success or -1 if
pattern is not a reaction.

int molpatternindex(simptr sim,const char *pattern,const char *rname,int isrule,int

update,int **indexptr);

This function takes in a pattern string, in pattern, and returns the list of species or species
combinations that correspond to this pattern. To make this function efficient, it records its answers
in the molecule superstructure patlist and patindex lists, so that the list does not need to be
recomputed if it is asked for multiple times. The returned list of species is the proper patindex list
from the molecule superstructure, including its header data. The data returned by this function is a
pointer to the original data, not a copy of it, so it should generally not be modified. See the pattern
discussion under the molecule superstructure description for details about the data that are returned.
Enter isrule with 1 if this is a rule, in which case new species names that arise from expanding the
pattern get added to the simulation (but not their reactions), or with 0 if this is not a rule, meaning
that new species names are errors. Enter update with 0 if the index list should not be updated at all,

5.2. MOLECULES (FUNCTIONS IN SMOLMOLEC.C) 35

with 1 if the index list should be created if it doesn’t exist already, and with 2 if the index list should
be updated to the current list of species (or to the recently created species for reactions and on-the-fly
generation).

This function does not support species groups that are defined without wildcards.

Returns 0 for success, -1 for inability to allocate memory, -2 if no wildcards were entered and one or
more of the match species is unknown, -3 if a substitute species is unknown and the substitute species
had no wildcards in it, -4 if the match string included more words than allowed by this function (which
is 4 currently), -5 if a trial match string was too long to fit in STRCHAR characters (even if this wasn’t
actually a match), -6 if species generation failed, -11 for inability to allocate memory, -12 for missing ¢
” operand, -13 for missing & operand, -15 for mismatched braces, or -20 for a destination pattern that
is incompatible with the matching pattern (i.e. it has to have either 1 destination or the same number
of destination options as pattern options). If update is set to 0, then no errors are possible. In this
case, if the pattern is not in the list, then the function does not add it to the list, but simply returns a
value of 0 and indexptr pointing to NULL. If update is set to 1, then the only error possible is -1, for
inability to allocate memory.

First, this function looks to see if pattern is already in the pattern list. If the pattern is not found,
this function adds it, while maintaining alphabetical order. This may require expanding the list of
patterns and pattern indices if the list is full.

Next, for both new and old patterns, this function determines if the indices are up to date, meaning
that the PDnspecies value is negative, which means that it never needs updating, or it is equal to the
current number of species in the simulation, which means that it is already up to date. If the indices
are up to date, then the function is done; it simply returns the correct index list. If not, then the
function figures out the header to the index list, if necessary, and prepares several variables for later
use. These variables are: matchstr, substr, and newline, which refer to the pattern string; istart
and jstart, which are the species number to start updating from and the starting result in the index
list to start updating to; matchwords, subwords, and totalwords, which are the numbers of each
type of word in the pattern; haswildcard and hasspeciesgroup, which are whether the pattern has
wildcard characters and/or a species group; and nspecies which is the current number of species in
the simulation.

Finally, the function goes through a number of pattern types, from simplest to most general. The
simple ones are simply special cases of the most general one, but they are included because their code
will run much faster when applicable, and because the simple cases help to make sense of the general
case.

(1) If the pattern is “all”, then the list should include all species names, but there’s nothing else to
worry about.

(2) If the pattern has no newline, no wildcards, and 1 matchword, then it must be just the name of
a species. It could also be the name of a species group, but it shouldn’t be because those are set for
updating not required. Assuming it’s a single species, this makes space for it in the index, finds the
identity value of the species, sticks it in the index, and sets the header values. If the function didn’t
find the species name (or if the pattern is a species group name), then this returns error code -2 to
indicate an unknown species name.

(3) If the pattern has no newline character and one matchword, then it must be a single species name
with a wildcard character. If that’s the case, then the function goes through all species that haven’t
been considered before, sees if each one matches to the match word, and adds them to the index list
if so.

(4) Any other patterns without newline characters, meaning those that have multiple matchwords, are
not allowed, so they result in an error.

(5) Next, the function considers patterns with a newline but no wildcards and no species groups, and
one matchword. In this case, it is for a reaction with exactly one reactant. It will also have exactly one
entry in the index list. In this case, the function reads through the matchwords to get each reactant
name and puts those in ispecies. Then, typically, it keeps on going, putting the reactant identities

36

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

in the index variable. Then, it reads through subwords to get the product names, which it converts
to identities, and puts those in index. The PDnspecies value is set to -1 because this index should
never need updating again. This function can also handle rules, possibly on-the-fly. For example, a
reaction rule could be A + B — C. If this is generated on-the-fly, then it simply says that species C
should not be created until there is a molecule of A or B.

(6) Next, the same thing but 2 matchwords.

(7) Next, with newline, species group or wildcards, and 1 matchword.

(8) Finally, with newline, species group or wildcards, and 2 matchwords.

int molstring2indexl(simptr sim,char *str,enum MolecState *msptr,int **indexptr);

This reads the first word of the string in str, parses it to find the state listed, if any, and determines
what species name or names it refers to. The state is returned in msptr and the species index list is
pointed to by indexptr. The function simply calls molstring2pattern and then molpatternindex
sequentially. On success, if there is exactly one result in the list and exactly one match item in the
pattern, this returns the index of the result. If there are multiple results, it returns 0, which is still a
successful result.

It can also return the following error codes: -1 if str is missing or has no first word, -2 if the parentheses
in str don’t match up, -3 if the molecule state could not be read, -4 if there are no wildcards in the
string and the species name is unknown (or if the number of characters in str is more than the
maximum allowed in a pattern (256), which shouldn’t ever happen), -5 if the species is “all”, -6 if the
logic expansion failed due to missing & operand or mismatched braces, or -7 if memory could not be
allocated.

int moladdspeciesgroup(simptr sim,char *group,char *species,int imol);

char

void

Creates a species group named group and adds the species (or species group, including species names
with wildcards) named species to that group. If the group already exists, then this just adds the
species to the existing group. The species value is allowed to be NULL for creating an empty group
and it is also allowed to be a group as well, including a group specified using wildcard characters. This
function uses the same pattern infrastructure as for wildcard characters, storing the data in the same
patstring and patindex data structures. Also, species can be NULL and a single species can be
added instead using imol, where this is the identity of a single species.

Returns 0 for success, -1 if the group name name is missing, -2 if there are parentheses mismatches
(which shouldn’t be there anyhow), -3 if a molecule state could not be read (which shouldn’t be there),
-4 if the species name does not correspond to any species, -5 if the group name is “all”, -6 if logic
expansion failed due to missing & operand or mismatched braces, -7 if memory could not be allocated,
-8 if a molecule state is given and isn’t “all”, or -9 if the group name is the same as an existing molecule
name.

*molpos2string(simptr sim,moleculeptr mptr,char *string);

Writes molecule position in mptr->pos to string using “%g” formatting code for sprintf. Each
coordinate value, including the first one, is preceded by a space. If the simulation includes surfaces,
this function ensures that the written position, including round-off errors, is both in the same box and
on the same side of all surface panels (not including the panel that the molecule is bound to, if any) as
the actual position. If this function cannot achieve these criteria after 50 attempts, it prints a warning,
and returns the string.

molchangeident (simptr sim,moleculeptr mptr,int 11,int m,int i,enum MolecState
ms,panelptr pnl);

Changes the identity or state of a molecule that is currently in the system to species i and state ms.
It is permissible for i to equal 0 for the molecule to be killed, which is equivalent to calling molkill.
mptr is a pointer to the molecule and 11 is the list that it is currently listed in (probably equal to
mptr->list, but not necessarily). If the molecule’s list information should be updated to reflect the
identity change, which is nearly always, then 11 should be the molecule’s list; if not though, then send
in both 11 and m as -1. If m is known, then enter the index of the molecule in the master list (i.e. not

5.2. MOLECULES (FUNCTIONS IN SMOLMOLEC.C) 37

a box list) in m; if it’s unknown set m to -1. If the molecule is to be bound to a panel (independent of
whether it was bound to a panel before or not), enter the panel in pnl. Or, if it is to be in solution
but adjacent to a panel, enter this panel in pnl.

This function sets some parameters of the molecule structure, fixes the location as needed, and, if
appropriate, updates sortl to indicate to molsort that sorting is needed. This also increments the
molecule touch value to show that molecules have been touched.

set structure values

int molssetgausstable(simptr sim,int size);
Sets the size of the Gaussian look-up table to size and also allocates the table, if needed. Setting size
to 0 or a negative number keeps the current size if it has already been allocated, or creates a table
with the default size (4096) if not. Otherwise, size is required to be an integer power of two. This
will replace an existing table if the new size if different from the previous one. Returns 0 for success,
1 for insufficient memory, or 3 if the size is not an integer power of two.

void molsetdifc(simptr sim,int ident,int *index,enum MolecState ms,double difc);
Sets the diffusion coefficient for molecule ident and state ms to difc. For multiple identities, enter
them in index using the pattern index header. If ms is MSall, this sets the diffusion coeflicient for all
states. This does not update rms step sizes or reaction rates.

int molsetdifm(simptr sim,int ident,int *index,enum MolecState ms,double *difm);
Sets the diffusion matrix for molecule ident and state ms to difm. Any required matrices that were
not allocated previously are allocated here. For multiple species, enter them in index using the pattern
index header. If ms is MSall, this sets the diffusion matrix for all states. This returns 0 for successful
operation and 1 for failure to allcate memory. This updates the isotropic diffusion coefficient but does
not update rms step sizes or reaction rates.

int molsetdrift(simptr sim,int ident,int *index,enum MolecState ms,double *drift);
Sets the drift vector for molecule ident and state ms to drift. Any required vectors that were not
allocated previously are allocated here. For multiple species, enter them in index using the pattern
index header. If ms is MSall, this sets the drift vector for all states. This returns 0 for successful
operation and 1 for failure to allocate memory.

int molsetsurfdrift(simptr sim,int ident,int *index,enum MolecState ms,int surface,enum

PanelShape ps,double *drift);

Sets the surface drift vector for molecule ident, state ms, surface surface, and panel shape ps to
drift. Any required memory that was not allocated previously is allocated here. For multiple species,
enter them in index using the pattern header. If ms is MSall, this sets the surface drift vector for
all surface-bound states. In addition, surface can be -1 to indicate all surfaces and ps can be PSall
to indicate all panel shapes. Any combination of “all” conditions is permitted. This returns 0 for
successful operation and 1 for failure to allocate memory.

void molsetdisplaysize(simptr sim,int ident,int *index,enum MolecState ms,double dsize);
Sets the display size for molecule ident and state ms to dsize. For multiple species, enter them in
index using the pattern header. If ms is MSall, this sets the display size for all states.

void molsetcolor(simptr sim,int ident,int *index,enum MolecState ms,double *color);
Sets the color for molecule ident and state ms to the 3-dimensional RGB vector color. For multiple
species, enter them in index using the pattern header. If ms is MSall, this sets the color for all states.

void molsetlistlookup(simptr sim,int ident,int *index,enum MolecState ms,int 11);
Sets the list lookup table value to live list number 11 for molecule ident and state ms. For multiple
species, enter them in index using the pattern header. Special codes are also possible in the ident
input: ident=-7 implies all diffusing molecules, and ident=-8 implies all non-diffusing molecules.
Using ms=MSall implies all states. Note that the 1istlookup element is defined for both MSsoln and
MSbsoln, and they are always set to the same values.

38

void

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

molsetexist(simptr sim,int ident,enum MolecState ms,int exist);
Sets the exist element of the molecule superstructure for identity ident and state ms to exist; “all”
inputs are not permitted.

int molcount(simptr sim,int i,enum MolecState ms,int max);

void

void

Counts the number of molecules of type i and state ms currently in the simulation. If max is -1 it is
ignored, and otherwise the counting stops as soon as max is reached. Either or both of i and ms can be
set to “all”; enter i as a negative number and enter ms as MSall. All molecule lists and the dead list
are checked; porting lists are included. This function returns correct molecule counts whether molecule
lists have been sorted since recent changes or not. It runs fastest if molecule lists have been sorted. If
i is less than zero, this implies all species; if i is greater than zero, this implies that specific species;
and if i equals zero, this implies that the index entry should be used instead. In this last case, enter
lists of species using index, using the standard index pattern header.

This function is essentially the same exact thing several times in a row, for the different input cases
and with slightly different outer loops. This could be substantially shortened, but is done this way for
better speed. This function requires that the index list be sorted.

molscancmd(simptr sim,int i,int *index,enum MolecState ms,cmdptr cmd,enum

CMDcode (xfn) (simptr, cmdptr, char*)) ;

Scans over all molecules that meet the criteria listed and calls the function fn for each one. This
function is similar to molcount, except that it calls a function for each molecule rather than just
counting them. As with molcount, this checks all molecule lists and the dead list; it also works
whether molecules have been sorted or not. Send in i as the species number, which should be less
than 0 for all species, 0 to indicate that i should be ignored and index should be used instead, or as
a positive number for that specific species. Enter index as a sorted list of species, using the standard
index pattern header and format; it is only used if i equals zero. Enter ms as MSall for all species and
as a specific species otherwise. The function entry is designed for a Smoldyn command function and
so has the same format, despite the fact that this format isn’t really ideal in this case. The function
gets passed the simulation pointer in the first argument, cmd in the second argument, and a pointer to
the current molecule in the third parameter (cast to a char* due to the non-ideal formatting). The
function should return CMDok to indicate that the scan should continue or CMDstop to indicate that the
scan should stop. See the commands section of the manual to see how this function can be used.

molscanfn(simptr sim,int i,int *index,enum MolecState ms,char

*erstr,double (*fn) (void*, char*,char*) ;

This is identical to molscancmd but has a slightly more versatile function declaration that’s not designed
just for commands. The erstr string is for returning errors. The call-back function, fn should take
the simulation structure as its first argument, the error string as its second argument, and the molecule
pointer, cast as a char*, as its third argument.

int molismatch(moleculeptr mptr,int i,int *index,enum MolecState ms);

Tests to see if the molecule in mptr matches the conditions given in species number i, index list index,
and state ms. These latter three elements should be the values returned by molstring2index1, so they
can be for single species, species groups, etc.

int MolCalcDifcSum(simptr sim,int il,enum MolecState msl,int i2,enum MolecState ms2);

Calculate and returns diffusion coefficient sums. This allows ms1 and/or ms2 to be the MSbsoln state.
Also, enter i1 and/or i2 as 0 to not include it in the sum.

memory management

moleculeptr molalloc(int dim);

molalloc allocates and initiallizes a new moleculestruct. The serial number is set to 0, the list
to -1 (dead list), positional vectors to the origin, the identity to the empty molecule (0), the state to
MSsoln, and box and pnl to NULL. The molecule is returned unless memory could not be allocated, in
which case NULL is returned.

5.2. MOLECULES (FUNCTIONS IN SMOLMOLEC.C) 39

void molfree(moleculeptr mptr);
molfree frees the space allocated for a moleculestruct, as well as its position vectors. The contents
of box and pnl are not freed because they are references, not owned by the molecule structure.

molexpandsurfdrift(simptr sim,int oldmaxspec,int oldmaxsrf);
Expands the surface drift data structure, when the species list and /or the surface list is expanded. Enter
oldmaxspec and oldmaxsrf with the maximum number of species and surfaces before expansion (if only
one needs to be expanded, then both still need to be listed, but one will match the current maximum).
This function simply calls molsetsurfdrift with all of the data in the current data structure, which
re-builds the data structure in a larger format. This function is called by surfacessalloc and
molssalloc.

void molfreesurfdrift(double ***x*xsurfdrift,int maxspec,int maxsrf);
Frees the space allocated for all surface drift data, which is stored in a molecule superstructure.

int molpatternindexalloc(int **indexptr,int n);

Allocates space for a single index list of the species pattern string lookup table, or expands it. If
space is needed for a new index list, send in indexptr pointing to NULL; if an existing index list needs
expansion, send in indexptr pointing to the start of the list that needs expansion. Send in n as the
number of total spaces (including the overhead spaces) that are desired, or send in n as -1 for automatic
allocation and expansion. This allocates memory and sends the result back pointed to by indexptr.
Returns 0 for success or 1 for inability to allocate memory. This sets element 0 of the result to equal
the allocated length of the array. It sets all other newly created elements to 0.

int molpatternalloc(simptr sim,int maxpattern);
Allocates space for species patterns and their indices. Send in sim as the simulation structure and
maxpattern for the desired total allocated number of pattern spaces. This allocates space, copies over
any existing data, and initializes the new spaces to empty values. This takes care of the patlist and
patindex lists.

molssptr molssalloc(molssptr mols,int maxspecies);
molssalloc allocates and initializes a molecule superstructure. This function may be called multiple
times, in order to increase the maximum number of species. The Gaussian table is left empty; it is
filled in in molsupdate. Returns NULL if there is insufficient memory. Enter maxspecies with your
desired number of simulated species. One more than this will actually be allocated because this assigns
species number 0 to the “empty” species.

int mollistalloc(molssptr mols,int maxlist,enum MolListType mlt);
Allocates maxlist new live lists of list type mlt for the already existing molecule superstructure mols.
This works whether there were already were live lists or not. Returns the index of the first live list that
was just added for success or a negative code for failure: -1 for out of memory, -2 for a negative maxlist
input value, or -3 for a NULL mols input. The maxlist element of the superstructure is updated. The
nlist element of the superstructure is unchanged.

This does all of the allocation separately from the molecule superstructure. At the end, if all goes well,
it frees the current memory and replaces it with the new memory.

int molexpandlist(molssptr mols,int dim,int 11,int nspaces,int nmolecs);

Expands molecule list, where mols is the molecule superstructure and dim is the system dimensionality.
This both creates new lists or expands existing lists, as required. If 11 is negative, the dead list is
expanded and otherwise live list number 11 is expanded. If nspaces is negative, the list size is doubled
and otherwise nspaces spaces are added to the list. The first nmolecs of these spaces are filled with
new dead molecules (mptr->list element set to -1). Because this shouldn’t normally be called with
11>0 and nmolecs>0, error code 2 is returned if this happens. This returns 0 for success, 1 for out of
memory during list expansion, 2 for illegal inputs, 3 for more molecules are being created than will fit
in the list even after expansion, and 4 for out of memory during molecule allocation.

40 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

void molssfree(molssptr mols,int maxident,int maxsrf);
molssfree frees both a superstructure of molecules and all the molecules in all its lists.

data structure output

void molssoutput(simptr sim);
molssoutput prints all the parameters in a molecule superstructure including: molecule diffusion
constants, rms step lengths, colors, and display sizes; and dead list and live list sizes and indices.

void writemols(simptr sim,FILE *fptr);
Writes all information about the molecule superstructure to the file fptr using a format that can be
read by Smoldyn. Does not write information about individual molecules. This allows a simulation
state to be saved.

void writemolecules(simptr sim,FILE *fptr);
Writes information about all individual molecules to the file fptr using a format that can be read by
Smoldyn. This allows a simulation state to be saved.

int checkmolparams(simptr sim,int *warnptr);
Checks some parameters in a molecule superstructure and substructures to make sure that they are
legitimate and reasonable. Prints error and warning messages to the display. Returns the total number
of errors and, if warnptr is not NULL, the number of warnings in warnptr.

structure setup

int molenablemols(simptr sim,int maxspecies);
Enables molecules. This function can be called multiple times. Enter maxspecies as -1 for default
species allocation, or to a positive number for the number of species that should be allocated. In the
default, the number of species is set to 5 for the initial call, and is either left unchanged if there is spare
space or doubled if there isn’t space for subsequent calls. Returns 0 for success, 1 if memory could not
be allocated, or 2 if maxspecies is less than the currently allocated number of species.

void molsetcondition(molssptr mols,enum StructCond cond,int upgrade);
Sets the molecule superstructure condition to cond, if appropriate. Set upgrade to 1 if this is an
upgrade, to 0 if this is a downgrade, or to 2 to set the condition independent of its current value. If
the condition is downgraded, this also downgrades the simulation structure condition.

int addmollist(simptr sim,char #*nm,enum MolListType mlt);
Adds a molecule list named nm and of type m1t to the molecule superstructure, allocating it if needed.
Returns the index of the list for success, -1 if memory could not be allocated, -2 if the list name has
already been used, or -3 for illegal inputs (mols or nm was NULL).

int molsetmaxspecies(simptr sim,int max);
Sets the maximum number of molecular species to max+1, where the additional species represents
empty molecules. This function is only supplied for backward compatibility, as it is now (version 2.23)
completely identical to molenablemols, which should be called instead. Returns 0 for success, 1 for
insufficient memory, or 2 if maxspecies is smaller than the prior allocated number of species.

int molsetmaxmol (simptr sim,int max);
Sets the maximum number of molecules that the simulation is allowed to use to max. Enter max as -1
to specify that molecules should be allocated as needed without bound, which is the default behavior.
This does not allocate any molecules or molecule lists. This function does not need to be called at all.
This works during initial setup, or later on. Returns 0 for success, 1 if memory could not be allocated,
or 5 if the requested max value is less than the current number of allocated molecules.

int moladdspecies(simptr sim,char *nm);
Adds species named nm to the list of species that is in the molecule superstructure. This enables
molecule support if it hasn’t been enabled already. Returns a positive value corresponding to the index

5.2. MOLECULES (FUNCTIONS IN SMOLMOLEC.C) 41

of a successfully adds species for success, -1 for failure to allocate memory, -4 if if trying to add a
species named “empty”, -5 if the species already exists, or -6 if the species name includes wildcards
(which are forbidden).

int molgeneratespecies (simptr sim,const char *name,int nparents,int parentl,int parent2);

void

void

Generates a new molecular species which has name name. If this molecule is generated as the product
of a reaction, then enter the number of reactants in nparents and the reactant species numbers in
parentl and parent2. Only nparents of these values are considered by the function. Using the parent
values, this function generates diffusion coefficient and display parameters for the new species. If there
is one parent, the new values are the same as those for the parent. If there are two parents, the new
diffusion coefficient is Dy = (D7® 4 Dy ®) =13, the new display size is 7pew = (15 + r3)1/3, and the
new color is rgbyew, = (r17gby + rorgbe)/(r1 +12), where D is a diffusion coefficient, r is a display size,
and rgb is one of the red-green-blue color values. This is the same scheme used in smolbng.c.

Returns the new species index for success, -1 for failure to allocate memory, -4 if trying to add a species
named “empty”, -5 if the species already exists, or -6 if the species name includes wildcards (which is
forbidden here).

molsupdateparams (molssptr mols,double dt);

Calculates the difstep parameter of the molecule superstructure and also sets the diffuselist set
of flags in the molecule superstructure. dt is the simulation time step. This function should be called
during initial setup (this is called from molsupdate), if any diffusion coefficient changes (performed
with molsetdifc), or if any diffusion matrix changes (performed with molsetdifm, which also updates
the diffusion coefficient).

molsupdatelists(simptr sim) ;
Updates molecule superstructure from the level of SClists to SCparams. Can be run multiple times.

int molsupdate(simptr sim);

This sets up or updates the molecule superstructure. It may be called at program startup or at any
later time. This sets up, or updates all molecule superstructure parameters, and works in all situations.
It sets up the Gaussian table, live lists, live list lookup numbers, and diffusion step lengths. It does
not process individual molecules (i.e. sorting and boxes). Returns 0 for success, or 1 for insufficient
memory.

adding and removing molecules

void

molkill(simptr sim,moleculeptr mptr,int 11,int m);

Kills a molecule from one of the live lists. mptr is a pointer to the molecule and 11 is the list that it is
currently listed in (probably equal to mptr->1ist, but not necessarily). If it is known, enter the index
of the molecule in the master list (i.e. not a box list) in m; if it’s unknown set m to -1. If the molecule
should be killed without triggering list sorting (a rare occurrence), then send in 11 as -1. This function
resets most parameters of the molecule structure, but leaves it in the master list and in a box for later
sorting by molsort. The appropriate sortl index is updated.

moleculeptr getnextmol(molssptr mols);

Returns a pointer to the next molecule on the dead list so that its data can be filled in and it can
be added to the system. The molecule serial number is assigned. In the process, this increments the
serno element of the molecule superstructure, which is an unsigned long int and wraps around when
it reaches all 1 values. This updates the topd element of the molecule superstructure. Returns NULL
if there are no more available molecules. The intention is that this function should be called anytime
that molecules are to be added to the system.

moleculeptr newestmol(molssptr mols);

Returns a pointer to the molecule that was most recently added to the system, assuming that molsort
has not been called in the meantime. For example, if 1 molecule is successfully added with addmol,
addsurfmol, or addcompartmol, this will return a pointer to that molecule.

42 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

int addmol(simptr sim,int nmol,int ident,double *poslo,double *poshi,int sort);
Adds nmol molecules of type ident and state MSsoln to the system. These molecules are not added
to surfaces. Their positions are chosen randomly within the rectanguloid that is defined by its corners
poslo and poshi. Set these vectors equal to each other for all molecules at the same point. Set sort
to 1 for complete sorting immediately after molecules are added and 0 for not. Returns 0 for success,
1 for out of memory, or 3 for more molecules being added than permitted with mols->maxdlimit.

int addsurfmol(simptr sim,int nmol,int ident,enum MolecState ms,double *pos,panelptr

pnl,int surface,enum PanelShape ps,char *pname);

Adds nmol surface-bound molecules, all of type ident and state ms, to the system. They can be added
to a specific panel by specifying the panel in either of two ways: send in its pointer in pnl, or specify
the panel shape in ps and the panel name in pname. To add to all panels on the surface, send in
pnl equal to NULL and/or set ps to PSall. To add the molecules to a certain point, send it in with
pos, and otherwise set pos to NULL for random positions (there is no check that pos is actually on or
near the panel). The function returns 0 for successful operation, 1 for inability to allocate temporary
memory space, 2 for no panels match the criteria listed, or 3 for insufficient permitted molecules. See
the surfacearea description for more information about the parameter input scheme.

For multiple panels, this function creates tables that list the cumulative areas of the included panels
and the panel pointer for each included panel.

int addcompartmol (simptr sim,int nmol,int ident,compartptr cmpt);
Adds nmol molecules of type ident and state MSsoln to the system with random locations that are
within compartment cmpt. Returns 0 for success, 2 if a random point cannot be found, or 3 if there
aren’t enough available molecules.

core simulation functions

int molsort(simptr sim,int onlydead2live);

Sorts molecules between live and dead lists, and between live lists. This also takes care of the live
lists within boxes, as well as all list indices. Sorting is based solely on the list element of the molecule
structure. Molecule ordering in lists is not preserved. If a molecule is in the system (in a master live
list of type MLTsystem), its box element must point to a box, and those boxes’ molecule lists must list
the respective molecules. Resurrected molecules need to have the proper box listed in the molecule
structure, but should not be listed in the box list; this listing is taken care of here. The routine returns
0 for normal operation and 1 if memory could not be allocated.

Under normal operation, the onlydead2live option is set to 0. In this case, the function first sets the
topl indices to the ends of the live lists, so that future functions can see what’s new in those lists.
Then, it checks molecules in live lists, starting with the sortl molecule, which is the bottom one that
is known to need sorting, and checks up to the topl-1 molecule, which is the end of the list, as it was
when this function was called. Any missorted molecules get moved. Next, the function processes all
molecules in the dead list, starting from topd and going to nd, which is called the resurrected portion of
the dead list. All of these molecules are moved to the appropriate live list. Afterwards, nd is decreased
to equal topd, meaning that the resurrected list has zero length and that there’s nothing more to do
there. Finally, the function sets the sortl indices to equal the nl indices, to show that all of the
molecules in the live lists have been sorted. Thus, at the end, topl < sortl = nl, where the sublist
from topl and nl is the reborn list. Also, topd = nd, showing that there is no resurrected list.

On occasion, it’s helpful to set the onlydead2live option to 1. In this case, the function only sorts
resurrected molecules in the dead list into the live lists. It does not change the sortl or topl indices.
One result is that any molecules that were considered to be reborn before are still considered to be
reborn (and, in fact, there are now more reborn molecules due to their addition from the resurrected
list). This option is helpful when molecules that have been added to the system need to be made
available for other functions, such as in some commands that add molecules and for molecules added
from the lattice code.

5.3. WALLS (FUNCTIONS IN SMOLWALL.C) 43

int moldosurfdrift(simptr sim,moleculeptr mptr,double dt);
Performs surface drift on molecule mptr over time step dt. This function should only be called if it is
known that this molecule is surface-bound and that the surface drift data structure has been allocated
at least down to the level of surfdrift[i] [ms]. It should also be called before other drift or diffusion
functions, because the molecule’s position on the surface may affect its surface drift vector.

int diffuse(simptr sim);
diffuse does the diffusion for all molecules over one time step using single-threaded operation.
Collisions with walls and surfaces are ignored and molecules are not reassigned to the boxes. If there
is a diffusion matrix, it is used for anisotropic diffusion; otherwise isotropic diffusion is done, using the
difstep parameter. The posx element is updated to the prior position and pos is updated to the new
position. Surface-bound molecules are diffused as well, and they are returned to their surface. Returns
0 for success and 1 for failure (which is impossible for this function).

5.3 Walls (functions in smolwall.c)

The simulation volume is defined by its bounding walls. If no other surfaces are defined, these walls can
be reflecting, periodic, absorbing, or transparent. Because walls can be transparent, molecules can leave
the simulation volume. However, this can be a bad idea because the virtual boxes are defined to exactly
fill the volume within the walls, so molecules or surfaces outside of the simulation volume can lead to very
slow simulations. Also, the graphics are designed for the simulation volume within the walls. If surfaces are
defined, then walls, regardless of how they are set up, are simulated as though they are transparent.

Walls are quite simple, defined with only a simple structure and no superstructure. A simulation always
has 2*dim walls.

typedef struct wallstruct {

int wdim; // dimension number of perpendicular to wall
int side; // low side of space (0) or high side (1)
double pos; // position of wall along dim azis

char type; // properties of wall

struct wallstruct *opp; // pointer to opposite wall

} *wallptr;

wallstruct (declared in smollib.h) is a structure used for each wall. The type may be one of four
characters, representing the four possible boundary conditions.

type boundary

r reflecting

p periodic

a absorbing

t transparent

Pointers to the opposite walls are used for wrap-around diffusion, but are simply references. There is no
superstructure of walls, but, instead a list of walls is used. Walls need to be in a particular order: walls
numbered 0 and 1 are the low and high position walls for the 0 coordinate, the next pair are for the 1
coordinate, and so on up to the 2*dim-1 wall. These walls are designed to be bounds of simulated space,
and are not configured well to act as membranes. Wall behaviors are completely ignored if any membranes
are declared.

low level utilities

void systemrandpos(simptr sim,double *pos);
Returns a random point within the system volume, chosen with a uniform distribution.

double systemvolume (simptr sim) ;
Returns the total volume of the system.

44 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

void systemcorners(simptr sim,double *poslo,double *poshi);
Returns the low and high corners of the system volume in poslo and poshi, respectively. Both results
are optional; enter NULL if a point is unwanted.

void systemcenter (simptr sim,double *center);
Returns the center of the system.

double systemdiagonal (simptr sim);
Returns the diagonal length of the system, or just the length if it is 1-D.

int posinsystem(simptr sim,double *pos);
Returns 1 if pos is within the system boundaries (equal to the edges counts as inside) and 0 if it is
outside.

double wallcalcdist2(simptr sim,double *posl,double *pos2,int wpcode,double *vect);

Calculates squared distance between point posl and point pos2, while accounting for periodic
boundaries. These are accounted for using wpcode, which is the wrapping code for the box that
posl is in. This code needs to be entered. If it’s not known, then find the box pointer for the two
positions with bptril=pos2box(sim,posl) and similarly for pos2, then set b2 to be the index of bptr2
within the list bptr1->neigh, and finally use bptri->wpneigh[b2] as wpcode. Also, vect needs to be
entered as a dim-dimensional vector of doubles. It is returned as the vector from pos1 to pos2, while
accounting for wrapping.

memory management

wallptr wallalloc(void);
wallalloc allocates and initializes a new wall. The pointer to the opposite wall needs to be set.

void wallfree(wallptr wptr); wallfree frees a wall.

wallptr *wallsalloc(int dim);
wallsalloc allocates an array of pointers to 2*dim walls, allocates each of the walls, and sets them to
default conditions (reflecting walls at 0 and 1 on each coordinate) with correct pointers in each opp
member.

void wallsfree(wallptr *wlist,int dim);
wallsfree frees an array of 2*dim walls, including the walls.

data structure output

void walloutput(simptr sim);
walloutput prints the wall structure information, including wall dimensions, positions, and types, as
well as the total simulation volume.

void writewalls(simptr sim,FILE *fptr);
Writes all information about the walls to the file fptr using a format that can be read by Smoldyn.
This allows a simulation state to be saved.

int checkwallparams(simptr sim,int *warnptr);
Checks some parameters of simulation walls to make sure that they are reasonable. Prints warning
messages to the display. Returns the total number of errors and, if warnptr is not NULL, the number
of warnings in warnptr.

structure setup

int walladd(simptr sim,int d,int highside,double pos,char type);
Adds a wall to the system. If no walls have been added yet, this allocates the necessary memory. d
is the dimension that the wall bounds, highside is 0 if the wall is on the low side of the system and
1 if it is on the high side of the system, pos is the location of the wall in the d dimension, and type
describes the boundary condition (if there aren’t any surfaces). Returns 0 for success, 1 for unable to
allocate memory, or 2 if the simulation structure dim element hasn’t been set up yet.

5.4. REACTIONS (FUNCTIONS IN SMOLRXN.C) 45

int wallsettype(simptr sim,int d,int highside,char type);
Sets the type of an existing wall for dimension d to type. Set highside to 0 if the wall is on the
low side of the system and 1 if it is on the high side of the system. Enter d and/or highside with a
negative number to indicate “all” dimensions and/or system sides.

core simulation functions

void checkwalls(simptr sim,int 11,int reborn,boxptr bptr);
checkwalls does the reflection, wrap-around, or absorption of molecules at walls by checking the
current position, relative to the wall positions (as well as a past position for absorbing walls). Ounly
molecules in live list 11 are checked. If reborn is 1, only the newly added molecules are checked; if it’s
0, the full list is checked. It does not reassign the molecules to boxes or sort the live and dead ones.
It does not matter if molecules are assigned to the proper boxes or not. If bptr is NULL, all diffusing
molecules are checked, otherwise only those in box bptr are checked.

5.4 Reactions (functions in smolrxn.c)

Reactions were overhauled for Smoldyn version 1.82; so the following text describes the current version.
Reactions are stored with several structures. There is a reaction superstructure for each reaction order
(which may be 0, 1, or 2). Within each superstructure, there is a separate structure for each reaction.

enumerated types
Following are the enumerated types and the structures.

#define MAXORDER 3

#define MAXPRODUCT 16

enum RevParam {RPnone,RPirrev,RPconfspread,RPbounce ,RPpgem,RPpgemmax ,RPpgemmaxw,
RPratio ,RPunbindrad ,RPpgem2 ,RPpgemmax2 ,RPratio2 ,RPoffset ,RPfixed};

The constant MAXORDER is one more than the maximum reaction order that is permitted. For now, order
3 and higher reactions are not supported, although much of the code should function with any reaction
order. High-order reactions may be supported in future versions. MAXPRODUCT is the maximum number of
products that a reaction can have, which is only used at present in loading reactions from a configuration
file. The enumerated type RevParam lists the possible “reversible parameter types” that are allowed.

reaction structure

typedef struct rxnstruct {
struct rxnsuperstruct *rxnss; // pointer to superstructure

char *rname; // pointer to mname of reaction

int *rctident; // list of reactant identities [rct]

enum MolecState *rctstate; // list of reactant states [rct]

int *permit; // permissions for reactant states [ms]

int nprod; // number of products

int *prdident; // list of product tidentities [prd]

enum MolecState *prdstate; // list of product states [prd]

long int *prdserno; // list of product serno rules [prd]

int *prdintersurf; // list of product intersurface rules [prd]
listptrli logserno; // list of serial nums for logging reaction
char *logfile; // filename for logging reaction

double rate; // requested reaction rate

double multiplicity; // rate multiplier

double bindrad2; // squared binding radius, if appropriate
double prob; // reaction probability

double chi; // diffusion-limited fraction

double tau; // characteristic reaction time

46 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

enum RevParam rparamt; // type of parameter in rpar

double rparam; // parameter for reaction of products
double unbindrad; // unbinding radius, tf appropriate

double #**prdpos; // product position wvectors [prdl[d]

int disable; // 1 if reaction is disabled

struct compartstruct *cmpt; // compartment reaction occurs in, or NULL
struct surfacestruct *srf; // surface reaction on, or NULL

} *rxnptr;

Each individual reaction, of any order, is is stored in a reaction structure, rxnstruct. rname is a pointer
to the reaction name that is stored in, and owned by, the reaction superstructure. rctident is a list of the
reactant identities for the reaction, listed in the same order in which they were listed in the configuration file.
Other than the order of the reactants, which is not stored elsewhere, the list of reactants that is stored here is
redundant with the table element of the reaction superstructure. rctstate is a list of the allowed reactant
states, again listed in the same order in which the reactants were listed in the configuration file. Each item of
the rctstate list may be a single state, MSnone, MSall, or MSsome. These are fairly self-explanatory; MSsome
means that more than one reactant state is allowed to react, but not all states. permit, which is largely
redundant with rctstate, is a list of flags for which reactant states, or state combinations, are allowed to
react in this reaction. State combinations can be created or interpreted with the functions rxnpackstate
and rxnunpackstate. For order 2 and above, permit is not necessarily symmetric: for example, if solution
and front are permitted, this does not imply that front and solution are permitted (however, permit is
symmetric if multiple reactant identities are the same).

nprod is the number of products for the listed reaction, which may be any non-negative number. prdident
and prdstate, which are arrays that are indexed from 0 to rxn->nprod-1, list the product identities and
states; in this case, only single states are allowed (i.e. not MSall or MSnone, although MSbsoln is allowed).

prdserno is a list of serial number rules for products. The default is that this list is NULL, meaning not
used. If it is used, then it lists a rule for each product. If it is a positive value, then it is the actual number
that should be used as the product serial number. Otherwise, the value is bitwise inverted and interpreted
using bits. See rxnstring2sernocode and molfiindserno.

prdintersurf is a list of product placement rules for intersurface reactions, meaning bimolecular
reactions in which the two reactants are on two different surfaces. These are not allowed typically. However,
they are allowed if this vector is allocated. Each value corresponds to a product. The rules are: 1 implies
that this product should be placed on the surface, or relative to the surface, of the first reactant, and 2
implies that this product should be placed on the surface, or relative to the surface, of the second reactant.
If the reaction has no products, then the vector can be allocated for a single element, which is supposed to
have value 0 to indicate that intersurface reactions are allowed.

logserno and logfile are for logging individual reactions as they occur, which is done to the file named
logfile. logserno is a list of serial numbers for which this reaction should be logged. If it is an empty list,
then all instances of this reaction are logged.

rate is the reaction rate constant, measured in whichever unit system that the user is using for other
aspects of the configuration file. The general rate units are molecules * volume©Td€T=1) /time. The
precise meaning of rate depends on the order of the reaction. The actual reaction rate is multiplied by
multiplicity, which is here in case the same reaction arises multiple times through network generation.
bindrad2, which only applies to order 2 and higher reactions, is the squared binding radius of the reactants.
prob is, roughly, the reaction probability per time step. For zeroth order reactions, prob is the expectation
number of reactions per time step in the entire simulation volume; for first order reactions, prob is the
probability of a reactant reacting during one time step; and for second order reactions, prob is the probability
of a reaction occurring between two reactants that have already diffused closer than their binding radius. chi
is the diffusion-limited fraction for this reaction, meaning that it is the simulated steady-state reaction rate
divided by the diffusion-limited rate that would occur with these parameters if the time step were equal to
zero. tau is the characteristic time for the reaction. It is calculated from the other reaction parameters and,
for order 2 reactions, from the initial concentrations of the molecules. The information in tau is completely
redundant with information that is elsewhere.

rparamt is the type of the reversible parameter and rparam is the value of the reversible parameter.
unbindrad applies to all reactions that have exactly 2 products; it is the unbinding radius of the products.

5.4. REACTIONS (FUNCTIONS IN SMOLRXN.C) 47

prdpos is a list of product position displacements from the reaction position. See the description for
RxnSetRevparam. disable is a flag that is 0 for normal operation and 1 if a reaction is disabled, meaning
that it isn’t run. One use of this is that some reactions should run in lattice space only and not in particle
space, so these are disabled in particle space. cmpt is the compartment that a reaction occurs in, or NULL
if it occurs everywhere. Conformational spread reactions, identified with rparamt equal to RPconfspread
have reverse reaction rates that are not accounted for during rate calculations and the products are placed
in the exact same places as the reactants.

Unimolecular reaction rates are surprisingly complicated. For a single reaction channel, they are simple.
For multiple channels, they use the formula that is given in Andrews and Bray, 2004 for each reaction rate.
Then, each probability is divided by one minus the sum of the prior probabilities to account for the fact
that what’s wanted is the conditional probability that a reaction happens, given that prior reactions did not
happen. An alternate and possibly better method is used for surface actions, where the probability of each
individual event is not stored, but instead the cumulative probability for the events is stored. Both methods
are accurate.

reaction superstructure

typedef struct rxnsuperstruct {

enum StructCond condition; // structure condition

struct simstruct *sim; // simulation structure

int order; // order of reactions listed: 0, 1, or 2
int maxspecies; // mazimum number of species

int maxlist; // copy of mazimum number of molecule lists
int *nrxn; // number of rzns for each reactant set [<]
int *x*table; // lookup table for reaction numbers [<1][7]
int maxrxn; // allocated nmumber of reactions

int totrxmn; // total number of reactions listed

char **rname; // mames of reactions [r]

rxnptr *rxn; // list of reactions [r]

int *rxnmollist; // live lists that have reactions [Lll]

} *rxnssptr;

The reaction superstructure, rxnsuperstruct, is a structure that is used for all of the reactions that are
accounted for by the simulation, of a given order. Thus, there may be one for zeroth order reactions, another
for first order reactions, and a third for second order reactions. Higher order reactions may be supported
as well, although they are not currently. condition is the current condition of the superstructure and sim
is a pointer to the simulation structure that owns this superstructure. order is the order of the reactions
that are listed in this superstructure and maxspecies is simply a copy of the maxspecies value from the
simulation structure. maxlist is the number of molecule lists that are assumed for, and thus contributes to
the size of, rxnmollist.

nrxn is the number of reactions that are defined for a certain reactant code; conversions between reactant
lists and reactant codes may be performed by the functions rxnpackident and rxnunpackident. table is
a lookup table with which one inputs the reactant code ([i]) and the reaction number for that code ([j],
which is 0 to nrxn[i]-1), and is given a reaction number; table is always symmetric with respect to reactant
identities, which only applies to order 2 and higher reactions. Empty molecules are included in these lists,
accessed with nrxn[0] and table[0], where the former should always equal 0 and the latter should always
be NULL. The reactions are listed next. maxrxn is the number of reactions of this order that have been
allocated, while totrxn is the total number of reactions of this order that are currently defined. rname and
rxn, which may be indexed from 0 to totrxn-1, are the list of reaction names, and the respective reactions,
respectively. rxnmollist, which has maxlist®™@" elements where maxlist is listed above, is a list of flags
that indicate which molecule lists, or molecule list combinations, need to be checked to find reactions of this
order.

packed species identities

Several of the structure elements use packed values, which can be performed with rxnpackident and similar
functions. Alternatively, they can be done directly according to the following scheme:

48 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

item examples order =1 order = 2
identity nrxn[i], table[i] i1 il*maxspecies+i2
state permit [ms] ms1 ms1*MSMAX1+ms?2
live list rxnmollist[11] 111 111#maxlist+112

See the Wildcards section of the Code Design section for an explanation of how reactions are set up and
expanded.

reaction functions

enumerated types

enum RevParam rxnstring2rp(char *string);
Converts string to enumerated RevParam type. This reads either single letter inputs or full word inputs.
Unrecognized inputs are returned as RPnone.

char *rxnrp2string(enum RevParam rp,char *string);
Converts RevParam enumerated type variable rp to a word in string that can be displayed.
Unrecognized inputs, as well as RPnone, get returned as "none”.

enum SpeciesRepresentation rxnstring2sr(char *string);
Converts string to enumerated Species Representation type. This reads as many letters of the string
as are given, seeing if they match or not. Unrecognized inputs are returned as SRnone.

char *rxnsr2string(enum SpeciesRepresentation sr,char *string);
Converts enumerated SpeciesRepresentation variable sr to a word in string that can be displayed.
Unrecognized inputs, as well as SRnone, get returned as “none”.

low level utilities

int readrxnname(simptr sim,const char *rname,int *orderptr,rxnptr *rxnpt,listptrv

xvlistptr,int rxntype);

Using a reaction name in rname, this looks for it in one of several places, set by rxntype until it finds
it. If rxntype is 1, this looks in the current list of reaction names, working with increasing reaction
orders. If it is found, it returns the reaction order in orderptr, a pointer to the reaction in rxnpt, and
the reaction number directly; if not, it returns -1. If rxntype is 3, this searches the list of rules to see
if there is a reaction rule with the same reaction name. If so, this returns a pointer to the template
reaction in that rule in rxnpt, creating one if necessary, the order in orderptr, and the rule number
directly. If rxntype is 2, this searches the current list of reaction names, working with increasing order
numbers. If this finds one or more names, all of the same order, that all start with rname and are
followed by an underscore and then a number, then this lists those reaction pointers, cast as voidx*s, in
vlistptr. In this case, the function returns 0; it also returns the first reaction that it found in rxnpt.
In all cases, this returns -1 if no reaction is found to match rname. This also returns -2 for failure to
allocate memory (which is only possible for rxntype 2 or 3.

int rxnpackident(int order,int maxident,int *ident);
Packs a list of order identities that are listed in ident into a single value, which is returned. maxident is
the maximum number of identities, from either the reaction superstructure or the simulation structure.

void rxnunpackident (int order,int maxident,int ipack,int *ident) ;
Unpacks a packed identity that is input in ipack to order individual identities in ident. maxident is
the maximum number of identities, from the reaction superstructure or the simulation structure.

enum MolecState rxnpackstate(int order,enum MolecState *mstate);
Packs of list of order molecule states that are listed in mstate into a single value, which is returned.

void rxnunpackstate(int order,enum MolecState mspack,enum MolecState *mstate);
Unpacks a packed molecule state that is input in mspack to order individual states in mstate.

5.4. REACTIONS (FUNCTIONS IN SMOLRXN.C) 49

int rxnreactantstate(rxnptr rxn,enum MolecState *mstate,int convertb2f);
Looks through the reaction permit element to see if the reaction is permitted for any state or state
combination. If not, it returns 0; if so, it returns 1. Also, if the reaction is permitted and if mstate
is not NULL, the “simplest” permitted state is returned in mstate. Preference is given to MSsoln and
MSbsoln, with other states investigated afterwards. If convertb2f is set to 1, any returned states of
MSbsoln are converted to MSsoln before the function returns. This function always returns a single
state in mstate (or MSnone if the reaction is not permitted at all), and never MSall or MSsome.

int rxnallstates(rxnptr rxn);
Returns 1 if the listed reaction is permitted for all reactant states and 0 if not.

int findreverserxn(simptr sim,int order,int r,int *optr,int *rptr);

Inputs the reaction defined by order order and reaction number r and looks to see if there is a reverse
reaction. All molecule states for the input reaction that can react with reaction r are considered. If
there is a direct reverse reaction, meaning the products of the input reaction (including states), are
themselves able to react to form the reactants of the input reaction (with states that can produce
reaction r), then the function returns 1 and the order and reaction number of the reverse reaction
are pointed to by optr and rptr. If there is no direct reverse reaction, but the products of the input
reaction are still able to react, the function returns 2 and optr and rptr point to the first listed
continuation reaction. The function returns 0 if the products do not react with each other, if there are
no reactants, or if there are no products. -1 is returned for illegal inputs. Either or both of optr and
rptr are allowed to be sent in as NULL values if the respective pieces of output information are not of
interest.

int rxnisprod(simptr sim,int i,enum MolecState ms,int code);
Determines if a molecule with identity i and state ms is the product of any reaction, of any order,
returning 1 if so and 0 if not. ms can include MSbsoln. If code is 0, there are no additional conditions.
If code is 1, the molecule also has to be displaced from the reaction position (i.e. either confspread
or the unbinding radius is non-zero) in order to qualify.

long int rxnstring2sernocode(char *pattern,int prd);
Converts a string pattern to a serial number code. If the pattern is a positive number, then this is
the serial number code. Otherwise, a bitcode is computed from the pattern, the bitcode is bitwise
inverted, and that value is returned as the serial number code, which is then a negative number. See
molfindserno for a description of the bitcode. This function is written in a brute force fashion because
it was simpler to write and to read, but could have been written more cleverly. Returns 0 for failure,
a negative value if a bitcode is used, or a positive number for an actual serial number.

char *rxnsernocode2string(long int pserno,char *pattern);
Converts a serial number code to a pattern string. This assumes that pattern is allocated and is
large enough for the result (maximum of 7 characters for codes or the number of characters for a
long int, which is probably a few more than 7). See the descriptions for rxnstring2sernocode and
molfindserno.

memory management

rxnptr rxnalloc(int order);
Allocates and initializes a reaction structure of order order. The reaction has order reactants, a
permit element that is allocated, no products, and most parameters are set to -1 to indicate that they
have not been set up yet.

void rxnfree(rxnptr rxn);
Frees a reaction structure.

rxnssptr rxnssalloc(rxnssptr rxnss,int order,int maxspecies);
Allocates and initializes a reaction superstructure of order order and for maxspecies maximum number
of species (the same value that is in the molecule superstructure). The superstructure is left with nrxn

50 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

and table allocated but with no reactions. This function may be called more than once, which is useful
for increasing maxspecies. On the first call, enter rxnss as NULL and enter it with the existing value on
subsequent calls. maxspecies may not be decreased. Returns a pointer to the reaction superstructure
on success, or NULL on inability to allocate memory.

void rxnssfree(rxnssptr rxnss);
Frees a reaction superstructure including all component reactions.

int rxnexpandmaxspecies(simptr sim,int maxspecies);
Expands the maxspecies value for all existing reaction superstructures, allocating memory as needed.
These values should be kept synchronized with the master maxspecies in the molecule superstructure,
so this is called whenever the master one changes. Returns 0 for success or, if memory could not be
allocated, 1 plus the order of the superstructure where the failure occurred.

data structure output

void rxnoutput(simptr sim,int order) ;
Displays the contents of a reaction superstructure for order order, as well as all of the component
reactions. It also does some other calculations, such as the probability of geminate reactions for the
products and the diffusion and activation limited rate constants.

void writereactions(simptr sim,FILE *fptr);
Writes all information about all reactions to the file fptr using a format that can be read by Smoldyn.
This allows a simulation state to be saved.

int checkrxnparams(simptr sim,int *warnptr);
Checks some parameters of reactions to make sure that they are reasonable. Prints warning messages
to the display. Returns the total number of errors and, if warnptr is not NULL, the number of warnings
in warnptr.

parameter calculations

int rxnsetrate(simptr sim,int order,int r,char *erstr);

Sets the internal reaction rate parameters for reaction r of order order. These parameters are the
squared binding radius, bindrad2, and the reaction probability, prob. Zero is returned and erstr
is unchanged if the function is successful. Possible other return codes are: 1 for a negative input
reaction rate (implies that this value has not been defined yet, which is not necessarily an error; other
parameters are not modified), 2 for order 1 reactions for which different reactant states would have
different reaction probabilities, 3 for confspread reactions that have a different number of reactants
and products, 4 for non-confspread bimolecular reactions that have non-diffusing reactants, or 5 for a
reaction probability that is out of range.

For zeroth order reactions, rxn->prob is the expectation number of molecules that should be produced
in the entire simulation volume during one time step, which is rate - dt - volume.

For first order reactions, rxn->prob is the conditional probability of a unimolecular reaction occurring
for an individual reactant molecule during one time step, where the condition is that any previously
listed possible reactions for this reactant were not chosen. First, this computes the unconditional
probability. For this, if there is only one reaction possible, then the reaction probability is prob =
1 — exp(—rate - dt). However, other reaction channels affect the probability because, over a finite time
step, the reactant may get used up before it has a chance to react in this reaction. The solution is
in Andrews and Bray, 2004, eq. 14, which is prob = (rate/sum)[l — exp(—sum - dt)], where sum is
the sum of all of the reaction channel rates. Next, this probability is conditioned as follows. Consider
a reactant, A, which reacts to product B; with probability p;, to product By with probability ps, to
product B3 with probaility ps, etc. The algorithm is: the first path is taken with probability p/; if that
is not taken, then the next path is taken with probability ph; if that is not taken, then the next path
is taken with probability pj§, etc. Since there is no prior condition, p; = p. The probability that path
2 is actually taken is po = p5(1 — p1) because it is the probability that event 2 happens and that path

5.4. REACTIONS (FUNCTIONS IN SMOLRXN.C) 51

1 was not chosen. The probability that path 3 is actually taken is ps = p5(1 — p1)(1 — p2). Thus, for
example, p5 = p3/(1 — p1)(1 — p2). Here, product is the probability that prior paths were not taken
and prob is the probability that a certain path is taken (e.g. p; or ps).

For second order reactions, rxn->bindrad?2 is the squared binding radius of the reactants, found from
bindingradius. In this case, the reverse parameter is accounted for in the reaction rate calculation if
there is a direct reverse reaction and if it is appropriate (see the discussion of “Binding and unbinding
radii,” and the description for findreverserxn). The requested rate is doubled if the two reactants
are the same due to the fact that there are half as many possible interactions in this case than if the
two reactants are different. This is explained in the User’s manual: “Consider a situation with 1000
A molecules and 1000 B molecules. Despite the fact that each A molecule has about 1000 potential
collision partners, whether the reactants are A + A or A + B, there are twice as many A-B collisions
as A-A collisions. This is because each A-A pair can be counted in either of two ways, but is still only
a single possible collision. To achieve the same reaction rate for A + A reactants as for A + B, despite
the fact that there are fewer collisions, Smoldyn uses a larger binding radius for the former.” Smoldyn
also doubles the requested reaction rate if one of the species is membrane-bound and the other is in
solution. In this case, it is because the membrane occludes half of the binding volume, with the result
that only half of it is accessible to binding. Thus, Smoldyn simulates the reaction with only half of the
rate that would result if both species were in solution, which means that the requested rate needs to
be doubled to get the correct rate.

int rxnsetrates(simptr sim,int order,char *erstr);
Sets internal reaction rate parameters for all reactions of order order. The return value of the function
is -1 for correct operation. If errors occur, the reaction number where the error was encountered is
returned and an error string is written to erstr, which should be pre-allocated to size STRCHAR. This
function simply calls rxnsetrate for each reaction.

int rxnsetproduct(simptr sim,int order,int r,char *erstr);

Sets the initial separations for the products of reaction r of order order. This uses the rparamt and
rparam elements of the reaction to do so, along with other required values such as the binding radius
and parameters from any reverse reaction. The unbindrad and prdpos elements are set up here. If
rpart is either RPoffset or RPfixed, then it is assumed that the product positions have already been
set up; they are not modified again by this routine. Otherwise, they are set here, described next.
This returns 0 for success or any of several error codes for errors. For each error, a message is written
to erstr, which needs to have been pre-allocated to size STRCHAR. The error codes aren’t listed here
because they aren’t used by the functions that call this one; in other words, they’re irrelevant. For
warnings, the function returns 0 but a warning string is written to erstr.

If the rparamt value is for RPoffset or RPfixed, then prdpos is not changed; otherwise it is. If there
are 0 products, then everything is an error except for RPnone, RPirrev, and RPconfspread because
nothing else makes sense. If there is 1 product, then the product position is set to the 0 vector for all
rparamt values that make sense because there is no unbinding radius to worry about. However, most
rparamt values don’t make sense. If there are 2 products, the value depends on the rparamt value and
on whether the reaction is reversible or not. In all cases, only the x coordinate of the prdpos vector
is set to a non-zero value (the other coordinates are not touched at all, and nor should they be used).
The following table is for reactions with 2 products.

rparamt rparam unbindrad prdpos
RPnone - 0 for irrev., error for rev. 0
RPirrev - 0 0
RPconfspread - 0 0
RPbounce Oy Oy sum is gy,

-1 -1 sum is oy

-2 -2(7) 0(?)
RPpgem o) oy difference is o,

RPpgemmax Dma Ou difference is oy,

52

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

RPpgemmaxw Pmaz Oy difference is oy,
RPratio Ou/0b Oy difference is o,
RPunbindrad ou Ou difference is oy,
RPpgem2 10) Ou difference is oy,
RPpgemmax?2 Pmaz Oy difference is o,
RPratio?2 w0 ou difference is o,
RPoffset - set from prdpos unchanged

RPfixed - set from prdpos unchanged

* For RPbounce, both product positions are positive and are set for a cumulative vector length of the
unbinding radius if the rparam value is positive and to a cumulative vector length of the binding radius
if rparam is negative.

int rxnsetproducts(simptr sim,int order,char *erstr);

Sets initial separations for products of all reactions of order order. This returns -1 for success and
the reaction number for failure. Upon failure, this also returns erstr, which needs to have been
preallocated with size STRCHAR, with an error message. See the discussion in the section called “Binding
and unbinding radii” for more details.

double rxncalcrate(simptr sim,int order,int r,double *pgemptr);

void

Calculates the macroscopic rate constant using the microscopic parameters that are stored in the
reaction data structure. All going well, these results should exactly match those that were requested
initially, although this routine is useful as a check, and for situations where the microscopic values were
input rather than the mass action rate constants.

For unimolecular reactions, this reverses the computations that are made in rxnsetrate; see that
description for more details. ms1 is a state for which this reaction is permitted. Next, this goes through
all reactions of the same reactant and state. For each, this computes the unconditional probability
of the reaction being chosen, in prob. This is the product of the conditional probability of it being
chosen (rxn2->prob), where the condition is that prior reactions were not chosen, and the probability
that prior reactions were not chosen (product). This also adds up the unconditional probabilities in
sum. Addition is appropriate here because a reaction can only happen along a single reaction channel,
so these are exclusive probabilities. At the end, sum is the total probability that a reaction happens.
Then, inversion of the equation, sum = 1 — exp(—ratesum - dt) gives the sum of all the rate constants.
From this, the rate constant for this particular reaction is computed.

For bimolecular reactions that are reversible, the routine calculates rates with accounting for
reversibility if the reversible parameter type of the reverse reaction is: RPpgem, RPpgemmax, RPpgemmaxw,
RPratio, or RPunbindrad and not otherwise (this list was changed for version 2.56, to make it agree
with the Smoldyn User’s Manual). A value of -1 is returned if input parameters are illegal and a value
of 0 is returned if the microscopic values for the indicated reaction are undefined (j0). If the input
reaction has a reverse reaction or a continuation reaction, and pgemptr is not input as NULL, then
*pgemptr is set to the probability of geminate recombination of the products; if there is no reverse or
continuation reaction, its value is set to -1.

rxncalctau(simptr sim,int order);

Calculates characteristic times for all reactions of order order and stores them in the rxn->tau
structure elements. These are ignored for Oth order reactions, are 1/k for first order reactions, and
are [A][B]/[k([A]4+[B])] for second order reactions. The actual calculated rate constant is used, not the
requested ones. For second order, the current average concentrations are used, which does not capture
effects from spatial localization or concentration changes. For bimolecular reactions, if multiple reactant
pairs map to the same reaction, only the latter ones found are recorded. Also, all molecule states are
counted, which ignores the permit reaction structure element.

structure set up

5.4. REACTIONS (FUNCTIONS IN SMOLRXN.C) 53

void rxnsetcondition(simptr sim,int order,enum StructCond cond,int upgrade) ;
Sets the reaction superstructure condition, for order order, to cond, if appropriate. Set order to the
desired reaction order, or to -1 for all reaction orders. Set upgrade to 1 if this is an upgrade, to 0 if
this is a downgrade, or to 2 to set the condition independent of its current value. If the condition is
downgraded, this also downgrades the simulation structure condition.

int RxnSetValue(simptr sim,char *option,rxnptr rxn,double value);
Sets certain options of the reaction structure for reaction rxn to value. If sim is not NULL, this then
downgrades the reaction condition to SClists to cause recomputation of molecule lists to check for
reactions and also reaction simulation parameters. Returns 0O for success, 2 for unknown option, or 4
for an illegal value (e.g. a negative rate). In most cases, the value is set as requested, despite the error
message.

If option is “rate”, the rate element is set; if option is “multiplicity”, the multiplicity element
is set; if option is “multiplicity++", the multiplicity element is incremented; if option is “rateadd”,
the value is added to the current reaction rate (this has been largely or completely superseded by
the multiplicity element); if option is “confspreadrad”, the reaction type is made confspread and the
squared binding radius is set; if option is “bindrad”, the squared binding radius is set; if option
is “prob”, the probability is set; it option is “disable”, the disable element is set (used for hybrid
simulation in which reactions in one part of space might be disabled in other parts of space).

int RxnSetValuePattern(simptr sim,const char *option,const char *pattern,const enum
MolecState *rctstate,const enum MolecState *prdstate,double value,int
oldnresults,const rxnptr template);
Same as RxnSetValue except for one or more reactions that are described in pattern rather than
with a pointer to a reaction. As before, option is the parameter to be set and value is the value it
is to be set to. This also needs the reactant and product states, which are not part of the pattern.
oldresults is the point of the index list where this should start setting values. This steps through all
of the reactions listed in pattern, starting with oldresults and continuing to the end of the list, and
calls RxnSetValue for each one. This function checks to see if a reaction has had its rate set before;
if not, it sets the rate to value and if so, it adds value to the existing rate. Returns 0 for success, 2
for unknown option, 4 for an illegal value (e.g. a negative rate), or 5 for a reaction that is listed in the
pattern but does not actually exist.

int RxnSetRevparam(simptr sim,rxnptr rxn,enum RevParam rparamt,double rparam,int

prd,double *pos,int dim);

Sets the reversible parameter type and the appropriate reversible parameters for reaction rxa.
This function is called by the product_placement portion of simreadstring. The parameter type,
rxn->paramt, is set to rpart. If rpart requires a single value, which is stored in rxn->rparam, it is
sent in with rparam. Otherwise, for fixed and offset parameter types, send in the product number that
is being altered with prd, the vector with pos, and the system dimensionality with dim. This returns 0
for success, 1 as a warning that the reversible parameter type has been set before (except for offset and
fixed types, where many different products need to be set), 2 for parameters that are out of bounds, 3
for an unrecognized rparamt, 4 for prd out of bounds, or 5 for a missing pos vector.

rparamt rparam prd pos
RPnone - - -
RPirrev - - -
RPconfspread - - -
RPbounce oy or -1 - -
RPpgem 10) - -
RPpgemmax Omaz - -
RPpgemmaxw Omaz - -
RPratio Ou/ob - -
RPunbindrad Ou - -

RPpgem2 10) - -

54 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

RPpgemmax2 Omaz - -
RPratio?2 0u/0b - -
RPoffset - product number relative position
RPfixed - product number relative position

If method is RPbounce, then a negative number for the parameter indicates default bounce behavior,
which is that molecules are separated by an amount that is equal to their previous overlap.

void RxnCopyRevParam(simptr sim,rxnptr rxn,const rxnptr template);
Copies the reverse reaction parameters from the template reaction to the rxn reaction. This doesn’t
do any checking. All inputs are required.

void RxnSetPermit(simptr sim,rxnptr rxn,int order,enum MolecState *rctstate,int value);
Sets the permit element of reaction rxn, which has order order, for the states that are included in
rctstate to value value. value should be 0 to set permissions to forbidden or 1 to set permissions to
permitted. Each item of rctstate may be an individual state or may be MSall. Other values are not
allowed (and are not caught here). This does not affect other permit elements. If order is 2 and both
reactants are the same, this automatically makes the permit matrix symmetric (e.g. if input states
are MSall and MSfront, respectively, permissions will also be set for the pair MSfront and MSall).

void RxnSetCmpt (rxnptr rxn,compartptr cmpt);
Sets the cmpt element of the rxn reaction to compartment cmpt. This does no checking, and assigns
regardless of whether cmpt is NULL or not.

void RanetSurface(rxnptr rxn,surfaceptr srf);
Sets the srf element of the rxn reaction to surface srf. This does no checking, and assigns regardless
of whether srf is NULL or not.

int RxnSetPrdSerno(rxnptr rxn,long int *prdserno);
Sets the product serial number list for reaction rxn to the list given in prdserno. If the product serial
number list had not been allocated previously, it is allocated here. Returns O for success or 1 for
inability to allocate memory.

int RxnSetIntersurfaceRules(rxnptr rxn,int *rules);
Sets the product intersurface rules for reaction rxn to the list given in rules. If the product intersurface
list had not been allocated previously, it is allocated here. Returns 0 for success or 1 for inability to
allocate memory.

int RxnSetRepresentationRules(rxnptr rxn,int order,const enum SpeciesRepresentation
xrctrep,const enum SpeciesRepresentation *prdrep);
Sets lattice versus particle representation for reaction reactants and products, for use in overlapping
space hybrid simulation. Enter the reaction in rxn, the reaction order in order, and the desired
representation for the reactants and products in the vectors rctrep and prdrep. FEnter the first
element of rctrep as SRfree to free the data structures. This function copies the contents of rctrep
and/or prdrep to the arrays of the same name in the reaction structure.

int RxnSetLog(simptr sim,char *filename,rxnptr rxn,listptrli list,int turnon);

Sets reaction logging, which occurs upon reaction occurrence. Enter filename as the name of the file
that reaction data should be logged to. This gets stored in rxn->logfile. Enter rxn as the reaction
that should get logged, or as NULL for all reactions in the simulation. Enter 1ist as a list of molecule
serial numbers that should be logged, or as a list with only the value -1 if all molecules serial numbers
should be logged. Finally, enter turnon as 1 to turn on logging and as 0 to turn off logging. In the
latter case, the filename entry is ignored, the rxn entry is the reaction for which logging should be
turned off, and list is the list of serial numbers for which logging should be turned off. Returns 0
for success, 1 for inability to allocate memory, or 2 as a warning that prior logfile was overwitten. If
logging is turned off for all serial numbers, this erases the stored logfile name as well, meaning that it
would need to be re-entered if logging is wanted again.

5.4. REACTIONS (FUNCTIONS IN SMOLRXN.C) 55

rxnptr RxnAddReaction(simptr sim,char *rname,int order,int *rctident,enum MolecState
*rctstate,int nprod,int *prdident,enum MolecState *prdstate,compartptr
cmpt,surfaceptr srf);
Adds a reaction to the simulation, including all necessary memory allocation. rname is the name of
the reaction, order is the order of the reaction, and nprod is the number of products. rctident
and rctstate are vectors of size order that contain the reactant identities and states, respectively.
Likewise, prdident and prdstate are vectors of size nprod that contain the product identities and
states. This returns the just added reaction for success and NULL for inability to allocate memory. This
allocates reaction superstuctures and reaction structures, and will enlarge any array, as needed. This
function can also be used sequentially for reactants and products: first call it with reactants and 0 for
nprod; next time, call it with the correct order, NULL for both reactant inputs, and the full product
information.

rxnptr RxnTestRxnExist(simptr sim,int order,const char *rname,const int *rctident,const
enum MolecState *rctstate,int nprod,const int *prdident,const enum MolecState
xprdstate,int exact);
Tests if a reaction already exists. Set exact to 1 if this should just test to see if the reaction name is
already in use. If not, this checks to see if some other reaction has the same order value, the same
root of the reaction name, which is entered in rname, the same reactants as rctident, the same order
reactant states as rctstate, the same nprod products as prdident, and the same nprod product states
as prdstate. Returns the reaction if the reaction already exists and NULL if not.

int RxnAddReactionPattern(simptr sim,const char *rname,const char *pattern,int
oldnresults,enum MolecState *rctstate,enum MolecState *prdstate,compartptr
cmpt,surfaceptr srf,int isrule,rxnptr *rxnpt);
Adds one or more reactions to the simulation, where the reaction is defined in the pattern string.
Enter rname as the name of the reaction if there is just one reaction, and as the root of the name if
there are multiple reactions. The pattern string should have been created in the molstring2pattern
function; it should have the reactants as space-separated words, then a newline character, then the
products as space-separated words. Enter oldnresults as -1 if the current value of the index variable
should be used to determine how many results from index have been considered already and as a
number greater than or equal to zero to specify how many results from index have been considered
already. Enter rctstate as a list of reactant states, where this list should have the same number of
elements as the number of reactants in pattern, and enter prdstate as a list of product states, where
this list should have the same number of elements as the number of products in pattern. cmpt and
srf are optional; they give the compartment that the reaction will occur in and the surface that it will
occur on, if the reaction should be restricted in these ways. Set isrule to 1 to indicate that this is
a rule, meaning that any products that have not been declared beforehand will be created here, or to
0 to indicate that this is not a rule. If rxnpt is entered as non-NULL and if there is just one reaction
created here, then it will be returned pointing to the new reaction. If more than one reaction is created
here, it will be returned as NULL.

This function checks the current status of the pattern to see how much of it has been updated previously.
Then, it loops over all reactions that have not been added to the simulation yet. If it encounters a
reaction that already exists, it simply skips over it.

Returns 0 for success, -1 for inability to allocate memory, -2 if no wildcards were entered and one or
more of the match species is unknown, -3 if a substitute species is unknown and the substitute species
had no wildcards in it, -4 if the match string included more words than allowed by this function (which
is 4 currently), -5 if a trial match string was too long to fit in STRCHAR characters (even if this wasn’t
actually a match), -6 if species generation failed, -11 for inability to allocate memory, -12 for missing ¢
” operand, -13 for missing & operand, -15 for mismatched braces, or -20 for a destination pattern that
is incompatible with the matching pattern (i.e. it has to have either 1 destination or the same number
of destination options as pattern options), or -30 for failure to add the reaction.

rxnptr RxnAddReactionCheck(simptr sim,char *rname,int order,int *rctident,enum MolecState
*rctstate,int nprod,int *prdident,enum MolecState *prdstate,compartptr

56

int

int

int

int

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

cmpt ,surfaceptr srf,char *erstr);

This is a simple wrapper for RxnAddReaction. Before it calls RxnAddReaction though, it checks as
many of the input parameters as possible to make sure that they are reasonable. If they are not
reasonable, it returns NULL and an error message in erstr, which should be allocated to size STRCHAR.

loadrxn(simptr sim,ParseFilePtr #pfpptr,char *line2,char *erstr);

Loads a reaction structure from an already opened disk file described with pfpptr. If successful, it
returns 0 and the reaction is added to sim. Otherwise it returns 1 and error information in pfpptr. If
a reaction structure of the same order has already been set up, this function can use it and add more
reactions to it. It can also allocate and set up a new structure, if needed. This need for this function
has been largely superceded by functionality in loadsim, but this is kept for backward compatibility.

rxnupdateparams (simptr sim) ;

Sets reaction structure parameters for the simulation time step. Return values are 0 for success, 1 for
an error with setting either rates or products (and output to stderr with an error message), or 2 if
the reaction structure was not sufficiently set up beforehand.

rxnupdatelists(simptr sim,int order);

Sets the rxnmollist element of the reaction superstructure of order order. If one already exists, it
is freed and then reallocated; otherwise it is just allocated. Afterwards, this function goes through all
reactants of the superstructure, including their permit values, and registers their respective molecule
lists in the rxnmollist array. Returns 0 for success, 1 for failure to allocate memory, 2 for a requested
order that is greater than 2 (which is the highest that this function can handle), or 3 for molecules not
being set up sufficiently.

rxnsupdate (simptr sim);

Sets up reactions from data that have already been entered. This sets the reaction rates, sets the
reaction product placements, sets the reaction tau values, and sets the molecule list flags. Returns
0 for success, 1 for failure to allocate memory, 2 for a Smoldyn bug, 3 for molecules not being set
up sufficiently, 4 for an error with setting either rates or products (in this case, an error message is
displayed to stderr), or 5 if the reaction structure was not sufficiently set up. This may be run at at
start-up or afterwards.

reaction parsing function

int

rxnparsereaction(simptr sim,const char *word,char *line2,char *errstr);

Parses reaction statement in configuration file. This code was in the “reaction” statement section of
simreadstring function but became too long and complicated, so it got moved to its own function.
It’s only called by simreadstring.

core simulation functions

int

doreact (simptr sim,rxnptr rxn,moleculeptr mptrl,moleculeptr mptr2,int 111,int ml,int
112,int m2,double *pos,panelptr rxnpnl);

Executes a reaction that has already been determined to have happened. rxn is the reaction and
mptrl and mptr2 are the reactants, where mptr2 is ignored for unimolecular reactions, and both are
ignored for zeroth order reactions. 111 is the live list of mptr1, m1 is its index in the master list, 112
is the live list of mptr2, and m2 is its index in the master list; if these don’t apply (i.e. for Oth or 1st
order reactions, set them to -1 and if either m1 or m2 is unknown, again set the value to -1. If there
are multiple molecules, they need to be in the same order as they are listed in the reaction structure
(which is only important for confspread reactions and for a completely consistent panel destination for
reactions between two surface-bound molecules). The pos and rxnpnl inputs are only looked at for
0th order reactions; for these, they need to be a random position for the reaction to occur, and the
panel if any.

Reactants are killed, but left in the live lists. Any products are created on the dead list, for transfer
to the appropriate live list by the molsort routine. Molecules that are created are put at the reaction
position, which is the average position of the reactants weighted by the inverse of their diffusion

5.5. RULES (FUNCTIONS IN SMOLRULE.C) 57

constants, plus an offset from the product definition. The cluster of products is typically rotated to a
random orientation. If the displacement was set to all 0’s (recommended for non-reacting products),
the routine is fairly fast, putting all products at the reaction position. If the rparamt character is
RPfixed, the orientation is fixed and there is no rotation. Otherwise, a non-zero displacement results
in the choosing of random angles and vector rotations. If the system has more than three dimensions,
only the first three are randomly oriented, while higher dimensions just add the displacement to the
reaction position. The function returns 0 for successful operation and 1 if more molecules are required
than were initially allocated. This function lists the correct box in the box element for each product
molecule, but does not add the product molecules to the molecule list of the box.

For the bounce product placement, the general rule is that reactants 0 and 1 are copied over to the
first two products and further products are placed at the reaction position. During the computation
of the first product, v1 is the vector from mptril to mptr2 and dist, or d, is computed as the length of
this vector. If the distance equals zero, then this function pretends that the reactants were separated
by o, along the x-axis because that makes as much sense as anything else. Next, the scaling factor x
is computed. If rparam is positive, meaning fixed unbinding radius, then v1 needs to be lengthened
by o, — d. Dividing this by o, which is the cumulative length of the prdpos values, gives the scaling
factor as 1 — d/o,. Finally, this is divided by d because vector v1 has length d. If rparam is negative,
meaning new separation is equal to prior overlap, then o}, — d is the prior overlap, o, + (0 — d) is the
new separation, and v1 needs to be lengthened by o, + (0, — d) — d. Simplifying and then dividing
by oy, which is the cumulative length of the prdpos values, gives the scaling factor as 2 — 2d/op. As
before, this is finally divided by length d.

Reaction logging is fairly simple but is described anyhow. Nothing happens if rxn->logserno is NULL.
Otherwise, dorxnlog is set to 0 for not logging and to 1 for logging. Then, it changes to 2 as the
logging is in progress, or to -1 if logging failed due to a bad file name.

int zeroreact(simptr sim);
Figures out how many molecules to create for each zeroth order reaction and then tells doreact to
create them. It returns 0 for success or 1 if not enough molecules were allocated initially.

int unireact(simptr sim);
Identifies and performs all unimolecular reactions. Reactions that should occur are sent to doreact to
process them. The function returns 0 for success or 1 if not enough molecules were allocated initially.

int morebireact(simptr sim,rxnptr rxn,moleculeptr mptrl,moleculeptr mptr2,int 111,int

ml,int 112,enum EventType et,double *vect);

Given a probable reaction from bireact, this checks for compartment or surface reactions, orders the
reactants, checks for reaction permission, moves a reactant in case of periodic boundaries, increments
the appropriate event counter, and calls doreact to perform the reaction. The return value is 0 for
success (which may include no reaction) and 1 for failure. The vect input is only considered here,
and must be non-NULL, if the event type is ETrxn2wrap; in this case, it is the vector from the current
position of mptrl to the current position of mptr2.

int bireact(simptr sim,int neigh);
Identifies likely bimolecular reactions, sending ones that probably occur to morebireact for permission
testing and reacting. neigh tells the routine whether to consider only reactions between neighboring
boxes (neigh=1) or only reactions within a box (neigh=0). The former are relatively slow and so can
be ignored for qualitative simulations by choosing a lower simulation accuracy value. In cases where
walls are periodic, it is possible to have reactions over the system walls. The function returns 0 for
success or 1 if not enough molecules were allocated initially.

5.5 Rules (functions in smolrule.c)

Rules were part of the reaction superstructure through version 2.46 but were then moved to their own
superstructure in version 2.47. As with other portions of Smoldyn, rules are organized with a superstructure

58 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

that contains information about all of the rules, and then with individual rule structures that contain
information about the individual rules. The rules superstructure is only created if necessary. Each rule
is a partially parsed set of instructions that tell Smoldyn what definitions to make whenever the rules are
expanded, which may be before the simulation runs or on-the-fly during the simulation.

Reaction rules are typically only useful in combination with wildcard characters. See the Wildcards
section of the Code Design chapter for the definitive description of the reaction rules.

enumerated types
The only enumerated type in the rules definitions is the RuleType:

#define RTMAX 4
enum RuleType {RTreaction,RTdifc,RTdispsize ,RTcolor ,RTnone};

The constant RTMAX is the number of enumerated elements. The elements are the different types of rules,
where each rule is used to specify a certain type of definition, which may be to create reactions, set diffusion
coefficients, etc.

rule structure

typedef struct rulestruct {
struct rulesuperstruct *ruless; // pointer to superstructure

enum RuleType ruletype; // type of rule

char *rulename; // pointer to mame of rule

char *rulepattern; // pattern for the rule

int *ruledetails; // list of rule states and restrictions
double rulerate; // rate constant

rxnptr rulerxn; // template reaction for reaction rules

} *ruleptr;

The ruless element points to the superstructure that owns this rule. The ruletype element tells what
type of rule this is. The rulename element is the name of the rule which, for reaction rules, is the name of the
reaction as entered by the user without any suffix. The rule structure does not own the rulename pointers
but instead they are copied over from the rule superstucture. The rulepattern is the pattern for the rule,
including for a reaction rule. For example, a pattern for a bimolecular reaction has a single-species pattern
for the first reactant, which is a species name possibly with wildcard characters, a space, a second single-
species pattern, a newline character, and then space-separated product species names. The ruledetails
element contains an array of integers. For reaction rules, these are the species states cast as integers for
the reactants and products in their sequence, then the compartment number if the reaction is restricted to
a specific compartment, and then the surface number if the reaction is restricted to a single surface. The
rulerate element is, for reaction rules, the reaction rate entered by the user. The rulerxn element contains
a reaction template for reaction rules.

The following table shows the contents of the different portions of the data structure for different types
of rules.

type rate detailsi detailsf
RTreaction rate constant react. states, prod. states, compart., surf. NULL
RTdifc diff. coefficient 0: state NULL
RTdifm 0 0: state diff. matrix
RTdrift 0 0: state drift vector
RTsurfdrift 0 0: state, 1: surface, 2: panel shape drift vector
RTmollist 0 0: state, 1: list number NULL
RTdispsize display size 0: state NULL
RTcolor 0 0: state color vector
RTsurfaction 0 0: state, 1: surface, 2: face, 3: action NULL
RTsurfrate rate constant 0: state, 1: surface, 2: ms1, 3: ms2, 4: new species NULL

RTsurfrateint probability 0: state, 1: surface, 2: ms1, 3: ms2, 4: new species NULL

5.5. RULES (FUNCTIONS IN SMOLRULE.C) 59

rule superstructure

typedef struct rulesuperstruct {

struct simstruct *sim; // simulation structure

int maxrule; // allocated size of rule list
int nrule; // actual size of rule list

char **rulename; // list of rule names

ruleptr *rule; // list of rules

int ruleonthefly; // for ezpanding rules on the fly

} *rulessptr;

The rule superstructure includes a a list of rule names and a list of the actual rules, each with allocated
size maxrule and actual size nrule. The rulename list contains strings with the rule names, which, for
reactions, are simply the reaction names entered by the user, without any suffix. The rule list contains
pointers to individual rules.

These lists are maintained by the RuleAddRule function. These rules do not need updating during
the simulation. Instead, they are simply stored here and referred to when updating is required. The
ruleonthefly element is initialized to 0. It is then set to 1 if on-the-fly rule generation is desired.
rule functions

enumerated types

enum RuleType rulestring2rt(const char *string);
Converts string to enumerated RuleType type. This reads full word inputs. Unrecognized inputs are
returned as RTnone.

char *rulert2string(enum RuleType rt,char *string);
Converts enumerated RuleType type to string, which needs to be pre-allocated. Unrecognized rule
types are converted to “none”. The string is returned to simplify function cascading.

memory management

ruleptr rulealloc();
Allocates a new rule structure. All pointers are initiallized to NULL, the ruletype is initiallized to RTnone
and the rulerate element is initialized to -1. The rulepattern and ruledetails are allocated in
RuleAddRule.

void rulefree(ruleptr rule);
Frees a rule structure, including its contents.

rulessptr rulessalloc(rulessptr ruless,int maxrule);
Allocates or expands the size of a rule superstructure. Send in the current rule superstucture in as
ruless if there is one, or NULL if there isn’t one. Send in the desired value for the allocated number
of rules in maxrule. This creates a new superstructure if there wasn’t one initially, allocates and
initializes the rule and rulename lists, copies over any prior data, frees any prior data, and returns the
rule superstructure. Returns NULL if out of memory.

void rulessfree(rulessptr ruless);
Frees a rule superstructure, including all of its contents.

data structure output

void ruleoutput(simptr sim);
Outputs information about the rules, including the rule superstructure and all of the individual rules.

void writerules(simptr sim,FILE *fptr);
Not written yet. This will write the rules to a text file using Smoldyn input format.

int checkruleparams(simptr sim,int *warnptr);
This checks to make sure that rule parameters are reasonable. There are no checks at all here yet.

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

structure set up

int RuleAddRule(simptr sim,enum RuleType type,const char *rname,const char *pattern,const

enum MolecState *rctstate,const enum MolecState *prdstate,double rate,const int
*detailsi,const double *detailsf);

Adds a rule to the list of rules. Enter the rule type in type. For reaction rules, enter the rule name,
which is the root of the reaction name and the entire reaction name if only one reaction results, in
rname. Enter the rule pattern in pattern, the species or reactant state(s) in rctstate, any product
states in prdstate, and the rate constant in rate. Enter additional integer details in detailsi and
additional floating point details in detailsf.

This function stores the rule in the rule superstructure. This function creates and/or expands the rule
list as needed. It then creates a new rule by copying in the rule name, copying in the rule pattern, and
storing the reactant state, product state, compartment index, and surface index in the rule details, in
that order. Returns 0 for success or 1 for inability to allocate memory.

The exact inputs depend on the rule type as follows. Note that these are inputs to this function,
and not the storage of details in the data structure. In the data structure, the first elements of the
detailsi vector include the species states and then the last elements are the same as the ones given
here.

type rate detailsi detailsf
RTreaction rate constant 0: compartment, 1: surface NULL
RTdifc diff. coefficient NULL NULL
RTdifm 0 NULL diff. matrix
RTdrift 0 NULL drift vector
RTsurfdrift 0 0: surface, 1: panel shape drift vector
RTmollist 0 0: list number NULL
RTdispsize display size NULL NULL
RTcolor 0 NULL color vector
RTsurfaction 0 0: surface, 1: face, 2: action NULL
RTsurfrate rate constant 0: surface, 1: ms1, 2: ms2, 3: new species NULL
RTsurfrateint probability 0: surface, 1: ms1, 2: ms2, 3: new species NULL

core simulation functions

int RuleExpandRules(simptr sim,int iterations);

Expands the rules by iterations iterations. Also, iterations can be set to -1 for expanding all rules
until everything is up to date, -2 to set up on-the-fly expansion but not to actually do it, or -3 to
do on-the-fly expansion if necessary. This goes through the rules sequentially. If there are no rules,
this returns error code -41, which isn’t actually an error. For each rule, it gets the rule information,
including when it was last updated. It then calls RxnAddReactionPattern to update the index variable
for the rule pattern and add any new reactions to the simulation. Next, it calls RxnSetValuePattern
to set the reaction rates for the new reactions. This part of the function still needs work. Finally, it
sees if all of the rules are up to date, terminating if so.

Returns 0 for success or the following errors which arise from RxnAddReactionPattern: -1 for inability
to allocate memory, -2 if no wildcards were entered and one or more of the match species is unknown,
-3 if a substitute species is unknown and the substitute species had no wildcards in it, -4 if the match
string included more words than allowed by this function (which is 4 currently), -5 if a trial match
string was too long to fit in STRCHAR characters (even if this wasn’t actually a match), -6 if species
generation failed, -11 for inability to allocate memory, -12 for missing ¢ ’ operand, -13 for missing &
operand, -15 for mismatched braces, or -20 for a destination pattern that is incompatible with the
matching pattern (i.e. it has to have either 1 destination or the same number of destination options
as pattern options), or -30 for failure to add the reaction. Other return code are -40 for a bug in
RxnSetValuePattern and, of actual use, -41 for expansion requested but there are no rules to expand.

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 61
5.6 Surfaces (functions in smolsurf.c)

Surfaces are organized with a surface superstructure that contains not much more than just a list of surfaces
and their names. Each of these surfaces, defined with a surface structure, has various properties that apply
to the whole surface, such as its color on the front and back faces, how it is drawn, and how it interacts
with diffusing molecules. A surface structure also includes lists of panels that comprise the surface. These
panels may be rectangular, triangular, spherical, or other shapes. A single surface can contain many panels
of multiple shapes.

Surface geometry

The table below lists the types of panels and key aspects of how they are stored internally. Panel locations
and sizes, plus some drawing information, are given with sets of dim-dimensional points, stored in the point
element. There are npts points for a panel, listed below, where npts depends on both the panel shape and
the system dimensionality. Additionally, each panel has a dim-dimensional front vector, which contains
information about the direction that the panel faces. In some cases, such as for triangles, this is the normal
vector to the surface and is redundant with the information in the points. In others, it contains additional
information. For example, for spheres, only one element of front is used, and it is used to tell if the front
of the panel is on the inside or outside of the sphere, which cannot be known from just the list of points. In
the table below, p is used for point, and f is used for front.
Table: Properties of panels

1D 2D 3D
rectangles, ps = PSrect
npts =1 npts =4 npts = 8§
pl0][0] = location pl01[0...1] = start pl0...3]1[0...2]
pl1][0...1] = end = corners

parallel to an axis
front is on right
f£[0] = +1
(+ for facing +axis)
f[1] = perp. axis (0,1)
f[2] = parallel axis

parallel to an axis
front has CCW winding
f[0] ==+1
(+ for facing +axis)
f[1] = perp. axis (0,1,2)
f[2] = axis parallel
to edge from point 0 to point 1
p[2] = normal for end 0 p[4] = normal for 0-1 edge
p[3] = normal for end 1 p[5] = normal for 1-2 edge
p[6] = normal for 2-3 edge
p[7]1 = normal for 3-0 edge

f£[0] = +1
(4 for facing +0)
£[1] = 0 (perp. axis)
f[2] = undefined

triangles, ps = PStri

npts =1 npts =4 npts = 6
p[0] [0] = location plol[0...1] = start plo...2][0...2]
pl11[0...1] =end = corners

f[0] = +1
(41 for facing +0)

front is on right

£[0...1] = normal vect.

p[2] = normal for end 0
p[3] = normal for end 1

front has CCW winding

£[0...2] = normal vect.
p[3] = normal for 0-1 edge
p[4] = normal for 1-2 edge
p[5] = normal for 2-0 edge

spheres, ps = PSsph
npts = 2
p[0] [0] = center
pl1][0] = radius

f£[0] = £1

npts = 2
plo][0...1] = center
pl1][0] = radius
pl[1] [1] = slices

f£[0] = +1

npts = 2
pl[0][0...2] = center
pl[1][0] = radius
pl[1]1 [1] = slices
p[1][2] = stacks
£[0] = +1

62

(4 for front outside)
f[1...2] = undefined

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

(4 for front outside)
f[1...2] = undefined

(+ for front outside)
f[1...2] = undefined

cylinders, ps = PScyl

not allowed

npts = 5
plLO][0...1] = start center
pl11[0...1] = stop center

pl2]1[0] = radius

£[0...1] = norm. right vect.

fl2] = +1
(4 for front outside)

p[3] = normal for end 0
p[4] = normal for end 1

npts =95
pl0][0...2] = start center
p[11[0...2] = stop center
p[2]1 [0] = radius
pl[2] [1] = slices
pl2] [2] = stacks
f[2] = £1
(+ for front outside)
£[0...1] = undefined
p[3] = normal for end 0
p[4] = normal for end 1

hemispheres, ps = PShemi

not allowed

npts =3
pl[0][0...1] = center
pl1][0] = radius
pl1][1] = slices

pl2][0...1] = outward vect.

£[0] = £1
(+ for front outside)
f[1...2] = undefined

npts =3
pl[0][0...2] = center
pl[1][0] = radius
pl[1][1] = slices
p[1] [2] = stacks
pl2]1[0...2] = outward vect.
f[0] = +1
(4 for front outside)
f[1...2] = undefined

disks, ps = PSdisk
npts = 2
plo] [0...1] = center
pl11[0] = radius

npts = 2
pl[0] [0...2] = center
p[1]1[0] = radius
pl[1]1 [1] = slices
£[0...2] = normal vect.

not allowed

£[0...1] = normal vect.
f£[2] = undefined

To add a new panel shape, several things need to be done. Add the panel shape name to PanelShape
and increment the #define constant PSMAX, which are defined in the smoldyn.h header file. Define the panel
point and front values in the table above. Add the new panel shape to the following functions (and maybe
others): psstring2ps, ps2psstring, panelpoints, loadsurface (panel input section), surfaceoutput,
panelside, surfacearea, panelrandpos, lineXpanel, fixpt2panel, surfacereflect, surfacejump, and
panelinbox. Also, add the panel shape to RenderSurfaces in smoldyn.c. Most of these are relatively easy,
although some math likely needs to be done for a couple of them. Finally, check and document.

Molecule-surface interactions

Molecule-surface interactions arise when a molecule collides with a surface, or when a surface-bound molecule
undergoes a spontaneous state change, such as desorption. Collisions can arise both for solution-phase
molecules or surface-bound molecules; in the latter case, a molecule bound to surface A diffuses along that
surface and then collides with surface B, which intersects surface A.

Surface interactions can be certain or probabilistic. The former interactions, which the user enters
with the action configuration file statement, always happen immediately upon interaction. These certain
interactions are: reflect, transmit, absorb, jump, and port. Probabilistic interactions occur with certain
probabilities either upon interaction or at each time step. The user enters the rates of these interactions
with the rate statement. This statement is also used for spontaneous transition rates of surface-bound
molecules.

Internally, both the action and rate elements of the surface data structure refer to both collision
interactions and spontaneous state changes of surface-bound molecules. The “face” index of these elements

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 63

is either PFfront or PFback for collisions, or is PFnone for surface-bound state changes.

There are several ways of describing surface interactions. One can use a verb, such as reflect, transmit,
or adsorb, or one can list the beginning molecule state, the surface interaction face, and the ending molecule
state. Or, one can just list the beginning and ending molecules states, with pseudo-states, plus a third state
when necessary (see the surfsetrate function and the rate configuration file statement). Smoldyn uses all
of these methods which means that interconversions become necessary. The following table lists the states
used in the action details data structure and their meanings. Conversions are given in later tables.

interaction class forward states action
msi facel ms2
soln front fsoln reflect
7 7 bsoln | transmit
collision from 7 ” bound adsorb
solution state 7 back fsoln transmit
7 7 bsoln reflect
7 ? bound adsorb
impossible 7 none any
bound front fsoln reflect

bsoln | transmit
7 7 bound hop

collision from 7 ” bound’ hop
bound state ? back fsoln transmit
” 7 bsoln reflect

7 7 bound hop
" " bound’ hop

7 none fsoln desorb
action from ” ” bsoln desorb
bound state 7 7 bound no

7 ” bound’ flip

For the most part, surface-bound molecules cannot be absorbed, jumped, or ported, using the same
surface. The exception is that if a surface-bound molecule in its MSfront or MSback state diffuses onto a new
surface panel, and the new panel has jump behavior for its MSsoln or MSbsoln states, then the molecule is
jumped.

If a surface-bound molecule collides with another surface, then the result is typically dictated by the
“action” statement and data structure contents, as described above. However, if the panel that it collides
with has been declared to be a neighbor of the panel that the molecule is on, then the molecule does not
behave according to the action given above. Instead, it can “hop”, meaning that it has a 50% chance of
moving to the new panel and 50% chance of staying on its current panel, or it can “stay”, meaning that it
stays on its current panel. These options are stored in the surface neighhop data structure element, where
1 indicates hopping and 0 indicates staying. Staying is the default. The hopping option is provided so that
molecules can diffuse between neighboring surface panels, even if the panels don’t meet at their edges (e.g.
a collection of spheres).

Note that absorption, jumping, and porting will have time-step dependent behaviors; from Andrews,
Phys. Biol., 2009, the absorption/ jumping/ porting coefficient is about 0.86s/At, where s is the rms step
length and At is the time step.

Surface data structures

#define PSMAX 6 // mazimum number of panel shapes

enum PanelFace {PFfront,PFback,PFnone,PFboth};

enum PanelShape {PSrect ,PStri,PSsph,PScyl,PShemi,PSdisk,PSall,PSnonel};

enum SrfAction {SAreflect,SAtrans, SAabsorb,SAjump, SAport,SAmult,b SAno,SAnone,
SAadsorb ,SArevdes ,SAirrevdes ,SAflip};

64 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

enum DrawMode {DMno=0,DMvert=1,DMedge=2,DMve=3,DMface=4,DMvf=5,DMef=6,DMvef=7,
DMnonel};
enum SMLflag {SMLno=0,SMLdiffuse=1,SMLreact=2,SMLsrfbound=4};

Panel faces can be front or back, and there are also enumerations for both and none. For version 2.19,
I changed the enumeration sequence to put PFnone before PFboth. This sequence is important because the
surface action and rate elements are allocated for the first three enumerated panel faces, but not more.

Panel shapes are enumerated with PanelShape, of which there are PSMAX shapes, plus enumerations for
all and none, which can be useful as function arguments.

Not all surface actions apply to all circumstances. For example, reflect, transmit, absorb, and jump
only apply to collisions between diffusing molecules and surfaces (plus, diffusing molecules in front and
back states can jump as well, although the jump action is not assigned to these states). “no” applies to
surface-bound molecules, meaning that they are static and don’t change over time; in contrast, those that
might change are labeled as SAmult, meaning that there are multiple possible outcomes at each time step.
“none” does not imply “no action”, but means instead “none of the other options”. “port” is an action
for exporting molecules to other simulators, such as MOOSE. The actions SAadsorb, SArevdes (reversible
desorption), SAirrevdes (irreversible desorption), and SAf1lip (change of surface-bound state), are returned
by the surfaction function, but are not options that the user can choose. This is because they are, in a
sense, sub-actions within the SAmult option and they cannot be chosen for exclusive use.

DrawMode lists the drawing modes for polygons or other surfaces. vert or v are for vertices, edge or e
is for edges, and face or f are for faces. Where multiple options are listed, Smoldyn is supposed to draw
multiple methods simultaneously, although I don’t believe that it supports this at present. Numbers are
explicitly specified in DrawMode because there are distinct bits for vertex, edge, or face, which allows them
to be extracted from the code using bitwise logic operations.

SMLflag (stands for surface molecule list) lists binary flags for the molecule lists for which surface checking
is required. For example, if the SMLdiffuse flag is set for some molecule list, then surfaces need to be checked
for all molecules in that list after diffusion occured. Similarly, those with SMLreact set need to be checked
after reactions occur, because they might have been placed across a surface during product placement. Those
with SMLsrfbound set are surface bound molecules that might be able to desorb or flip orientation.

typedef struct surfactionstruct {

int *srfnewspec; // surface convert mol. species [ms]
double *srfrate; // surface action rate [ms]

double *srfprob; // surface action probability [ms]
double *srfcumprob; // surface cumulative probability [ms]
int *srfdatasrc; // surface data source [ms]

double *srfrevprob; // probability of reverse action [ms]

} *surfactionptr;

The surface action structure collects together details for surface actions. It is typically only allocated if a
surface action for a specific molecular species, molecular state, and surface interaction face is of type SAmult,
meaning that multiple possible outcomes are possible. This arises for the “rate” Smoldyn statement, and
not for the “action” statement. In that case, this structure records the rate at which conversion can take
place to each of the possible output states, the probability of each of these transitions for each time step,
the cumulative probabilities (used for efficient simulation), the new species that should be created upon
transition (usually the same as the current species, but not necessarily), and the source of the interaction
rate data. Each of the vectors in the surface action structure is allocated to size MSMAX1, meaning that
MSbsoln is an allowed outcome state. The srfdatasrc value is initialized to 0, is set to 1 if the user entered
an interaction rate, is set to 2 if the user entered an interaction probability, or is set to 3 if the user entered
a certain action (see next paragraph) with the “action” statement. Note that each of these vectors refers to
the new state so, for example, srfnewspec, lists the new species that should happen upon changing to each
of the possible new states.

This data structure is also allocated for simple surface actions, arising for the Smoldyn “action” statement
if there is a new species. In this case, the entire data structure is ignored, except only for one element of the
srfnewspec vector. The element is not the new state, as it is normally, but the originating state.

typedef struct panelstruct {

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 65

char *pname; // panel name (reference, not owned)

enum PanelShape ps; // panel shape

struct surfacestruct *srf; // surface that owns this panel

int npts; // mumber of defining points

double **point; // defining points, [number][d]

double #**oldpoint; // prior defining points, [number][d]

double front [DIMMAX]; // front parameters, which depend on the shape

double oldfront [DIMMAX]; // prior front parameters, which depend on the
shape

struct panelstruct *jumpp[2];// panel to jump to, %f appropriate [facel]

enum PanelFace jumpf [2]; // face to jump to, if appropriate [facel

int maxneigh; // mazimum number of mneighbor panels

int nneigh; // number of mneighbor panels

struct panelstruct **neigh; // list of neighbor panels [p]

double *emitterabsorb[2]; // absorption for emitters [facell[i]

} *panelptr;

pname is a pointer to the panel name, which is contained in the surface structure; this memory is owned
by the surface, not by the panel. ps is the panel shape. srf is a pointer to the surface that owns this panel;
it would be called a surfaceptr, except that a surfaceptr isn’t declared until later. npts is the number of
dim-dimensional points that are allocated for this panel. point and front have meanings that depend on
the panel shape and on the dimensionality, described in the preceding table. jumpp and jumpf are used for
periodic boundary conditions and jumping molecules; these are the panel and face that a molecule will be
sent to if it collides with the front or back face of this panel. maxneigh is the number of neighbor references
that are allocated, nneigh is the number of neighboring panels and neigh is the list of neighboring panels.
These neighboring panels may be within the same surface or on a different surface. These are used for
diffusion of surface-bound molecules. Neighbors are only allocated as necessary (by the surfsetneighbors
function). emitterabsorb[face] [i] is the panel absorption probability for face face and species i to
account for emitters (see the user’s manual). It is only allocated if necessary.

The oldpoint and oldfront elements are for moving surfaces. They are used to show where a surface
came from. They are used only when a surface is about to be moved and during the moving process.

typedef struct surfacestruct {

char *sname; // surface name (referemce, not owned)
struct surfacesuperstruct *srfss; // owning surface superstructure
int selfindex; // indexz of self

enum SrfAction ***action; // action for molecules [t][ms][facel]
surfactionptr ***actdetails; // action details [i][ms][face]

int neighhop; // whether molecules hop between neighbors
double fcolor [4]; // RGBA color wector for front

double bcolor [4]; // RGBA color wector for back

double edgepts; // thickness of edge for drawing
unsigned int edgestipplel[2]; // edge stippling [factor,pattern]
enum DrawMode fdrawmode; // polygon drawing mode for front

enum DrawMode bdrawmode; // polygon drawing mode for back
double fshiny; // front shininess

double bshiny; // back shininess

int maxpanel [PSMAX]; // allocated number of panels [ps]

int npanel [PSMAX]; // actual number of panels [ps]

char **pname [PSMAX]; // mames of panels [ps][p]

panelptr *panels[PSMAX]; // list of panels [ps][p]

struct portstruct *port[2]; // port, <f any, for each face [face]
double totarea; // total surface area

int totpanel; // total number of panels

double *areatable; // cumulative panel areas [pindez]
panelptr *paneltable; // sequential list of panels [pindez]
int *maxemitter [2]; // mazimum number of emitters [facell[i]
int *nemitter [2]; // number of emitters [facell[i]

double **emitteramount [2]; // emitter amounts [facel[<i][emit]

66 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

double ***xemitterpos[2]; // emitter postitions [facel[<t][emit][d]
int *maxmol; // allocated size of live lists [ll]

int *nmol; // mumber of molecules in live lists [l1l]
moleculeptr **mol; // live molecules on the surface [L1][m]

} *surfaceptr;

selfindex is the index of the surface in the surface structure; this is useful in case the surface is sent to
a function using a pointer and the function needs to know which surface it is. action lists the the actions
that happen to molecules for each state. It is allocated to size [maxspecies|[MSMAX][3], which means that
it does not allow the MSbsoln state and also that it allows PFfront, PFback, or PFnone panel faces. An
action may be, for example, SAreflect or SAno, if these actions always happen and is SAmult if there are
multiple possible actions that could happen at any particular time step. This vector has maxident elements
times MSMAX elements to account for each molecule species and then each state. Only for those that have
type SAmult, is the data pointed to by actdetails relevant. As described above, these details list the action
rates, probabilities, and other values for transitions between states for each molecular species. neighhop tells
whether surface-bound molecules should be allowed to hop to neighboring panels upon collision or whether
they should stay on the originating panel.

fcolor and bcolor are the colors of the front and back of the surface in the order: red, green, blue,
alpha; each has a value between 0 and 1. edgepts is the thickness of edges in points for drawing, which
applies to all drawing situations except for 3D and when the surface faces are rendered. fdrawmode and
bdrawmode describe how the surface front and back should be drawn. Not all options apply to 1D and 2D
simulations. £shiny and bshiny are shininess values for OpenGL surface rendering. maxpanel and npanel
are the number of panels that are allocated or used, respectively, for each of the panel shapes. panelname
lists a name for each panel. panels are lists of pointers to the panels for the possible shapes. Note that
every panel within a surface has the same drawing scheme and the same interaction with molecules. port
points to the port structure that applies to each face, if any.

Considering all surface panels, the total surface area is totarea and there are totpanel panels. These
panels are listed sequentially in the list paneltable, and their cumulative areas are listed in areatable.
Thus, for example, areatable[0] is the area of the first panel and areatable[totpanel-1] is equal to
totarea. These four elements are set up in surfacesupdate.

Although it is a rather specialized function, surfaces can be configured to absorb molecules with
coefficients that yield concentrations that are the same as those for unbounded systems (see the user’s
manual). This configuration relies on the definitions of point “emitters”. For face face and species
i, maxemitter[face] [1] emitters are allocated, of which nemitter[face] [i] are actually used. These
emitters have amount emitteramount[face] [i] [emit] (emit is the emitter index) and are at locations
emitterpos[face] [i] [emit] [d], where d is the index for the dimensionality.

For Smoldyn version 2.50, I added molecule lists in surfaces, so surfaces know what molecules are adsorbed
to them. These lists are in the maxmol, nmol, and mol lists. Molecules are assigned to these lists in the
assignmolecs function in smolboxes.c.

typedef struct surfacesuperstruct {

enum StructCond condition; // structure condition

struct simstruct *sim; // simulation structure

int maxspecies; // mazimum number of molecular species
int maxsrf; // mazimum number of surfaces

int nsrf; // number of surfaces

double epsilon; // maz deviation of surface-point from surface
double margin; // panel margin away from edge

double neighdist; // meighbor distance wvalue

char **snames; // surface names [s]

surfaceptr *srflist; // list of surfaces [s]

int maxmollist; // number of molecule lists allocated

int nmollist; // number of molecule lists used

enum SMLflag #*srfmollist; // flags for molecule lists to check [11l]

} *surfacessptr;

This is the superstructure for surfaces. condition is the current condition of the superstructure and sim

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 67

is a pointer to the simulation structure that owns this superstructure. maxspecies is a copy of maxspecies
from the molecule superstructure, and is the allocated size of the surface action, rate, and probability
elements. maxsrf and nsrf are the number of surfaces that are allocated and defined, respectively. epsilon
is a distance value that is used when fixing molecules to panels; if a molecule is already within epsilon of a
panel and on the correct side, no additional moving is done. margin is the distance inside the edge of a panel
to which molecules are moved if they need to be moved onto panels. neighdist is used for the diffusion
of molecules on a surface; if the point where a molecule diffuses off of one panel is within neighdist!/2 of
the closest point on another panel, then the molecule can move to the neighboring panel. snames is a list
of names for the surfaces. srflist is the list of pointers to surfaces. srfmollist is a list of flags for which
molecule lists need to be checked for surface interactions; maxmollist and nmollist are local copies of
sim->mols->maxlist and sim->mols->nlist, and are used to read the srfmollist element. The SMLflag
enumerated values are or-ed together in these elements.

It was surprisingly difficult to get surfaces to work well enough that diffusing molecules did not leak
through reflective panels. Because of that, the code is written unusually carefully, and in ways that are not
necessarily obvious, so be careful when modifying it. For example, round-off error differences between two
different but mathematically identical ways of calculating a molecule distance from a surface can easily place
the molecule on the wrong side of a surface panel.

If a molecule is exactly at a panel, it is considered to be at the back side of the panel. Initially, I defined
direct collisions as collisions in which the straight line between two points crosses a surface, whereas an
indirect collision is one in which the straight line does not cross a surface but it was determined with a
random number that the Brownian motion trajectory did contact the surface. Indirect collisions proved
to slow down the program significantly, greatly complicate the code development, and provided minimal
accuracy improvements, so I got rid of them. Now, only direct collisions are detected and dealt with.

Function interdependence

Following is a partial listing of what functions call what other functions. This is incomplete but could be
completed relatively easily if necessary.

surfreadstring
name
surfaddsurface
surfenablesurfaces if needed
surfacessalloc
surfacealloc
emittersalloc
action
surfsetaction
surfsetcondition to SCparams
rate or rate_internal
surfsetrate
surfaceactionalloc if needed
surfsetcondition to SCparams
color
surfsetcolor
thickness
surfsetedgepts
stipple
surfsetstipple
polygon
surfsetdrawmode
shininess
surfsetshiny
max_panels (deprecated function)
surfsetmaxpanel

68

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS
panelsalloc
panel
surfaddpanel
panelsalloc if needed
emittersalloc
surfsetcondition to SClists
boxsetcondition to SCparams
jump
surfsetjumppanel
neighbors

surfsetneighbors, allocates space as needed
unbounded_emitter
surfaddemitter
emittersalloc if needed
surfsetcondition to SCparams

surfsetepsilon

surfenablesurfaces if needed, see above

surfsetmargin

surfenablesurfaces if needed, see above

surfsetneighdist

surfenablesurfaces if needed, see above

Surface functions

enumerated types

enum PanelFace surfstring2face(char *string);

Converts panel face string to an enumerated panel face type. Input strings are “front” for the front,
“back” for the back, or “all” or “both” for both sides. Also, initial portions of these strings, such as
“f” or “fro” are sufficient. Other inputs result in PFnone.

char *surfface2string(enum PanelFace face,char *string);

Converts enumerated panel face to a string, in string, which must be pre-allocated. Output strings
are “front”, “back”, “both”, or “none”. string is returned to allow for function nesting.

enum SrfAction surfstring2act(char *string);

Converts action string to an enumerated action type. Input strings are the same as the SrfAction
strings. Initial portions of strings are sufficient. Unknown strings result in SAnone. This cannot return
the actions SAadsorb, SAirrevdes, SArevdes, or SAflip, because the user cannot enter them. They
are "sub-actions” of SAmult.

char *surfact2string(enum SrfAction act,char *string);

Converts enumerated surface action act to a string, in string, which must be pre-allocated. Output
strings are “reflect”, “transmit”, etc. string is returned to allow for function nesting.

enum PanelShape surfstring2ps(char *string);

Converts panel shape string to an enumerated panel shape type. Input strings are the same as
PanelShape strings.

char *surfps2string(enum PanelShape ps,char *string);

Converts enumerated panel shape to a string. Output strings are abbreviated shape names, such as
“rect” to designate a rectangle. Also, PSall and PSnone result in the strings “all” and “none”. string
is returned to allow for function nesting.

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 69

enum DrawMode surfstring2dm(char *string);
Converts drawing mode string to an enumerated drawing mode type. Input strings are DrawMode
names. Unrecognized input results in DMnone.

char *surfdeString(enum DrawMode dm,char *string);
Converts enumerated drawing mode to a string. Output strings are abbreviated drawing mode names.
string is returned to allow for function nesting.

low level utilities

int readsurfacename(simptr sim,char *str,enum PanelShape *psptr,int *pptr);

Reads the first word of string str to parse the surface name and an optional panel name, which are
entered in the format surface:panel. Returns the surface index directly and, if the pointers are not
NULL, returns the panel shape in psptr and the panel index in pptr. Returns the surface index, or -1
if str is missing, -2 if no surfaces have been defined in the current simulation, -3 if the name string
cannot be read, -4 if the surface name is unknown, or -5 if the surface is “all”. In psptr and pptr are
returned, respectively: PSnone and -1 if the panel is not given, PSnone and -2 if the surface is “all” and
the panel is something else (this is an error), PSnone and -3 if the panel name is unknown, PSall and
-5 if the panel is “all”, and otherwise the panel shape and panel number. These outputs were changed
4/24/12; while developing Smoldyn 2.27.

int panelpoints(enum PanelShape ps,int dim);
Returns the number of point elements that need to be allocated for a panel of shape ps and for system
dimensionality dim. These numbers are the same as those listed in the table above. 0 is returned
for inputs that don’t make sense (e.g. PSall) or for shapes that are not permitted in the requested
dimension.

int surfpanelparams(enum PanelShape ps,int dim);
Returns the number of numerical parameters that the user needs to enter to define a panel of shape
ps and in a dim dimensional system. 0 is returned for inputs that don’t make sense of for shapes that
are not permitted in the requested dimension.

void panelmiddle(panelptr pnl,double *middle,int dim,int onpanel);

Returns the middle of panel pnl in the dim-dimensional vector middle; dim is the system dimensionality.
For spheres, hemispheres, and cylinders, the middle point is the actual center location if onpanel is
0, which is enclosed by the panel but not on it; for these, set onpanel to 1 for middle to be returned
as a point on the panel, although it will no longer be in the middle. onpanel is ignored for rectangles,
triangles, and disks. If onpanel is 1: for spheres, the returned point is directly to the positive z
direction from the sphere center; for cylinders, the returned point is as close as possible to the center
point; and for hemispheres, the returned point is the center of the on-panel locations.

double panelarea(panelptr pnl,int dim);
Returns the area of panel pnl; dim is the system dimensionality, as always.

double surfacearea(surfaceptr srf,int dim,int *totpanelptr);
Returns the total area of surface srf; dim is the system dimensionality. If totpanelptr is not NULL,
it is returned with the total number of panels in the surface. This function calculates the area, rather
than just returning the value that is in the totarea surface element.

double surfacearea2(simptr sim,int surface,enum PanelShape ps,char *pname,int

*totpanelptr) ;

Returns the area of one or more panels. For the area of a single panel, the inputs are the surface
number, the panel shape, and the panel name. The area is returned (number of points for 1-D, line
length for 2-D, and area for 3-D). If totpanelptr is sent in as not NULL, it will point to the integer
1 on return. For multiple panels, set any or all of the inputs to “all” using: a negative number for
surface, PSall for ps, and/or “all” for pname; totpanelptr will point to the number of panels included
in the sum. For example, if surface is a positive number, ps is PSall, and panel is “all”’, then the total

70 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

area of all panels of the specified surface is found. Or, if surface is negative, ps is PSall and pname is
“endcap” then the area is found for all panels named “endcap”, regardless of their surface or shape. If
no panels match the input description, 0 is returned and totpanelptr is left pointing to a 0.

void panelrandpos(panelptr pnl,double *pos,int dim);
Returns a random position, in pos, on the surface of panel pnl, in a dim dimensional system. The
result might be on either side of the panel.

panelptr surfrandpos(surfaceptr srf,double *pos,int dim);
Returns a random position, in pos, on the surface srf, in a dim dimensional system. The result might
be on either side of the surface. The return value is a pointer to the panel that the point is in, or NULL
if the surface has no panels.

int issurfprod(simptr sim,int i,enum MolecState ms) ;

Determines if molecule identity i and state ms is the product of a surface action, accounting for all
surfaces. Returns 1 if so and 0 if not. ms can be MSbsoln. This should work after surfaces have been
loaded and either before or after they have been set up. This does not return 1 if molecule i and state
ms only participates in surface interactions, but is not produced by them. For example, if a molecule
type simply reflects off of a surface with no species or state change, then this doesn’t count. On the
other hand, if a molecule type is produced when a molecule of a different state adsorbs to a surface,
then this does count.

int srfsamestate(enum MolecState msl,enum PanelFace facel,enum MolecState ms2,enum
MolecState *ms3ptr);
Determines if a molecule in state ms2 is in the same state as it was in ms1, and returns 1 if so and
0 if not. Also, if ms3ptr is not NULL, this returns the state that is the same as the ms1 and facel
information in the value pointed to by ms3ptr. This returns values from the following table.

interaction class forward states action return values

ms1 facel ms2 function *ms3ptr

soln front fsoln reflect 1 fsoln

7 ? bsoln | transmit 0 fsoln

collision from ? ? bound adsorb 0 fsoln

solution state ” back fsoln transmit 0 bsoln

7 ? bsoln reflect 1 bsoln

? ? bound adsorb 0 bsoln

impossible 7 none any 0 none

bound front fsoln reflect 1 fsoln

7 ? bsoln | transmit 0 fsoln

collision from 7 7 bound’ hop 0 fsoln

bound state ? back fsoln transmit 0 bsoln

7 ? bsoln reflect 1 bsoln

” ? bound’ hop 0 bsoln

action from ” none fsoln desorb 0 bound

bound state ” ? bsoln desorb 0 bound

? ? bound no 1 bound

” 7 bound’ flip 0 bound

void srfreverseaction(enum MolecState msl,enum PanelFace facel,enum MolecState ms2,enum
MolecState *ms3ptr,enum PanelFace *face2ptr,enum MolecState *ms4ptr);
This function simply takes in a surface interaction are returns what the reverse interaction would be.
It does not consider the specifics of individual surfaces, any interaction rates, or any other details.
Instead, it simply inverts the table of surface interactions that is presented above. More specifically,
given that some molecule starts with state ms1, interacts with facel of a surface, and then ends in
state ms2, this finds the reverse surface action. In this reverse action, the molecule starts in state

5.6.

void

SURFACES (FUNCTIONS IN SMOLSURF.C) 71

ms3, interacts with face2, and ends in state ms4. These latter parameters are pointed to by ms3ptr,
face2ptr, and msdptr, respectively. In concept, the reverse action is that ms3 should equal ms2 and
ms4 should equal ms1, although it’s rarely this simple. The reason is that the starting states cannot
include MSbsoln, whereas the end states can include it, and also the actions have to allow for surface-
bound molecules to interact with other surfaces that they cross. The following table shows the input
and output values.

interaction class forward states action reverse states

msil facel ms2 ms3 face2 ms4

soln front fsoln reflect soln front fsoln

7 ? bsoln transmit soln back fsoln

collision from 7 7 bound bind bound none fsoln
solution state 7 back fsoln transmit soln front bsoln
7 ” bsoln reflect soln back bsoln

7 ? bound bind bound none bsoln

impossible 7 none any impossible | none none none
bound front fsoln reflect bound front fsoln

” ? bsoln transmit bound back fsoln
collision from 7 7 bound’ hop bound’ both bound
bound state 7 back fsoln transmit bound front bsoln
7 ” bsoln reflect bound back bsoln
7 ? bound’ hop bound’ both bound
action from 7 none fsoln desorb soln front bound
bound state 7 ” bsoln desorb soln back bound
7 ? bound’ flip bound” none bound

The italicized rows for the “reverse states” columns indicate that a bound-state molecule collided with
a new surface and then hopped to this new surface. In this case, it’s easy to know the beginning and
ending states, but it is impossible to know the face of the reverse action. Also, the kinetics of the
reverse process cannot be ascertained without knowing which surface the molecule was initially bound
to. For this reason, a face2 return value of PFboth indicates that the molecule hopped from one
surface to another, which means that the interaction face of the reverse action cannot be determined
without further information. This might be interpreted as an error condition. Finally, if ms1 equals
MSsoln and facel equals PFnone, this is an error; in this case, the function returns “none” for all
variables.

srftristate2index(enum MolecState ms,enum MolecState msl,enum MolecState ms2,enum
MolecState *ms3ptr,enum PanelFace *faceptr,enum MolecState *ms4ptr);

Converts between the format that the rate configuration file statement and the surfsetrate function
input, called tristate format, and the index format that the action details data structure uses. This
function converts according to the following table. Rows that are listed in italics may be forbidden as
input combinations, but still make logical sense and so they are converted here.

interaction class tristate format action index format
ms msi ms2 ms3 face ms4
soln/none soln soln reflect soln front fsoln
? ? bsoln transmit soln front bsoln
collision from ? ” bound adsorb soln front bound
solution state ” bsoln soln transmit soln back fsoln
? ” bsoln reflect soln back bsoln
? ” bound adsorb soln back bound
? bound soln desorb bound none fsoln
action from ” ” bsoln desorb bound none bsoln

bound state ? ” bound | no change | bound none bound

72

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

? ” bound’ flip bound none bound’

bound soln soln reflect bound front fsoln

7 7 bsoln transmit | bound front bsoln

? ” bound hop bound front bound
collision from 7 7 bound’ hop bound front bound’
bound state 7 bsoln soln transmit | bound back fsoln
7 ” bsoln reflect bound back bsoln

? ” bound hop bound back bound
” ” bound’ hop bound back bound’

7 bound soln desorb bound none fsoln

action from 7 7 bsoln desorb bound none bsoln
bound state ? ” bound | no change | bound none bound
? ” bound’ flip bound none bound’

impossible ” bound’ any nonsense none none none

void srfindex2tristate(enum MolecState ms3,enum PanelFace face,enum MolecState ms4,enum

MolecState #*msptr,enum MolecState *mslptr,enum MolecState *ms2ptr);

Inverse function as srftristate2index. This function uses the same table as shown for
srftristate2index, but in reverse. There are two ways that actions from bound states can be
described using the tristate format, of which the former uses the default value of ms where it equals
MSsoln and the latter uses the better value, which equals ms1. This function inverts to the better
tristate values.

int srfcompareaction(enum SrfAction actl,surfactionptr detailsl,enum SrfAction

act2,surfactionptr details?2)

Compares the activity levels of actl and act2, returning -1 if actl is “more active”, 1 if act2 is
more active, and 0 if they are the same. If they have exactly the same activity levels, then this
returns 0. If both act1 and act2 equal SAmult, then this turns to the details of these actions, entered
in detailsl and details2, to determine which is more active. Here, the first difference that is
encountered determines which is more active. For the actions, the “activity” of an action is ordered
as: SAtrans | SAmult | SAreflect | SAjump | SAabsorb | SAport.

memory management

surfaceactionptr surfaceactionalloc(int species);

Allocates a surface action structure for storing action details, and returns a pointer to it, or NULL if
memory could not be allocated. Initializes most values to 0 or equivalent. Initializes srfnewspec to
species.

void surfaceactionfree(surfaceactionptr actdetails);

Frees a surface action structure and its data.

int panelsalloc(surfaceptr srf,int dim,int maxpanel,int maxspecies,enum PanelShape ps);

Allocates maxpanels of shape ps for the surface srf; srf cannot be NULL but must be a surface. The
srf element of the panels are set to srf. In srf, the correct maxpanel entry is set to maxpanel, the
npanel entry is unchanged, and the proper list of panels are allocated and cleared. Also, panel names
are created, each of which is set to the panel number, as a default. All points are set to all zeros. The
function returns 1 for success and 0 for failure to allocate memory; if it fails, it does not do a good job
of freeing working memory. The default jump destination is to the opposite side of the same panel.

This function may be called multiple times. It should be called when more panels of shape ps are
needed. It should not be called if the only change is a larger value of maxspecies; in this case, a
simple call to surfacealloc will take care of all required updates. This function calls emittersalloc
to take care of the emitterabsorb panel element.

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 73

void panelfree(panelptr pnl);

Frees a single panel and all of its substructures (but not srf, because that’s a reference and is not
owned by the panel). This is called by surfacefree and so should not need to be called externally.

int emittersalloc(surfaceptr srf,enum PanelFace face,int oldmaxspecies,int maxspecies);

Allocates basic space for emitters (used for concentrations that match those for unbounded diffusion).
This allocates the srf->maxemitter and nemitter arrays, as well as the first levels of the
emitteramount, and emitterpos arrays. It also allocates all of the panel emitterabsorb arrays.
Returns 0 for success or 1 for inability to allocate memory; in the latter case, this will create memory
leaks.

There are three reasons to call this function: to set up the basics of emitters (send in oldmaxspecies
as 0), to address emitter issues for new panels that had not been declared when emitters were set up
originally (send in oldmaxspecies equal to maxspecies), or to allow for a larger maxspecies value
(send in oldmaxspecies as whatever the prior maxspecies value was).

int surfexpandmollist(surfaceptr srf,int newmax,int 11); Allocates the

surface molecule lists and expands them as needed. Returns 0 for success or 1 for failure to allocate
memory. Enter newmax as the new maximum size for list number 11. Enter 11 as -1 to set the number
of molecule lists to newmax rather than to expand a single list.

surfaceptr surfacealloc(surfaceptr srf,int oldmaxspecies,int maxspecies,int dim);

void

Allocates a surface structure, and sets all elements to initial values. maxspecies is the maximum
number of molecular species, which is used for allocating action and actdetails, as well as some
emitter things. Colors are set to all 0’s (black), but with alpha values of 1 (opaque); polygon modes
are set to face if dim is 3, and to edge otherwise; edgepoints is set to 1; action is set to for transmitting
(SAtrans) for the solution elements and to “no” (SAno) for the surface-bound elements. Panels and
emitters are allocated here, although they are updated if necessary. This is called by surfacessalloc
and so should not need to be called externally.

This function can be called multiple times. The two times when it might need to be called are when the
surface does not exist and needs to be allocated, in which case send in srf as NULL and oldmaxspecies
as 0, or when the surface does exist and maxspecies is being updated. In this case, send in the existing
structure in srf and send in the prior number of maximum species in oldmaxspecies.

If this function is unable to allocate adequate memory, it returns NULL. If this is the case, it does not
change any pre-existing srf data structure. In this case (which generally should not arise), it does not
fully free the memory allocated here, leading to memory leaks.

surfacefree(surfaceptr srf,int maxspecies);

Frees a surface, including all substructures and panels in it. This is called by surfacessfree and
so should not need to be called externally. maxspecies is the number of molecule identities that the
system was allocated with.

surfacessptr surfacessalloc(surfacessptr srfss,int maxsurface,int maxspecies,int dim);

void

Allocates a surface superstructure for maxsurface surfaces, as well as all of the surfaces. Each surface
name is allocated to an empty string of STRCHAR (256) characters. Each surface is allocated for
maxspecies species (a value of 0 is allowed). This function may be called more than once. On the first
call, send in srfss as NULL, and the surface superstructure pointer will be returned; if it fails to allocate
memory, it will return NULL. On subsequent calls, send in the existing surface superstructure pointer
in srfss and the superstructure will be expanded as needed for the new larger maxsurface and/or
maxspecies values (they may not be shrunk). In this case, the function will return the same pointer
that was sent in, or NULL if it could not allocate memory; in the latter case, the original superstructure
is unchanged. If this function is unable to allocate adequate memory (which generally should not
arise), it does not fully free the memory allocated here, leading to memory leaks.

surfacessfree(surfacessptr srfss);
Frees a surface superstructure pointed to by srfss, and all contents in it, including all of the surfaces
and all of their panels.

74 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

data structure output

void surfaceoutput(simptr sim);
Prints out information about all surfaces, including the surface superstructure, each surface, and panels
in the surface.

void writesurfaces(simptr sim,FILE *fptr);
Writes all information about all surfaces to the file fptr using a format that can be read by Smoldyn.
This allows a simulation state to be saved.

int checksurfaceparams(simptr sim,int *warnptr);
Checks some surface parameters. Many more should be checked as well, although those haven’t been
written yet.

structure set up

int surfenablesurfaces(simptr sim,int maxsurf);
Allocates and sets up the surface superstructure for a maximum of maxsurf surfaces. This function
may be called multiple times. If the input parameters are different at one call than from the previous
call, then the surface superstructure is updated to the new parameters. Enter maxsurf as -1 to indicate
default operation, meaning that nothing is done if the surface superstructure was allocated previously,
or that 5 surfaces are allocated otherwise. Returns 0 for success (or nothing was done because it was
done previously), 1 for failure to allocate memory, or 2 if sim is undefined.

int surfexpandmaxspecies(simptr sim,int maxspecies);
Expands the number of molecular species that the surfaces can work with, allocating memory as
needed. Surfaces and molecules should be kept synchronized, so this should be called whenever the
master maxspecies changes. Returns 0 for success or 1 for failure to allocate memory.

surfaceptr surfaddsurface(simptr sim,char *surfname) ;
Adds a surface called surfname to the simulation. This enables surfaces and/or allocates more surfaces,
as necessary. A pointer to the surface is returned, or NULL is returned for failure to allocate memory. If
surfname was already declared as a surface, then this function simply returns a pointer to the existing
surface.

void surfsetcondition(surfacessptr surfss,enum StructCond cond,int upgrade);
Sets the surface superstructure condition to cond, if appropriate. Set upgrade to 1 if this is an upgrade,
to 0 if this is a downgrade, or to 2 to set the condition independent of its current value. If the condition
is downgraded, this also downgrades the simulation structure condition.

int surfsetepsilon(simptr sim,double epsilon);
Sets the epsilon value in the surface superstructure. Returns 0 for success, 2 if the surface
superstructure did not exist and could not be created, or 3 for an illegal requested value (< 0).

int surfsetmargin(simptr sim,double margin);
Sets the margin value in the surface superstructure. Returns 0 for success, 2 if the surface
superstructure did not exist and could not be created, or 3 for an illegal requested value (< 0).

int surfsetneighdist(simptr sim,double neighdist);
Sets the neighbor distance value in the surface superstructure. Returns 0 for success, 2 if the surface
superstructure did not exist and could not be created, or 3 for an illegal requested value (< 0).

int surfsetneighhop(surfaceptr srf,int neighhop);
Sets the neighhop element of the surface structure to the value entered. Returns 0 unless srf is NULL,
in which case it returns 1.

int surfsetcolor(surfaceptr srf,enum PanelFace face,double *rgba);
Sets the color vector for face face of surface srf to rgba. Any face value is allowed, including both
and none. Returns 0 for success, 1 if no surface was entered, or 2 if one or more of the color or alpha
values is out of range (between 0 and 1 inclusive).

5.6.

int

int

int

int

int

int

int

int

SURFACES (FUNCTIONS IN SMOLSURF.C) (0]

surfsetedgepts(surfaceptr srf,double value);
Sets the drawing thickness for surface srf to value. Returns 0 for success, 1 if no surface was entered,
or 2 if value is negative.

surfsetstipple(surfaceptr srf,int factor,int pattern);

Sets the stippling pattern for drawing surface srf. factor, which needs to be at least 1, is the repeat
distance for the entire stippling pattern and pattern, which needs to be between 0 and OxFFFF
inclusive, is the pattern to be used. Enter either or both as negative values to not set that parameter.
Returns 0 for success, 1 if the surface is undefined, or 2 if inputs are out of range.

surfsetdrawmode (surfaceptr srf,enum PanelFace face,enum DrawMode dm);

Sets the surface drawing mode of face face of surface srf to dm. Any face value is allowed. The only
drawing mode that is not allowed is DMnone. Returns 0 for success, 1 if the surface is undefined, or 2
if the drawing mode is out of range.

surfsetshiny(surfaceptr srf,enum PanelFace face,double shiny);

Sets the shininess of face face of surface srf to shiny. Any face value is allowed. The shininess needs
to be between 0 and 128, inclusive. Returns 0 for success, 1 if the surface is undefined, or 2 if the
shininess is out of range.

surfsetaction(surfaceptr srf,int ident,const int *index,enum MolecState ms,enum
PanelFace face,enum SrfAction act,int newident);

Sets the action element of surface srf. ident is the molecule species, which should be a valid species
index, -5 to indicate all species, or 0 to indicate a group of species, perhaps with a wildcard. If value 0
is used, then index should be sent in as the index element that gets returned by molstring2index1.
ms is the species state, which should be a regular species state (not MSbsoln) or should be MSall to
indicate all states. face is the interaction face of the surface, if any; it is allowed to adopt any value,
including PFfront, PFback, PFboth (to indicate both front and back), or PFnone to indicate actions
for surface-bound species that do not collide with other surfaces. act is the desired action. newident
is the new identity of the molecule; set it to -1 for no new identity. Returns 0 for success, 1 if ident
is out of range, 2 if ms is out of range, or 3 if the requested action is not permitted for the indicated
interaction face.

surfsetrate(surfaceptr srf,int ident,const int *index,enum MolecState ms,enum
MolecState msl,enum MolecState ms2,int newident,double value,int which);

Sets the srfrate or srfprob element of the action details of surface srf, along with the srfnewspec
and srfdatasrc elements. See the data table for the srftristate2index function for the possible
input combinations of ms, ms1, and ms2 and what they mean (this function uses the tristate input
format). Enter ident as a positive number to indicate a specific species, -5 to indicate all species, or
-6 to indicate wildcard selected species (channel 0). Typically, newident will be the same as ident,
although it can be different for a species change at the surface. value is the desired rate or probability
value. Enter which as 1 to set the srfrate element and as 2 to set the srfprob element. Returns 0
for success, 1 if ident is out of range (equal to 0), 2 if ms is out of range, 3 if ms1 is out of range, 4 if
ms2 is out of range, 5 if newident is out of range, 6 if value is out of range, or -1 if memory could not
be allocated for the surface action details data structure.

surfsetmaxpanel (surfaceptr srf,int dim,enum PanelShape ps,int maxpanel);
Sets the maximum number of panels of shape ps for surface srf to maxpanel. The system
dimensionality is dim. This function may be called multiple times. It allocates memory as needed.

surfaddpanel (surfaceptr srf,int dim,enum PanelShape ps,char *string,double
*xparams,char *name) ;
Adds or modifies a panel of shape ps to surface srf, in a dim dimensional system. string lists any text
parameters for the panel, which in practice is only a single word that gives the orientation of a rectangle
panel (e.g. “+0” or “y”). params lists the numerical parameters for the panel location, size, and
drawing characteristics. The number of necessary parameters can be found from the surfpanelparams
function and the specific parameters, which depend on the panel shape and the system dimensionality,

76 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

are described in the User Manual. name is an optional parameter; if it is included and is not an empty
string, the panel is named name. If this panel name was already used by a panel of the same shape,
then this function overwrites that panel’s data with the new data. If the name was already used by a
panel with a different shape, then this creates an error, and if the name was not used before, then a
new panel is created. To use default panel naming, send in name as either NULL or as an empty string.

This function returns 0 for success, -1 for inability to allocate memory, 1 for missing surface, 2 for ps
out of range, 3 for unable to parse string, 4 for drawing slices or stack are zero or negative, 5 for
cylinder ends are at same location, 6 for hemisphere outward pointing vector has zero length, 7 for a
zero or negative radius, 8 for a normal vector with zero length, or 9 if the panel name was used before
for a panel with a different shape.

This function calculates all of the geometrical data that are stored with the panel, such as the normal
direction and the edge normals.

int void surftransformpanel (panelptr pnl,int dim,double *translate,double *origin,double

xexpand) ;

Performs translation and expansion of a surface panel, while maintaining the panel shape as much as
possible. Enter the translation vector in translate, the origin coordinates about which the expansion
should be performed in origin, and the expansion values for the different coordinates in expand. If
expansion should be isotropic, enter the same values for all components of the epxand vector. Each
component should be 1 for no expansion, less than 1 for retraction, and greater than 1 for expansion.
Negative values indicate inversion. This function updates all panel point and front values. This lowers
the surface condition, box condition, and compartment condition to indicate that some recomputation
is needed. Note that Smoldyn cannot distort spheres, hemisphere, cylinders, or disks, so anisotropic
expansion is only done approximately.

Most of this function is quite straightforward. Each panel point value that represents an actual
coordinate is transformed through translation and expansion. Normals are recomputed as needed.
Note that all computations are done in-place, which is usually easy, but some care is required to make
sure that one is using the correct values. Several functions transform the radius of a panel. The math
for this is as follows. Consider a 2D system, a radius vector (often given as radiusv in the code), r, and
suppose that the expansion vector is (e;,e,). Also assume this radius vector starts at the expansion
origin. In this case, the transformed vector endpoint will be at (e;ry,eyry). This means that the new
radius will be (e2r2 + 612/7“12/)1/ 2. If the old radius vector has length 7 and is parallel to the unit vector n,
then the new radius is r(e2n2 +e§n§)1/ 2. For 3D objects, anisotropic expansion would normally distort
shapes away from being perfect cylinders, hemispheres, spheres, or disks. However, Smoldyn does not
support such distorted shapes, so this function just picks specific radius vectors and uses those.

void surftranslatepanel(panelptr pnl,int dim,double *translate);
Translates panel pnl by amount given in translate. No superstructure conditions are changed in this
function. This function is similar to surftransformpanel but it much simpler.

void surfupdateoldpos(surfaceptr srf,int dim);
Copies the contents of each panel point element to the panel oldpoint element, and also each front
element to the panel oldfront element. Use this when a surface is about to be moved and the oldpoint
and oldfront elements should represent the prior location.

void surftranslatesurf(surfaceptr srf,int dim,double *translate);
Translates surface srf by amount given in translate. The box superstructure condition is downgraded
to SCparams.

int surfsetemitterabsorption(simptr sim);
Sets emitter absorption probabilities for panels based on emitter information in the surface structures.
Returns 0 for success or 1 if one or more of the distances between emitters and a surface panel was
zero (which leads to divide-by-zero errors).

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 7

int surfsetjumppanel (surfaceptr srf,panelptr pnll,enum PanelFace facel,int

bidirect,panelptr pnl2,enum PanelFace face2);

Sets up jumping between face facel of panel pnll and face face2 of panel pnl2, for surface srf.
Jumping is set up to be unidirectional, from pnll to pnl2 if bidirect equals 0 and is set up to go
in both directions if bidirect equals 1. This only sets the panel jumping indices and does not assign
jumping actions to any molecules. Returns 0 for success, 1 for no surface, 2 for no pnli, 3 for facel
out of range, 4 for bidirect out of range, 5 for an error with pnl2 including it having a different shape
from pnl1 or it equaling pnll, and 6 for face2 out of range.

double srfcalcrate(simptr sim,surfaceptr srf,int i,enum MolecState msl,enum PanelFace

face,enum MolecState ms2);

Calculates the actual rate for the interaction of a molecule of type i and state msi
interacting with face face of surface srf, and ending up in state ms2. This uses the
srf->actdetails[i] [ms] [face]->srfprob[ms2] data to calculate the actual conversion rate, and
accounts for reversible interactions as much as possible. All cases are calculated assuming steady-state
behavior, and all are found using the SurfaceParam.c function surfacerate. Returned rates will be
between 0 and MAX DBL. Error codes are returned with negative numbers: -1 indicates that the input
situation is impossible (i.e. ms1=MSsoln and face=PFnone), or that input data are unavailable (i.e. the
surface action isn’t SAmult or the action details aren’t recorded for this action); -2 indicates that the
interaction probabilities haven’t been computed yet in the action details structure, probably because
the appropriate set up routine hasn’t been called yet; and -3 indicates that reflection coefficients were
requested, which cannot be computed here. See srfcalcprob.

double srfcalcprob(simptr sim,surfaceptr srf,int i,enum MolecState msl,enum PanelFace

face,enum MolecState ms2);

Calculates the surface interaction probability for the interaction of a molecule of type i and
state ms interacting with face face of surface srf, and ending up in state ms2. This uses the
srf->actdetails[i] [ms] [face] ->srfrate[ms2] data to calculate the conversion probability, and
accounts for reversible interactions as much as possible. All cases are calculated assuming steady-state
behavior, and all are found using the SurfaceParam.c function surfaceprob. Returned probabilities
will be between 0 and 1, inclusive, or an error code. Error codes are returned with negative numbers:
-1 indicates that input data are unavailable (i.e. the surface action isn’t SAmult or the action details
aren’t recorded for this action); -2 indicates that the rate is listed as being negative, which is impossible;
and -3 indicates that reflection probabilities were requested, which cannot be computed here. See
srfcalcrate.

int surfsetneighbors(panelptr pnl,panelptr *neighlist,int nneigh,int add);

Adds or removes neighbors to or from a panel’s list of neighbors. pnl is the panel whose neighbor list
should be modified, neighlist is a list of neighboring panels to be added or removed, nneigh is the
number of neighbors that are listed in neighlist, and add is 1 if those listed in neighlist should be
added, or 0 if they should be removed. For addition, neighbors are not added again if they are already
in the list. If all neighbors should be removed, send neighlist in as NULL. This allocates space as
needed. It returns O for success or 1 if not enough space could be allocated. For optimal memory
allocation, it’s slightly better if many neighbors are added at once in a single function call, rather than
one neighbor per function call.

int surfaddemitter (surfaceptr srf,enum PanelFace face,int i,double amount,double *pos,int
dim) ;
Adds an emitter to a surface so that it can be used for simulating unbounded diffusion. This takes
care of any necessary memory allocating. srf is the surface that the emitter is being added to, face is
the surface face, i is the species number, amount is the emitter amount, flux, or weighting, pos is the
dim-dimensional position of the emitter, and dim is the system dimensionality. Returns 0 for success
or 1 if this is unable to allocate memory. This does not calculate the panel absorption probabilities,
but does allocate space for them, if needed.

surfaceptr surfreadstring(simptr sim,surfaceptr srf,char *word,char *line2,char *erstr);

78

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

Reads and processes one line of text from the configuration file, or some other source, for the surface
pointed to by srf. If the surface is not known or has not been defined yet, then set srf to NULL.
The first word of the line should be sent in as word and the rest sent in as line2. If this function is
successful, it returns the surface pointer and it does not change the contents of erstr; if not, it returns
-1 and it writes an error message to erstr.

int loadsurface(simptr sim,ParseFilePtr *pfpptr,char *line2,char *erstr);

loadsurface loads a surface from an already opened disk file pointed to with fptr. lctrptr is a
pointer to the line counter, which is updated each time a line is read. If successful, it returns 0 and
the surface is added to the surface superstructure in sim, which should have been already allocated.
Otherwise it returns the updated line counter along with an error message. If a surface with the same
name (entered by the user) already exists, this function can add more panels to it. It can also allocate
and set up a new surface. If this runs successfully, the complete surface structure is set up, with the
exception of box issues. If the routine fails, any new surface structure is freed.

int surfupdateparams(simptr sim);

Sets the simulation time step for surface parameters. This includes setting the neighbor distance
(srf->neighdist) to 0.1 times the longest surface-bound diffusion rms step-length, and setting surface
interaction probabilities (srf->prob). All probabilities are either simply set to 0 or 1 or are set to an
intermediate value with the SurfaceParam.c function srfprob. The latter ones account for reversible
or competing processes, as appropriate. They are cumulative probabilities. Returns 0 for success or 2
if the molecules aren’t adequately set up.

int surfupdatelists(simptr sim);

Sets up surface molecule lists, area lookup tables, and action probabilities. If calculated probabilities
exceed 1 or add up to more than 1, they are adjusted as needed, although this may affect simulation
results. No warnings are returned about these possible problems, so they should be checked elsewhere.
Returns 0 for success, 1 for inability to allocate memory, or 2 for molecules not being sufficiently set
up beforehand. This function may be called at setup, or later on during the simulation.

int surfupdate(simptr sim);

core

Sets up or updates surface data structures.

simulation functions

enum

void

PanelFace panelside(double* pt,panelptr pnl,int dim,double *distptr,int strict,int
useoldpos);

Returns the side of the panel pnl that point pt is on. If strict is 0, then PFback is returned if the
point is exactly at the panel, while if strict is 1 then PFnone is returned if the point is exactly at
the panel. In general, this should not be set for strict use when getting panel faces and should be for
strict use for assistance in setting panel faces. If distptr is sent in as a non-NULL pointer, its contents
will be set to the distance that pt is away from the infinite panel, with a positive number for the front
side and negative or zero for the back. The values returned by this function define the side that pt
is on, so should be called for other functions that care. The distance value that is returned by this
function is also used to determine the face; thus, if two calls with different pt values return the exact
same distance value, then the same face will be returned. Set useoldpos to 1 if the old point and front
values should be used for the panel position rather than the current point and front values.

panelnormal (panelptr pnl,double *pos,enum PanelFace face,int dim,double *norm);
Returns, in norm, the normal vector for the panel pnl, that points outwards from the face side. If this
is a curved panel, such as a sphere or a cylinder, then pos is the position on the surface for which the
local normal should be computed. If face is not equal to PFfront or PFback, then it is assumed that
the front side is desired.

int lineXpanel(double *ptl,double *pt2,panelptr pnl,int dim,double *crsspt,enum PanelFace

*facelptr,enum PanelFace *face2ptr,double *crossptr,double *cross2ptr,int
xveryclose,int useoldpoint);

5.6.

SURFACES (FUNCTIONS IN SMOLSURF.C) 79

This determines if the line from ptl to pt2 crosses the panel pnl, using a dim dimensional system.
These input variables are not changed by this function; other variables are for output only such that
prior values are not looked at by the function. With those, crsspt must be a dim dimensional vector
and the others may be NULL or can be pointers to single values that will be overwritten. The panel
includes all of its edges. 1 is returned if the line crosses the panel at least once and 0 if it does not. If
it does not cross, all return values except veryclose are undefined. If it crosses, crosspt will be the
coordinates of the crossing, facel will be the side of the panel that is first impacted, face2 will be
the side that is towards pt2, and the contents of crossptr will be the crossing position on the line,
which is between 0 and 1 inclusive. The type of crossing can be determined by looking at the returned
face values. (1) If facel!=face2, then the line crosses the panel exactly once and the contents of
cross2 are undefined. (2) if facel==face?2, then the line crosses the panel exactly twice (implying
a curved panel) for which the first crossing will be recorded in crsspt and crossptr and the latter
in cross2ptr. Suppose the line crosses a hemisphere in such a way that it enters the corresponding
sphere where the hemisphere is open and departs where it is a panel. In this case, the facel value will
equal the inside face (unlike the value returned by panelside). In contrast, if it enters on the closed
side and exits on the open side, both facel and face2 will equal the outside. The same rules apply
for cylinders.

veryclose, if it is entered as non-NULL, is returned equal to 1 if ptl is within VERYCLOSE distance
units of the panel, as 2 if pt2 is this close to the panel, as 3 if both points are this close to the panel,
and as 0 if neither point is this close to the panel. These codes can be used to determine if round-off
error is likely to be a problem.

Set useoldpos if the oldpoint and oldfront elements should be used for the panel position rather
than the current location given in point and front.

While crsspt will be returned with coordinates that are very close to the panel location, it may not
be precisely at the panel, and there is no certainty about which side of the panel it will be on; if it
matters, fix it with fixpt2panel. Similar rules apply for the contents of crossptr and cross2ptr.

Each portion of this routine does the same things, and usually in the same order. Crossing of the
infinite panel is checked, the crossing value is calculated, the crossing point is found, and finally it is
determined if intersection actually happened for the finite panel. For hemispheres and cylinders, if
intersection does not happen for the first of two possible crossing points, it is then checked for the
second point.

int lineexitpanel(double *ptl,double *pt2,panelptr pnl,int dim,double *pnledgept,int

xexitside)

This finds where the line segment that goes from pt1 to pt2 exits the panel pnl. Although it probably
isn’t essential, this function assumes that the line segment is nearly co-planar with its local position
on the panel (or parallel to the panel for 2D). It returns the answer as coordinates in pnledgept. This
works in 1, 2, or 3-D. This returns the side or axis of the panel that the line exits through in exitside.
See below. Returns 0 for success or 1 if pt1 is identical to pt2, which is an error.

For the most part, this function calls other functions for each of the possibilities. An exception is for
2D cylinders, which are really just 2 parallel lines. In this case, this function computes the dot product
between the vector from a cylinder end to pt1l and the cylinder normal vector, using the sign of the
dot product to determine which line to consider. Then, it calls Geo_LineExitLine2 using this line.
This function was new in Smoldyn 2.37.

1D 2D 3D
rectangles, ps = PSrect
1 1 for p[0] 1 for p[0] - p[1]
2 for p[1] 2 for p[1] - p[2]

3 for p[2] - p[3]
4 for p[3] - p[0]

triangles, ps = PStri
1 1 for p[0] 1 for p[0] - p[1]

80

void

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

2 for p[1] 2 for p[1] - p[2]
3 for p[2] - p[3]

spheres, ps = PSsph

1 1 1
cylinders, ps = PScyl
not allowed 1 for p[0] 1 for p[0]
2 for p[1] 2 for p[1]

hemispheres, ps = PShemi
not allowed 1 for cw end 1
2 for ccw end

disks, ps = PSdisk
not allowed 1 for end cw of normal 1
2 for end ccw of normal

paneledgenormal (panelptr pnl,double *pnledgept,int dim,int edgenum,double *normal)
Returns the outward-pointing unit normal vector to the edge of panel pnl, where this normal is plane-
parallel to the local panel surface and perpendicular to the panel edge. In 2D, this normal is parallel
to the panel at its edge. This normal points out of the panel. Send in pnledgept as a point that is
at the edge of the panel (not always used) and edgenum as the number of the edge (not always used).
See the table for 1ineexitpanel for the correct values to use for this input. The result is returned in
the vector normal. If edgenum is entered as zero, then this implies that the point is not at a panel
edge but in the center of the panel somewhere. In this case, this returns a vector that is parallel to the
surface at pnledgept. It is not specified here in which direction this vector points, except simply that
it is parallel to the surface at the point pnledgept.

Most portions of this function are fairly straightforward. This function only works for 2D and 3D,
because it doesn’t make sense in 1D. This function was new in version 2.37.

The sphere portion is written under the assumption that edgenum is equal to zero, because there are
no edges to this surface.

int ptinpanel(double *pt,panelptr pnl,int dim);

enum

Determines if the point pt is inside the finite panel pnl, returning 1 if so and 0 if not. Here, inside
only means that the point is within the volume that is swept out perpendicular to the plane of the
panel, and says nothing about the position of the point relative to the plane of the panel.

This function is nearly identical to the portion of 1ineXpanel that checks whether the position crsspt
is within the panel or not.

SrfAction surfaction(surfaceptr srf,enum PanelFace face,int ident,enum MolecState
ms,int *i2ptr,enum MolecState *ms2ptr);

Returns the surface action that should happen to a molecule of type ident and state ms that interacts
with face face of surface srf. ms needs to be a real molecule state, meaning that it is not allowed
to be MSbsoln. If the state of ident should be changed, then the new state is returned in ms2ptr, if
ms2ptr is not NULL (ms2ptr may be returned pointing to MSbsoln, as well as to MSsoln). If the species
of ident should be changed, then the new species number is returned in i2ptr, if i2ptr is not NULL;
if it should not be changed, then i2ptr is returned pointing to the same value as ident. This function
does not return SAmult; instead, it specifies what should happen in detail, including SAadsorb for
adsorption, SArevdes for reversible desorption, SAirrevdes for irreversible desorption, and SAf1ip for
on-surface state change.

int rxnXsurface(simptr sim,moleculeptr mptrl,moleculeptr mptr2);

Returns 1 if a potential bimolecular reaction between mptrl and mptr2 is across a non-transparent
surface, and so cannot actually happen. Returns 0 if a reaction is allowed. Using the diffusion
coefficients of the two molecules, this calculates the reaction location and then determines which
molecules need to diffuse across which surfaces to get to that location. If the molecules can diffuse
across the necessary surfaces, then the reaction is allowed, and not otherwise. This routine does not

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 81

void

void

allow reactions to occur across jump surfaces. Also, it does not look for jump paths that go from mptr1
to mptr2. Surface-bound molecules that are in their “up” or “down” state are assumed to be accessible
from both sides of the surface, whereas those that are in the “front” or “back” states are accessible
from only one side.

getpanelnormal (double *pt,panelptr pnl,int dim,double *norm);

Finds the local panel normal for panel pnl at position pt, returning the vector in norm. The result
points towards the front side of the panel. This only considers the infinite plane of the panel, while
ignoring its boundaries (similarly, hemispheres are considered to be identical to spheres and cylinders
are considered to be infinitely long).

fixpt2panel (double *pt,panelptr pnl,int dim,enum PanelFace face,double epsilon);
Fixes the point pt onto the face face of panel pnl. Send in face equal to PFnone if pt should be moved
as close as possible to pnl. If it should also be on the front or back face of the panel, as determined
by panelside, then send in face equal to PFfront or PFback, respectively. Before moving, if pt is
already on the proper face and its distance is less than or equal to epsilon, it is not moved; setting
epsilon to 0 ensures moving. This function first moves pt to the panel in a direction normal to the
local panel surface and then nudges pt as required to get it to the proper side. This only considers the
infinite plane of the panel, while ignoring its boundaries (similarly, hemispheres are considered to be
identical to spheres and cylinders are considered to be infinitely long).

int fixpt2panelnocross(simptr sim,double *pt,panelptr pnl,int dim,enum PanelFace

void

face,double epsilon);

This is very similar to fixpt2panel, in that it moves point pt to the correct side of panel pnl based
on the value of face. The difference is that this also ensures that no other panels are crossed in the
process. If other panels are crossed, then this keeps on adjusting the point until no other panels are
crossed. The function usually returns 0 but will return 1 if it tried 20 times to find a suitable fixed
position and was unable to do so; in this latter case, the point is not moved at all. Any crossings of
the panel pnl, and all of its neighboring panels are ignored.

movept2panel (double *pt,panelptr pnl,int dim,double margin) ;

This moves the point pt to the nearest location that it is over the panel pnl, and also inside the edge
by distance margin. This means that pt is not moved into the plane of the panel, which is done by
fixpt2panel, but is moved parallel to the plane of the panel.

int closestpanelpt(panelptr pnl,int dim,double *testpt,double *pnlpt,double margin);

Finds the closest point that is on panel pnl to the test point testpt and returns it in pnlpt. testpt
and pnlpt should not point to the same memory address. This returns an integer which is 0 if the
closest panel point is not on the panel edge, and which is the edge number if the closest panel point is
on an edge. The edge numbers are listed in the table following the lineexitpanel description. If the
test point is exactly at the panel edge, then the edge number is returned.

If the closest panel point is within margin of the edge or a corner, even if the test point is technically
within the panel, then the coordinates at the edge or corner are returned.

double closestsurfacept(surfaceptr srf,int dim,double *testpt,double *pnlpt,panelptr

void

*pnlptr,boxptr bptr);

Finds the closest point that is on the surface srf to the test point testpt and returns it in pnlpt
if pnlpt is not NULL.. This also returns the panel that that point is on, in pnlptr, if panelptr is
not NULL. It returns the distance between testpt and pnlpt, which should always be positive. If this
returns a negative number, that means that the surface has no panels. If bptr is entered as NULL, then
this searches over all panels on the listed surface, but if bptr is entered pointing to a box, then this
only searches the panels that are in that box. pnlpt is allowed to be the same pointer as testpt.

movemol2closepanel (simptr sim,moleculeptr mptr,int dim,double epsilon,double
neighdist,double margin);
Checks to see if surface-bound molecule mptr is within the area of the finite panel mptr->pnl (i.e. over

82

void

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

or under the panel, ignoring the position relative to the plane of the panel). If it isn’t, this sees if
mptr is over a neighboring panel and if so, this puts mptr->pos on the neighboring panel at the correct
location. At the end, and regardless of whether the molecule changed panels or not, the molecule
position is fixed to the correct face of its panel using fixpt2panel. If the molecule needs to be moved
parallel to the plane of a panel, whether back to its original panel or onto a new panel, then it is inset
from the edge by distance margin. This function should only be called if the system dimensionality is
2 or 3.

This function is called by the diffuse function for putting surface-bound molecules in the correct places
after they are diffused. It is also called by the dosurfinteract function after a surface-bound molecule
reflects off of another surface. It was re-written in July-September of 2015, for Smoldyn version 2.37,
because Boris Slepchenko discovered that its prior design produced inaccurate diffusion. In the new
version, the molecule is projected onto its infinite panel according to the local panel normal. If it is
then within the finite panel, the function is done. Otherwise, the function determines the coordinates
where the molecule’s trajectory exits the panel, it picks a random neighboring panel that is close to
these coordinates to be the new panel, and the molecule’s trajectory is rotated over to the new panel.
If there is no new panel, then the molecule bounces off of the edge of the current panel. The function
repeats this process until the full molecule trajectory is used up.

surfacereflect (moleculeptr mptr,panelptr pnl,double *crsspt,int dim,enum PanelFace
face);

This bounces the molecule mptr off of the face face side of panel pnl. Elastic collisions are performed,
which should work properly for any shape panel and any dimensionality. For flat panels, elastic
collisions also apply to Brownian motion. It is assumed that the molecule travels from some point (not
given to this function, and irrelevant) to mptr->pos, via a collision with the panel at location crsspt,
where crsspt is either exactly at the panel or is slightly on impact side of the panel. The molecule
pos element is set to the new, reflected, position, which will always be on the face side of the panel.

int surfacejump(moleculeptr mptr,panelptr pnl,double *crsspt,enum PanelFace face,int

dim) ;

This performs a jump for molecule mptr that hit panel pnl on face face. The contact location is
input in crsspt, which needs to be very close to the panel but does not have to be on the proper side.
This looks up the jump destination and translates both the crsspt value and the molecule position
in mptr->pos to represent this jump. On return, crsspt is on the destination face of the destination
panel. The molecule pos element will always be returned on the destination face side of the destination
panel. For the most part, this function only allows jumps between panels with the same shape, the
same dimensions, and the same orientation. Exceptions are that sphere, hemisphere, and cylinder radii
are allowed to differ between origin and destination panels. This function works for any molecule state.
Returns 0 if no jump happened (i.e. pnl->jumpp[face] was NULL or pnl->jumpf [face] wasn’t either
PFfront or PFback) and returns 1 if a jump happened.

Internally, for each surface, a few things are calculated. delta is the jump offset (jumped position
minus current position) and dir is the relative orientation of the panels (1 if parallel, -1 if antiparallel).
The jump offset is then added to crsspt and to mptr->pos, and subtracted from mptr->posoffset;
the final thing means that pos+posoffset is always the diffused to position, and does not include any
jumps. At the end, the crsspt and molecule position are finalized.

int dosurfinteract(simptr sim,moleculeptr mptr,int 11,int m,panelptr pnl,enum PanelFace

face,double *crsspt);

Performs interaction between molecule and surface for a collision that is known to have happened or
for possible interaction from a surface-bound state. This converts, kills, reflects, adsorbs, desorbs, etc.
molecules, as appropriate. This function is called in three situations: (1) by checksurfaces when a
molecule is found to have diffused across a surface, in which case pnl is the panel that was diffused
across and face is the fact that was diffused into, (2) by checksurfacebound when a molecule is
surface-bound, and thus might be able to desorb or flip, in which case pnl is the panel to which the
molecule is bound and face is PFnone, and (3) by checksurfacesimol which is used by the lattice
hybrid software to check the surfaces for a single molecule; in this case, 11 and m are set to -1. Quite

5.6. SURFACES (FUNCTIONS IN SMOLSURF.C) 83

possibly, the code would be better if these uses were separated into independent functions, but that’s
not the case at the moment. This function is sometimes called twice for the same molecule during a
single time step, if that molecule is both surface-bound and it diffuses across a different panel, but that
should not lead to incorrect rates due to the different input parameters for the two calls.

At the beginning of the function, a few lines take care of special cases. The isneigh test, which only
applies to situation (1) above, determines if the molecule is surface-bound and it diffused across a
neighboring panel. If this test returns true, then the molecule has equal odds of staying on the same
panel or crossing to the new panel. This is used so that molecules can diffuse from, say, one sphere
to a neighboring and intersecting sphere, despite the fact that neither sphere has an open edge. This
special case doesn’t really address a proper surface interaction, but instead enables diffusion from panel
to panel on a single surface. The next test is also for situation (1) and is for collision with unbounded
emitter type surfaces. If neither special case holds, the action is gotten from surfaction. This function
again copes with the two separate situations by testing whether face is PFnone.

On return, crsspt will be on the same side of the surface as the molecule. Returns 1 if the molecule
does not need additional trajectory tracking (e.g. it’s absorbed) and 0 if it might need additional
tracking (e.g. it’s reflected). This function does not consider opposite-face actions. For example, if the
front of a surface is transparent and the back is absorbing, an impact on the front will result in the
molecule being transmitted to the far side, and not being absorbed.

int checksurfacesimol(simptr sim,moleculeptr mptr,double crossminimum) ;

Essentially identical to checksurfaces function, but just for a single molecule. Also, and very
importantly, this assumes that a molecule’s trajectory starts at mptr->via and not at mptr->posx.
The reason is that this function was designed for checking surfaces after a molecule hit a port, so it’s for
the surfaces that are after the “via” position. If the molecule’s list specifies that the molecule should
be in a port buffer, even if it isn’t there already, then the live list is not updated further to reflect new
surface interactions. However, the molecule will still change states, get killed, etc. as appropriate. The
crossminimum value is used to indicate that a crossing should be ignored unless its value is greater
than the crossminimum value. As usual, the value is the distance along the molecule’s straight-line
trajectory where the crossing occurs, where 0 is the starting point and 1 is the ending point. This check
adds a distance of VERYCLOSE to the crossminimum value to prevent unintentional cross determinations
due to round-off error.

Returns 0.

int checksurfaces(simptr sim,int 11,int reborn);

Takes care of interactions between molecules and surfaces that arise from diffusion. Molecules in live
list 11 are considered; if reborn is 1, only the reborn molecules of list 11 are considered. This transmits,
reflects, or absorbs molecules, as needed, based on the panel positions and information in the molecule
posx and pos elements. Absorbed molecules are killed but left in the live list with an identity of zero,
for later sorting. Reflected molecules are bounced and their posx values represent the location of their
last bouncing point. This function does not rely on molecules being properly assigned to boxes, and
nor does it assign molecules to boxes afterwards. However, it does rely on the panels being properly
assigned to boxes. If multiple surfaces are coincident, only the last one is effective. Returns error code
of 0.

This function includes two “hacks.” First, if a molecule has over 50 surface interactions during the same
diffusion step, this function decides that something has gone wrong, and it simply puts the molecule
back to where it started and moves on to deal with the next molecule. I'm not aware that this option
has ever happened, but it’s here because I suspect that it’s possible for a molecule to become trapped
in an endless loop.

The other “hack” is that this function looks for both the first and second surface crossings along the
molecule’s current trajectory. If they differ by less than 10712 (but the difference is greater than zero),
this function doesn’t bother dealing with either surface, but puts the molecule back to its last known
good position. The idea is that if the difference equals 0, then the last declared surface panel has
priority. However, if the difference is negligibly larger than zero, then round-off errors are likely to

84 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

dominate for calculations, which can cause the molecule to accidentally cross one of the two surfaces.
The only time that this hack is likely to become a problem is if the user defines two essentially coincident
surfaces, in which case they will become effectively reflective.

int checksurfacebound(simptr sim,int 11);
Takes care of actions for surface-bound molecules, such as desorption, on-surface orientation flipping,
etc. Returns error code of 0.

5.7 Boxes (functions in smolboxes.c)

The simulation volume is exactly divided into an array of identical virtual boxes. These allow the simulation
to run efficiently because only potential reactions between molecules that are known to be physically close
need to be checked, and the same for molecule-surface interactions. In principle, the boxes are fairly simple.
In practice though, they complicate the overall code quite significantly. While the boxes are sized to exactly
fill the simulation volume, the edge boxes are considered to extend beyond the volume to plus or minus
infinity. In this way, all of space is within some box, and points outside of the simulation volume are
assigned to the nearest box. Each box has its own box structure.

typedef struct boxstruct {

int *indx; // dim dimensional index of the box [d]
int nneigh; // mumber of mneighbors in list

int midneigh; // logical middle of neighbor list

struct boxstruct **neigh; // all box meighbors, using sim. accuracy
int *wpneigh; // wrapping code of mneighbors in list

int nwall; // number of walls in box

wallptr *wlist; // list of walls that cross the boz

int maxpanel; // allocated number of panels in boz

int npanel; // number of surface panels in boz
panelptr *panel; // list of panels in bozx

int *maxmol; // allocated size of live lists [l1]

int *nmol; // number of molecules in live lists [l1l]
moleculeptr **mol; // lists of live molecules in the bozxz [11][m]
} *boxptr;

boxstruct (declared in smollib.h) is a structure for each of the virtual boxes that partition space. Each
box has a list of its neighbors, in neigh, as well as a little information about them. This list extends from
0 to nneigh-1. From 0 to midneigh-1 are those neighbors that logically precede the box, meaning that
they are above or to the left, whereas those from midneigh to nneigh-1 logically follow the box. If there
are no periodic boundary conditions, the logical order is the same as the address order; however, this is
not necessarily true with the inclusion of wrap-around effects. In wpneigh is a code for each neighbor that
describes in what way it is a neighbor: 0 means that it’s a normal neighbor with no edge wrap-around;
otherwise pairs of bits are associated with each dimension (low order bits for low dimension), with the bits
equal to 00 for no wrapping in that dimension, 01 for wrapping towards the low side, and 10 for wrapping
towards the high side. This might be clearer in the Zn.c documentation. The neighbors that are listed
depend on the requested simulation accuracy:

accuracy neighbors wrap-around

<3 none no
3 to <6 nearest no
6 to <9 nearest yes
<9 all yes

Boxes also have lists of molecules, allocated to size maxmol[11] and filled from 0 to nmol[11]-1) that
correspond to the master molecule lists, and walls (wlist, allocated and filled with nwall pointers) within
them. While the lists are owned by the box, the members of the lists are simply references, rather than
implications of ownership. The same, of course, is true of the neighbor list, although the box owns the

5.7. BOXES (FUNCTIONS IN SMOLBOXES.C) 85

wpneigh list. If wall or neighbor lists are empty, the list is left as NULL, whereas the molecule list always has
a few spaces in it. Boxes are collected in a box superstructure.

typedef struct boxsuperstruct {

enum StructCond condition; // structure condition

struct simstruct *sim; // simulation structure

int nlist; // copy of mumber of molecule lists
double mpbox; // requested number of molecules per box
double boxsize; // requested boz width

double boxvol; // actual box volumes

int nbox; // total number of bozes

int *side; // number of bozes on each side of space
double *min; // position wvector for low cormer of space
double *size; // length of each side of a boz

boxptr *blist; // actual array of bozes

} *boxssptr;

boxsuperstruct (declared in smollib.h) expresses the arrangement of virtual boxes in space, and owns
the list of those boxes and the boxes. condition is the current condition of the superstructure and sim is a
pointer to the simulation structure that owns this superstructure. nlist is a copy of the number of molecule
lists that are used in the molecule superstructure. This is used here, and the mol element of the individual
boxes are allocated to this, rather than maxlist, because boxes can potentially use up lots of memory, and
this saves allocating memory unnecessarily.

Either mpbox or boxsize are used but not both. Boxes are arranged in a rectangular prism grid and
exactly cover all space inside the walls. The structure of the boxes in space is the same as that of a dim rank
tensor, allowing tensor indexing routines to be used to convert between box addresses and indices. The box
index along the d’th dimension of a point with position x[d] is

indx [d]=(int) ((x[d]-min[d])/size[d]);

where integer conversion takes care of the truncation. Because of this, a box includes the points that
are exactly on the low edge, but not those that are exactly on the high edge. Converting from box index
to address is easy with the tensor routine in Zn.c, or can also be calculated quickly with the following code
fragment, which outputs the box number as b,

for(b=0,d=0;d<dim;d++) b=side[d]*b+indx[d];

Converting the box number to the indices can also be done, but the Zn.c routine is easiest for this.

low level utilities

void box2pos(simptr sim,boxptr bptr,double *poslo,double *poshi);
Given a pointer to a box in bptr, this returns the coordinate of the low and/or high corners of the box
in poslo and poshi, respectively. They need to be pre-allocated to the system dimensionality. If either
point is unwanted, enter NULL. This requires that the min and size portions of the box superstructure
have been already set up.

boxptr pos2box(simptr sim,double *pos);
pos2box returns a pointer to the box that includes the position given in pos, which is a dim size vector.
If the position is outside the simulation volume, a pointer to the nearest box is returned. This routine
assumes that the entire box superstructure is set up.

void boxrandpos(simptr sim,double *pos,boxptr bptr);
Returns a uniformly distributed random point, in pos, that is within the box bptr.

int panelinbox(simptr sim,panelptr pnl,boxptr bptr);
Determines if any or all of the panel pnl is in the box bptr and returns 1 if so and 0 if not. For most
panel shapes, this is sufficiently complicated that this function just calls other functions in the library
file Geometry.c.

86 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

int boxaddmol (moleculeptr mptr,int 11);
Adds molecule mptr, which belongs in live list 11, to the box that is pointed to by mptr->box. Returns
0 for success and 1 if memory could not be allocated during box expansion.

void boxremovemol (moleculeptr mptr,int 11);
Removes molecule mptr from the live list 11 of the box that is pointed to by mptr->box. Before
returning, mptr->box is set to NULL. If the molecule is not in the box that’s listed, then this doesn’t
try removing it; this result is fine if the molecule is actually in no box at all (which can happen) but
is probably a bug if the molecule is in the wrong box.

boxptr boxscansphere(simptr sim,const double *pos,double radius,boxptr bptr,int *wrap);
Allows the calling function to scan over all of the boxes that are at least partially within radius
distance of the point pos. This accounts for system edges and periodic boundaries. Call this at the
first time in a scan with bptr equal to NULL, which instructs the function to set up internal static
variables, and in subsequent scans with bptr not equal to NULL. This returns boxes repeatedly for the
scan, and then returns NULL when the scan is complete. At present, it is not possible to skip ahead in
the scan using the bptr input, although this could be implemented if it would be useful.

If the system has periodic boundaries, this returns boxes that are found upon wrapping, possibly
returning the same box multiple times if it is within radius of pos in multiple ways. The amount of
wrapping on each axis is returned in wrap, which needs to be entered as a non-NULL vector.

This function was rewritten for version 2.61 because it didn’t correctly account for system volumes
that didn’t start at (0,0,0) and/or that didn’t use periodic boundary conditions.

memory management

boxptr boxalloc(int dim,int nlist);
boxalloc allocates and minimally initiallizes a new boxstruct. Lists allocated are indx, which is size
dim, and maxmol, nmol, and mol, each of which are size nlist. nlist may be entered as 0 to avoid
allocating the latter lists. No molecule spaces are allocated.

int expandbox(boxptr bptr,int n,int 11);
Expands molecule list 11 within box bptr by n spaces. If n is negative, the box is shrunk and any
molecule pointers that no longer fit are simply left out. This function may be used if the initial list
size (bptr->maxmol[11]) was zero and can also be used to set the list size to zero. The book keeping
elements of the box are updated. The function returns 0 if it was successful and 1 if there was not
enough memory for the request.

int expandboxpanels(boxptr bptr,int n);
Expands the list of panels in box bptr by n spaces. If n < 0, this function ignores it, and does not
shrink the box. This updates the maxpanel element. Returns 0 for success and 1 for insufficient
memory.

void boxfree(boxptr bptr,int nlist);
Frees the box and all of its lists, although not the structures pointed to by the lists. nlist is the
number of live lists.

boxptr *boxesalloc(int nbox,int dim,int nlist);
boxesalloc allocates and initializes an array of nbox boxes, including the boxes. dim is the system
dimensionality and nlist is the number of live lists. There is no additional initialization beyond what
is done in boxalloc.

void boxesfree(boxptr *blist,int nbox,int nlist);
Frees an array of boxes, including the boxes and the array. nlist is the number of live lists.

boxssptr boxssalloc(int dim);
Allocates and initializes a superstructure of boxes, including arrays for the side, min, and size
members, although the boxes are not added to the structure, meaning that blist is set to NULL
and nbox to 0.

5.7. BOXES (FUNCTIONS IN SMOLBOXES.C) 87

void boxssfree(boxssptr boxs);
Frees a box superstructure, including the boxes.

data structure output

void boxoutput(boxssptr boxs,int blo,int bhi,int dim);
This displays the details of virtual boxes in the box superstructure boxs that are numbered from blo
to bhi-1. To continue to the end of the list, set bhi to -1. This requires the system dimensionality in
dim.

void boxssoutput(simptr sim) ;
Displays statistics about the box superstructure, including total number of boxes, number on each
side, dimensions, and the minimum position. It also prints out the requested and actual numbers of
molecules per box.

int checkboxparams(simptr sim,int *warnptr);
Checks and displays warning about various box parameters such as molecules per box, box sizes, and
number of panels in each box.

structure set up

void boxsetcondition(boxssptr boxs,enum StructCond cond,int upgrade) ;
Sets the box superstructure condition to cond, if appropriate. Set upgrade to 1 if this is an upgrade,
to 0 if this is a downgrade, or to 2 to set the condition independent of its current value. If the condition
is downgraded, this also downgrades the simulation structure condition.

int boxsetsize(simptr sim,const char *info,double val);
Sets the requested box size. info is a string that is “molperbox” for the mpbox element, or is “boxsize”
for the boxsize element, and val is the requested value. If the box superstructure has not been
allocated yet, this allocates it. Returns 0 for success, 1 for failure to allocate memory, 2 for an illegal
value, or 3 for the system dimensionality has not been set up yet.

int boxesupdateparams(simptr sim);
Creates molecule lists for each box and sets both the box and molecule references to point to each
other.

int boxesupdatelists(simptr sim);
Sets up a superstructure of boxes, and puts some things in them boxes, including wall references. It
sets up the box superstructure, then adds indices to each box, then adds the box neighbor list along
with neighbor parameters, then adds wall references to each box. The function returns 0 for successful
operation, 1 if it was unable to allocate sufficient memory, 2 if required things weren’t set up yet. This
function can be very computationally intensive.

int boxesupdate(simptr sim);
Sets up or updates box data structures.

core simulation functions

boxptr line2Znextbox(simptr sim,double *ptl,double *pt2,boxptr bptr);
Given a line segment which is defined by the starting point pt1 and the ending point pt2, and which
is known to intersect the virtual box pointed to by bptr, this returns a pointer to the next box along
the line segment. If the current box is also the final one, NULL is returned. Virtual boxes on the edge
of the system extend to infinity beyond the system walls, so this function accurately tracks lines that
are outside of the system volume.

This function would be simple, except that it has to cope with a few fairly rare exceptions. In particular,
if one of the points is exactly in line with a corner between boxes (flag equals 1 or 2), it has to deal
with it correctly, which is what the if (flag) portion copes with. As mentioned above, boxes include
their low sides, but not their high sides. Thus if the destination is towards a corner point that is not

88 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

in the current box, then the line should first visit a direction that is increasing, followed by a direction
that is decreasing; if multiple directions increase, the trajectory moves diagonally, and if all directions
are decreasing (flag equals 2) then the trajectory also moves diagonally. This code is messy, but I
think it works.

Near the end of the function is a line that checks if crsmin==1.01. This is true only if there is no
next box, despite the fact that pos2box, in the first line, said that there was one. It can arise from
round-off error.

int reassignmolecs(simptr sim,int diffusing,int reborn) ;

Reassigns molecules to boxes. If diffusing is 1, only molecules in lists that include diffusing molecules
(sim->mols->diffuselist) are reassigned; otherwise all lists are reassigned. If reborn is 1, only
molecules that are reborn, meaning with indices greater than or equal to topl[11], are reassigned;
otherwise, entire lists are reassigned. If reborn is 1, this assumes that all molecules that are in the
system are also in a box, meaning that the box element of the molecule structure lists a box and that
the mol list of that box lists the molecule. Molecules are arranged in boxes according to the location of
the pos element of the molecules. Molecules outside the set of boxes are assigned to the nearest box.
If more molecules belong in a box than actually fit, the number of spaces is doubled using expandbox.
The function returns 0 unless memory could not be allocated by expandbox, in which case it fails and
returns 1.

This function was modified on 1/15/16 so that if reborn is 1, then molecules are only moved if they
are in the wrong places and if so, then they are removed from the old box and placed in the new box,
but if reborn is 0, then all boxes are cleared out and molecules are assigned from scratch. This is a
much faster routine than it was before, especially if boxes have a lot of molecules in them.

5.8 Compartments (functions in smolcompart.c)

Compartments are regions of volume that are bounded by surfaces. They do not include their bounding
surfaces. They have no function in the performance of the simulation, but are useful for input, output,
and communication with MOOSE. Compartments do not maintain a record of what they contain, but
instead they define a set of rules that make it is possible to test whether objects are inside or outside of the
compartment. Compartments may be disjoint and they may overlap each other.

The inside of a compartment is defined to be all points from which one can draw a straight line to one
of the “inside-defining points” without crossing any bounding surface. For example, to create a spherical
compartment, one would define a spherical surface as the boundary and some point inside the sphere (the
center, or any other internal point) to be the inside-defining point. In addition, compartments can be
combined with previously defined compartments with logic arguments. Thus, for example, a cell cytoplasm
compartment can be defined with the logic equation: equal to the cell compartment and not the nucleus
compartment.

Data structures

enum CmptLogic {CLequal,CLequalnot,CLand,CLor,CLxor ,CLandnot ,CLornot,CLnonel;

typedef struct compartstruct {

struct compartsuperstruct *cmptss; // compartment superstructure
char #*cname; // compart. name (reference, not owned)
int nsrf; // nmumber of bounding surfaces

surfaceptr *surflist; // list of bounding surfaces [s]

int npts; // number of inside-defining points

double **points; // list of inside-defining points [k][d]
int ncmptl; // number of logic compartments

struct compartstruct *xcmptl; // list of logic compartments [cl]
enum Cmptlogic *clsym; // compartment logic symbol [cl]

double volume; // wvolume of compartment

5.8. COMPARTMENTS (FUNCTIONS IN SMOLCOMPART.C) 89

int maxbox; // mazimum number of bozes in compartment
int nbox; // number of bozes inside compartment

boxptr #*boxlist; // list of bozes inside compartment [b]
double *boxfrac; // fraction of box wvolume that’s inside [b]
double *cumboxvol; // cumulative cmpt. wvolume of boxes [b]

} *compartptr;

The volume of a compartment is initialized to 0, and is also reset to 0 whenever its definition changes.
This indicates that it needs to be updated.

typedef struct compartsuperstruct {

enum StructCond condition; // structure condition

struct simstruct *sim; // simulation structure

int maxcmpt; // maximum number of compartments
int ncmpt; // actual number of compartments
char **cnames; // compartment mnames

compartptr *cmptlist; // list of compartments

} *compartssptr;

This structure contains information about all of the compartments. condition is the current condition of
the superstructure and sim is a pointer to the simulation structure that owns this superstructure.
enumerated types

enum CmptLogic compartstring2cl(char *string);
Converts compartment logic symbol string to an enumerated compartment logic type. Input strings can
be: “equal”, “equalnot”, “and”, “or”, “xor”, “andnot”, or “ornot”. Anything else results in CLnone.
char *compartcl2string(enum CmptLogic cls,char *string);
Converts enumerated compartment logic type to a string, in string, which must be pre-allocated.

Output strings are “equal”, “equalnot”, “and”, “or”, “xor”, “andnot”, “ornot” or “none”. string is
returned to allow for function nesting.

low level utilities

int posincompart(simptr sim,double *pos,compartptr cmpt,int useoldpos);
Tests if position pos is in compartment cmpt, returning 1 if so and 0 if not. This includes composed
compartment logic tests. It does not use the compartment box list. This function is quite efficient for
surfaces with few panels, but inefficient if surfaces have lots of panels. useoldpos tells the function to
use the old surface panel position variables oldpoint and oldfront rather then the current ones.

int compartrandpos(simptr sim,double *pos,compartptr cmpt);
Returns a random position, in pos, within compartment cmpt. Returns 0 and a valid position, unless
a point cannot be found, in which case this returns 1.

memory management

compartptr compartalloc(void);
Allocates memory for a compartment. All arrays are set to NULL, and not allocated. Returns the
compartment or NULL if unable to allocate memory.

void compartfree(compartptr cmpt);
Frees a compartment, including all of its arrays.

compartssptr compartssalloc(compartssptr cmptss,int maxcmpt) ;
Allocates a compartment superstructure as well as maxcmpt compartments. Space is allocated and
initialized for compartment names. Returns the compartment superstructure or NULL if unable
to allocate memory. This function may be called multiple times in order to space for additional
compartments. See surfacessalloc.

void compartssfree(compartssptr cmptss);
Frees a compartment superstructure, including all compartments and everything within them.

90 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

data structure output

void compartoutput(simptr sim);
Displays all important information about all compartments to stdout.

void writecomparts(simptr sim,FILE *fptr);
Prints information about all compartments to file fptr using a format that allows the compartments
to be read as a configuration file.

void checkcompartparams (simptr sim);
This checks a few compartment parameters.

structure set up

void compartsetcondition(compartssptr cmptss,enum StructCond cond,int upgrade) ;
Sets the compartment superstructure condition to cond, if appropriate. Set upgrade to 1 if this is an
upgrade, to 0 if this is a downgrade, or to 2 to set the condition independent of its current value. If
the condition is downgraded, this also downgrades the simulation structure condition.

int compartenablecomparts(simptr sim,int maxcmpt);
Enables compartments in the simulation by allocating the compartment superstructure to hold maxcmpt
compartments and setting the necessary condition state. This function may be called multiple
times. Returns 0 for success or 1 if memory could not be allocated. Function is analogous to
surfenablesurfaces.

compartptr compartaddcompart(simptr sim,char *cmptname);
Adds a compartment named cmptname to sim. This allocates all necessary memory, including the
superstructure if needed. Returns a pointer to the compartment for success or NULL for failure. Function
is analogous to surfaddsurface.

int compartaddsurf (compartptr cmpt,surfaceptr srf);
Adds surface srf to the compartment cmpt. This increments nsrf and appends the surface to srflist.
Returns 0 for success, 1 if memory could not be allocated, and 2 if the surface was already in the list
(in which case it is not added again).

int compartaddpoint (compartptr cmpt,int dim,double *point);
Adds point point to the compartment cmpt, in a dim dimensional system. This increments npts and
appends the point to points. Returns 0 for success and 1 if memory could not be allocated.

int compartaddcmptl(compartptr cmpt,compartptr cmptl,enum CmptLogic sym);
Add logically composed compartment cmptl, which is composed with symbol sym, to the compartment
cmpt. This increments ncmptl and appends the new logic compartment to cmptl. Returns 0 for
success, 1 if memory could not be allocated, or 2 if cmpt and cmptl are the same, which is not allowed.

int compartupdatebox(simptr sim,compartptr cmpt,boxptr bptr,double volfrac);

Updates the listing of box bptr in compartment cmpt, according to the rule that boxes should be
listed if any portion of them is within the compartment and should not be listed if no portion is within
the compartment. This also updates the cumboxvol and volume structure elements as needed. If the
fraction of the box within the compartment is known, including 0, enter it in volfrac. If it is unknown
and should be calculated, enter -1 in volfrac. If the fraction is unknown and should be unchanged if
the box was already in the compartment and calculated if the box wasn’t in the compartment, then
enter -2 in volfrac. This returns 0 for no change, 1 for box successfully added, 2 for box successfully
removed, 3 for box was already listed but volume was updated, or -1 for failure to allocate memory.
If the volume of the box within the compartment needs to be calculated, this calculates it with a
hard-coded value of 100 random trial points. Memory is allocated as needed.

The following table lists the return values, which is useful for understanding them and for reading
through the function. The former value for each pair is for the actual volume fraction, in volfrac2,
equal to 0 and the latter is for the actual volume fraction >0.

5.9.

PORTS (FUNCTIONS IN SMOLPORT.C) 91

value of volfrac
-2 -1 0Otol
0/0 2/03 2/03
0/1 0/1 0/1

bptr was in cmpt yes
(bc<=cmpt->nbox) no

compartptr compartreadstring(simptr sim,compartptr cmpt,char *word,char *line2,char

int

int

int

int

*erstr) ;

Reads and processes one line of text from the configuration file, or some other source, for the
compartment cmpt. If the compartment is not known, then set cmpt to NULL. The first word of
the line should be sent in as word and the rest sent in as 1ine2. If this function is successful, it returns
the compartment and it does not change the contents of erstr; if not, it returns NULL and writes an
error message to erstr.

loadcompart (simptr sim,ParseFilePtr *pfpptr,line2,char *erstr);

Loads a compartment, or information for an already existing compartment, from an already opened
configuration file. This is used to fill in basic compartment details. However, it does not address any
of the box information. Returns 0 for success and 1 for an error; error messages are returned in erstr.

compartsupdateparams (simptr sim) ;

Sets up the boxes and volumes portions of all compartments. Returns 0 for success, 1 for inability to
allocate sufficient memory, or 2 for boxes not set up before compartments. This function may be run
during initial setup, or at any time afterwards. It is computationally intensive.

compartsupdatelists(simptr sim);
Does nothing. This function is here for future expansion, and to keep similarity between different
Smoldyn modules.

compartsupdate (simptr sim);
Sets up or updates all portions of compartment data structures.

core simulation functions

void comparttranslate(simptr sim,compartptr cmpt,int code,double *translate);

Translates compartment cmpt by the displacement given in translate. The different bits of code tell
which attributes of the compartment should be translated. If code&1, then the bounding surfaces of
the compartment (that are listed in the compartment definition, not including those that are implied
through the logic statements) are translated. If code&2, then the molecules that are bound to the
bounding surfaces of the compartment (which are listed in the compartment definition) are translated.
If code&4, then the molecules that are inside the compartment are translated. If code&8, then molecules
that get bumped into by the moving surfaces get translated.

This has a number of flaws with the external molecules. The algorithm is that any molecule that would
get bumped into gets translated by the same amount as the compartment, except if its surface action is
“transmit” for both surface faces. After being translated, the function checks for its collisions with any
surfaces, dealing with them as required. One problem is that this ignores most surface actions, except
only for a slight check for transmit vs. anything else. Another problem is that molecules will end up
on the wrong side of the moving surface if they get squeezed between the moving surface and a static
surface. Here, what happens is the molecule is moved because of the moving surface, then it bounces
off of the static surface back towards where it came from, and then the moving surface moves over
it. In some ways, this is unavoidable because there is no good solution for what to do with squeezed
molecules. However, it seems that it could be improved.

5.9 Ports (functions in smolport.c)

Ports are data structures for importing and exporting molecules between a Smoldyn simulation and another
simulation. In particular, they are designed for the incorporation of Smoldyn into MOOSE, but they could
also be used to connect multiple Smoldyn simulations or for other connections.

92 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

A port is essentially a surface and a buffer. Smoldyn molecules that hit the porting surface are put
into the buffer for export. Alternatively, molecules may be added to the Smoldyn simulation at the porting
surface by other programs. To perform porting within Smoldyn, a command called transport will move
molecules from one port to another. This can be used to test porting, or, hopefully, to transport molecules
between multiple Smoldyn simulations.

As much as possible, the code for ports is very analogous to the code for compartments.

Data structures

typedef struct portstruct {
struct portsuperstruct *portss; // port superstructure

char *portname; // port mame (reference, mnot owned)
surfaceptr *srf; // porting surface (ref.)

enum PanelFace face; // active face of porting surface
int llport; // live list number for buffer

} *portptr;

typedef struct portsuperstruct {

enum StructCond condition; // structure condition
struct simstruct *sim; // simulation structure
int maxport; // mazimum number of ports
int nport; // actual number of ports
char **portnames; // port mnames

portptr *portlist; // list of ports

} *portssptr;

This structure contains information about all ports. condition is the current condition of the
superstructure and sim is a pointer to the simulation structure that owns this superstructure.
memory management

portptr portalloc(void);
Allocates memory for a port. Pointers are set to NULL and llport is set to -1. Returns the port or NULL
if unable to allocate memory.

void portfree(portptr port);
Frees a port.

portssptr portssalloc(portssptr portss,int maxport)
Allocates a port superstructure, if needed, as well as maxport ports. Space is allocated and initialized
for port names and port lists. Returns the port superstructure or NULL if unable to allocate memory.
This function can be called repeatedly to expand the number of ports.

void portssfree(portssptr portss);
Frees a port superstructure, including all ports.

data structure output

void portoutput(simptr sim);
Displays all important information about all ports to stdout.

void writeports(simptr sim,FILE *fptr);
Prints information about all ports to file fptr using a format that allows the ports to read as a
configuration file.

int checkportparams(simptr sim,int *warnptr);
This checks a few port parameters.

structure set up

5.9. PORTS (FUNCTIONS IN SMOLPORT.C) 93

void portsetcondition(portssptr portss,enum StructCond cond,int upgrade) ;
Sets the port superstructure condition to cond, if appropriate. Set upgrade to 1 if this is an upgrade,
to 0 if this is a downgrade, or to 2 to set the condition independent of its current value. If the condition
is downgraded, this also downgrades the simulation structure condition.

int portenableports(simptr sim,int maxport);
Enables ports in the simulation by allocating the port superstructure to hold maxport ports and setting
the necessary condition state. This function may be called multiple times. Returns 0 for success or 1
if memory could not be allocated. Function is analogous to surfenablesurfaces.

portptr portaddport(simptr sim,char *portname,surfaceptr srf,enum PanelFace face);
Adds, or updates, a port to the port superstructure. If portname is not the name of an existing port,
a new port is defined, the nport element of the superstructure is incremented, and this name is copied
over for the new port. Alternatively, if portname has already been defined, it is used to reference an
existing port. Either way, the port surface is set to srf if srf is not NULL, the port face is set to face
if face is not PFnone, and the address of the port is returned.

portptr portreadstring(simptr sim,portptr port,char *word,char *line2,char *erstr);
Reads and processes one line of text from the configuration file, or some other source, for the port
port. If the port is not known, set port to NULL. The first word of the line should be sent in as word
and the rest sent in as 1ine2. If this function is successful, it returns the port and it does not change
the contents of erstr; if not, it returns NULL and it writes an error message to erstr.

int loadport(simptr sim,ParseFilePtr #*pfpptr,char* line2,char *erstr);
Loads a port, or information for an already existing port, from an already opened configuration file.
This is used to fill in basic port details. However, it does not assign a molecule buffer to the port.
Returns 0 for success and 1 for an error; error messages are returned in erstr.

int portsupdateparams(simptr sim);
Does nothing. This function is here for future expansion, and to maintain similarity between different
Smoldyn modules.

int portsupdatelists(simptr sim);
Sets up the molecule buffers for all ports. Returns 0 for success, 1 for inability to allocate sufficient
memory, or 2 for molecules not set up sufficiently.

int portsupdate(simptr sim);
Sets up or updates all port data structure components.

core simulation functions

int portgetmols(simptr sim,portptr port,int ident,enum MolecState ms,int remove);
Returns the number of molecules of type ident (use -1 for all species) and state ms (MSall is allowed)
that are in the export buffer of port port. If remove is 1, this kills those molecules, so that they will
be returned to the dead list at the next sorting; otherwise they are left in the port. The intention is
that molecules that are gotten from the export list with this function are then added to MOOSE or
another simulator.

int portputmols(simptr sim,portptr port,int nmol,int ident,int *species,double

*x*positions,double **positionsx);

Adds nmol molecules of state MSsoln to the simulation system at the porting surface of port port. If
species is non-NULL, then it needs to be an nmol length list of species numbers, which are used for the
molecule species and ident is ignored; alternatively, if species is NULL, then all molecules will have
species ident. Likewise, if positions is non-NULL, then it needs to be a list of molecule positions that
will be used for the new molecule positions. If positions is NULL, then molecules are placed randomly
on the porting surface. If positionsx is NULL, then molecule old positions are fixed to the panel, and
otherwise molecule old positions are set to these values. This returns 0 for success, 1 for insufficient
available molecules, 2 for no porting surface defined, 3 for no porting surface face defined, and 4 for no
panels on porting surface.

94 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

int porttransport(simptr siml,portptr portl,simptr sim2,portptr port2);
Transports molecules from port1 of simulation structure siml to port2 of simulation structure sim2.
siml and sim2 may be the same and portl and port2 may be the same. This is designed for testing
ports or for coupled Smoldyn simulations that communicate with ports.

5.10 Lattices (functions in smollattice.c)

A lattice is a region of space in which molecules do not have precise spatial locations, but are
compartmentalized to lattice subvolumes. At present, lattices use axis-aligned rectangular subvolumes, but
they could at some point be unstructured meshes (as in URDME). In the lattice region of space, molecules
are currently represented as discrete individuals, in each subvolume. At some point though, this could be
extended to continuous concentrations, to enable PDE simulation methods. Lattice regions of space interface
to particle-based regions of space through Smoldyn’s ports.

Martin Robinson added lattice functionality to Smoldyn during 2013. This documentation is my best
understanding of his code, which I don’t promise is correct. The lattice code is in several subdirectories of
source. The NextSubVolume directory contains Martin’s code for the next subvolume simulation method.
The vtk directory contains a couple of VTK wrapper code files, which I assume are used to interface Martin’s
code to the VTK visualization software. I suspect that Martin wrote those wrapper files. Finally, the lattice
code is integrated into the rest of Smoldyn using the smollattice.c file, which compiles with the rest of
Smoldyn. The code in smollattice.c is always compiled, regardless of compiling options, but if the LATTICE
configuration variable is undefined, then all calls to the nsv code are disabled.

Data structures

enum LatticeType {LATTICEnone ,LATTICEnsv ,LATTICEpde};

typedef struct latticestruct {

struct latticesuperstruct *latticess; // lattice superstructure
char *latticename; // lattice name (reference, not owned)

enum LatticeType type; // type of lattice

double min[DIMMAX]; // lower spatial boundaries

double max [DIMMAX]; // upper spatial boundaries

double dx[DIMMAXI]; // lattice lengthscale (subvolume width)
char btype [DIMMAX]; // boundary type (r)eflective or (p)eriodic
portptr port; // interface port (ref.)

int #**convert; // convert to particle at port, O or 1 [lat.species][face] 2?2
int maxreactions; // mazimum number of reactions

int nreactions; // number of reactions

rxnptr *reactionlist; // list of reactions

int *reactionmove; // 0 or 1 for moving reactions

maxsurfaces??
nsurfaces??
surfacelist??

int maxspecies; // mazimum number of species

int nspecies; // number of species

int *species_index; // species indices

int *maxmols; // allocated size of molecule list [lat.species]

int *nmols; // number of individual molecules [lat.species]
double*x* mol_positions; // molecule positions [lat.species][nmols][dim]
NextSubvolumeMethod* nsv; // nsv class

NextSubvolumeMethod* pde; // pde class

} *latticeptr;

typedef struct latticesuperstruct {
enum StructCond condition; // structure condition
struct simstruct *sim; // simulation structure

5.10. LATTICES (FUNCTIONS IN SMOLLATTICE.C) 95

int maxlattice; // mazimum number of lattices
int nlattice; // actual number of lattices
char **xlatticenames; // lattice names

latticeptr *latticelist; // list of lattices

} *latticessptr;

These structures contain information about all lattices. Starting with the lattice superstructure,
condition is the current condition of the superstructure and sim is a pointer to the simulation structure
that owns this superstructure. These, and other superstructure elements are completely standard. Space
is allocated for maxlattice lattices, of which nlattice are actually defined and used. Their names are in
latticenames and they are pointed to by pointers in latticelist.

In the lattice structure, of type latticestruct, the latticess pointer points to the owning
superstructure and latticename points to the lattice name. Each lattice is either type LATTICEnsv if
it is for discrete particles or LATTICEpde if it is for continuous concentrations. There is also the enumeration
LATTICEnone, which is helpful for specifying neither of the other options but is not valid for actual lattices.
min and max vectors represent the lower and upper spatial boundaries of the lattice space; this space is
divided into subvolumes that each have width given with the dx vector. btype is a vector with a character
for each coordinate that equals ‘r’ for reflective boundaries, ‘p’ for periodic boundaries, and ‘u’ for undefined.

The port element points to the port that divides the lattice part of space from the particle-based part of
space. The maxreactions and nreactions elements tells how many reactions are allocated and are being
used here. These reactions, listed in reactionlist are simply pointers to Smoldyn’s normal reactions. This
means that there is no need for additional reaction data structures here. reactionmove is either 0 for 1
for each reaction, where 1 means that it should be moved and 0 means that it should not be moved; a
moved reaction is only implemented on the lattice side of space and is set to a rate of 0 on the particle side
of space. nspecies is the number of species that are declared for the lattice region of space. It may be
different from nspecies values in the particle side of space, defined in the rest of Smoldyn. species_index
is a list of species indices from the particle side of space; it is a look-up table that connects lattice species
numbers to particle side species numbers. maxmols is the allocated size of the molecule list and nmols is the
number of molecules for each species, indexed with the lattice-side indices. mol_positions are the positions
of the molecules, indexed as the lattice-side species number, molecule number, and dimensional coordinate.
I don’t really understand this because I didn’t think these molecules had precise positions. The nsv and pde
pointers point to classes in the core NSV and PDE code (the PDE code isn’t included yet).

Functions

memory management

latticeptr latticealloc(int dim);
Allocates memory for a lattice assuming a dim dimensional system. Pointers are set to NULL and values
are set to 0 or other defaults. Returns the lattice or NULL if unable to allocate memory.

void latticefree(latticeptr lattice);
Frees a lattice and all of the memory in it.

int latticeexpandreactions(latticeptr lattice,int maxrxns);
Expands the number of reactions in a lattice to maxrxns, allocating new memory and freeing old
memory as needed. This addresses the memory in reactionlist and reactionmove. Returns 0 for
success or 1 for failure.

int latticeexpandspecies(latticeptr lattice,int maxspecies);
Expands the number of species in a lattice to maxspecies, allocating new memory and freeing old
memory as needed. This addresses the memory in species_index and nmols. It also addresses the
memory in mol_positions. Returns 0 for success or 1 for failure.

int latticeexpandmols(latticeptr lattice,int species,int maxmols,int dim);
Expands the mol_positions list for the lattice species number species so that it will have maxmols
spaces in it, each with dim values.

96 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

latticessptr latticessalloc(latticessptr latticess,int maxlattice)
Allocates a lattice superstructure, if needed, as well as maxlattice lattices. Space is allocated and
initialized for lattice names and lattice lists. Returns the lattice superstructure or NULL if unable to
allocate memory. This function can be called repeatedly to expand the number of lattices.

void latticessfree(latticessptr latticess);
Free a lattice superstructure and all of its contents.

data structure output

void latticeoutput(simptr sim);
Outputs the contents of the lattice superstructure and all of the member lattices to the display. This
shows essentially everything except for the molecule positions.

void writelattices(simptr sim,FILE *fptr);
Writes the contents of the lattice superstructure and all of the member lattices to file fptr in a format
that enables it to be read in again.

int checklatticeparams(simptr sim,int *warnptr);
Checks the lattice parameters, sending output to the simLog function along with the appropriate error
level.

structure set up

void latticesetcondition(latticessptr latticess,enum StructCond cond,int upgrade);
Sets the lattice superstructure condition to cond, if appropriate. Set upgrade to 1 if this is an upgrade,
to 0 if this is a downgrade, or to 2 to set the condition independent of its current value. If the condition
is downgraded, this also downgrades the simulation structure condition.

int latticeenablelattices(simptr sim);
Enables simulation with lattices. This function may be called more than once but doesn’t do anything
on repeat calls. This allocates the superstucture and 1 lattice. It also initializes the NSV code.

latticeptr latticeaddlattice(simptr sim,latticeptr *latptr,const char *latticename,const
double *min,const double *max,const double *dx,const char *btype,enum LatticeType
type) ;
Adds a new lattice or modifies an existing lattice. This enables lattices, creates the superstructure,
and allocates memory as needed. Send in latptr with a pointer to the lattice if it has already been
created and now needs to be modified, or NULL if a new lattice is wanted. In the latter case, this
pointer is returned with the address of the new lattice. All of the lattice parameters that can be set
here are optional, meaning that NULL can be entered to choose to not set the parameter. If entered,
the lattice name is set to latticename, the minimum boundary coordinates to min, the maximum
boundary coordinates to max, the lattice length parameters to dx, the boundary types to btype, and
the lattice type to type. In the last case, enter LATTICEnone to not set this parameter. Returns 0 for
success or 1 for inability to allocate memory.

int latticeaddspecies(latticeptr lattice,int ident,int *index);
Adds one or more Smoldyn species to an existing lattice, allocating new memory as needed. If index
is NULL, this sets the species_index element of the lattice structure to the ident value that is entered
(the index of the Smoldyn species) and this also sets the number of molecules of this species on the
lattice to 0. Returns 0 for success, 1 for inability to allocate memory, or 2 if this species was already
in the lattice. If index is not NULL, then this adds each of the listed species to the lattice, returning 0
for success or 1 for inability to allocate memory; in this case any duplicate species are just ignored.

int latticeaddrxzn(latticeptr lattice,rxnptr reaction,int move);
Adds a reaction to an existing lattice, allocating new memory as needed. This puts the reaction at the
end of the current reaction list and sets its “move” status to the move value that is entered. Returns
0 for success, 1 for inability to allocate memory, or 2 if the reaction was already in the lattice.

5.10. LATTICES (FUNCTIONS IN SMOLLATTICE.C) 97

int latticeaddmols(latticeptr lattice,int nmol,int i,double *poslo,double *poshi,int
dim) ;
Adds nmol molecules of Smoldyn species i to lattice lattice. These molecules are randomly postioned
in the axis-aligned bounding box defined by the poslo and poshi vectors. The space has dim
dimensions. This allocates memory as needed. This also adds the species index i to the lattice if
it’s not already there. Returns 0 for success or 1 for failure to allocate memory.

void latticeaddport(latticeptr lattice,portptr port);
Sets the port for a lattice. A lattice only works with a single port, so there’s no need to allocate
memory, check for prior status, etc. Instead, this simply sets the port variable.

int latticeaddconvert(latticeptr lattice,int ident,int *index,enum PanelFace face,int
convert) ;
Sets the lattice convert element for the single Smoldyn species ident, or for the group of Smoldyn
species in index, and the face face to the value in convert. This is for lattice-molecules that collide
with the given face side of the port, to indicate if they should convert to particle molecules or stay as
lattice molecules. Returns 0 for success or the identity of the Smoldyn species if the Smoldyn species
has not been imported to the lattice.

latticeptr latticereadstring(simptr sim,ParseFilePtr pfp,latticeptr lattice,const
char #word,char *1ine2); This reads and processes user input, much like portreadstring and
similarly named functions. As always, sim is the simulation pointer, pfp is the parse file pointer,
which contains the file information, lattice is the pointer to the current lattice being worked on or
NULL if there is no current lattice, word is the first word of the input string, and 1ine2 is the remainder
of the input string. This returns a pointer to the current lattice being worked on if successful and NULL
if there is an error; in the latter case, the error is first sent to simParseError.

int loadlattice(simptr sim,ParseFilePtr #*pfpptr,char* line2); Loads a lattice using input from
the user. This function is called by 1loadsim when file parsing reaches “start_lattice”. This is essentially
identical in structure to loadport.

int latticesupdateparams(simptr sim);
Updates the parameters of all lattices, meaning that it sends various parameters from the lattice
structures to the NSV code. This sends the port details, including the porting rectangle panel locations,
dimensions, and orientations. This also sends the list of reactions to the NSV code. Returns 0 for
success or 1 for inability to allocate memory.

int latticesupdatelists(simptr sim);
Updates the more fundamental parameters of all lattices, meaning that it sends them from the lattice
structures to the NSV code. First, this deletes any existing nsv data. Then, this sends the lattice
dimensions, the species, and the numbers of molecules of each species. This deletes the local molecule
data afterwards.

int latticesupdate(simptr sim);
Updates the lattice superstructure and all member lattices as needed, while updating the condition as

appropriate. This function is essentially identical to ones with similar names in other code modules.

core simulation functions

int latticeruntimestep(simptr sim);
Runs the lattice NSV code for one simulation time step for each lattice. Returns 0.

NSV functions, in nsvc.cpp

void nsv_init();
Initializes the Kairos simulation engine.

98 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

NextSubvolumeMethod* nsv_new(double* min, double* max, double* dx, int n);
Allocates and initializes a new nsv type data structure, and then returns it. min and max are the low and
high corners of space, dx is the lattice spacing on each coordinate, and n is the lattice dimensionality.

void nsv_delete (NextSubvolumeMethod* nsv) ;
Deletes an nsv type data structure.

void nsv_print (NextSubvolumeMethod* nsv, char*x bufferptr);
Prints out information about the nsv data structure to the buffer, which is simply a pointer to an
unallocated string. The buffer needs to be freed afterwards.

void nsv_add_interface(NextSubvolumeMethod* nsv,int id,double dt, double *start,double

*end,double *norm,int dim)

Adds information about a porting surface panel to the lattice nsv. This panel has to be a rectangle
shape. It is used for conversion of a particular species at this surface. id is the Smoldyn species index
(not the lattice species index) of the species that should be ported at the interface. dt is the Smoldyn
time step (same for the lattice). start is a dim-dimensional list of the rectangle low-value coordinates
and end is a list of the rectangle high-value coordinates. norm is the dim-dimensional surface normal
vector that points towards the particle side of the interface and away from the lattice-side of the
interface. Finally, dim is the simulation dimensionality.

void nsv_add_species(NextSubvolumeMethod* nsv,int id,double D,char *btype,int dim);
Adds a new species to the lattice nsv. id is the Smoldyn species number and D is the solution-phase
diffusion coefficient of this species. btype is a vector with the boundary type on each axis, where the
options are ‘v’ for reflective and ‘p’ for periodic. dim is the lattice dimensionality.

extern void nsv_add_surface(NextSubvolumeMethod* nsv,surfacestruct* surface);
Adds a surface to the lattice nsv. surface is a pointer to a Smoldyn surface that should be added to
the lattice.

void nsv_add_reaction(NextSubvolumeMethod* nsv,rxnstruct *reaction);
Adds a reaction to the lattice nsv. reaction is a pointer to a Smoldyn reaction that should be added
to the lattice.

void nsv_integrate(NextSubvolumeMethod* nsv,double dt, portstruct *port, latticestruct *lattice);

Runs the lattice simulation over dt amount of time. nsv is the lattice, port is the port that is
between the lattice and the Smoldyn simulation, and lattice is the Smoldyn lattice data structure.

void nsv_add mol(NextSubvolumeMethod* nsv,int id, double* pos, int dim);
Adds one molecule to lattice nsv. The molecule has Smoldyn species id and dim-dimensional location
vector pos. dim is the lattice dimensionality.

int nsv_get_species_copy_numbers(NextSubvolumeMethod* nsv, int id,const int
x*kcopy._numbers, const double** positions);
Gets the copy number of a species in the nsv data structure. Enter id as the Smoldyn species
number (not the lattice species number), copy_numbers as a pointer to an unallocated integer array
and positions as an unallocated double array. Both of these need to freed afterwards.

5.11 Filaments (functions in smolfilament.c)

Filament support is in progress.

5.11. FILAMENTS (FUNCTIONS IN SMOLFILAMENT.C) 99
Data structures declared in smoldyn.h

enum DynamicsType {DTnone ,DTrouse,DTalberts};

The DynamicsType enumerated type describes the filament simulation dynamics type.

typedef struct beadstruct {

double xyz[3]; // bead coordinates
double xyzold[3]; // bead coordinates for prior time
} *beadptr;

A filament can have beads or segments, but not both. In the bead case, each bead is quite simple. A
bead has its current position, in xyz and its old position, in xyzold. For 2D simulations, only the first two
vales are used in each position vector.

typedef struct segmentstruct {

double xyzfront [3]; // Coords. for segment front
double xyzback[3]; // Coords. for segment back
double len; // segment length

double ypr[3]; // relative ypr angles

double dcm[9]; // relative dcm

double adcm[9]; // absolute segment orientation
double thk; // thickness of segment

} *segmentptr;

Segments are a bit more complicated than beads. xyzfront is the z,y,z coordinate of the segment
starting point and xyzback is the z,y, z coordinate of the segment end point. len is the segment length.
ypr is the relative yaw, pitch, and roll angle for the segment relative to the orientation of the prior segment.
sdcm is the relative direction cosine matrix for the segment relative to the orientation of the one before it.
Identical information is contained in ypr and dcm, but the latter is here for faster computation. adcm is the
direction cosine matrix for the absolute orientation. thk is the thickness of the segment. For 2D simulations,
only the first 2 values are used in the coordinates vectors and only the first value is used in the ypr angles.

At present, filaments are designed for all segments of the same length. This wasn’t what I had in mind
initially, but may be sufficiently easier to program that it’s worth keeping this constraint.

typedef struct filamenttypestruct {

struct filamentsuperstruct *filss; // filament superstructure
char *ftname; // filament type name

double color [4]; // filament color

double edgepts; // thickness of edge for drawing
unsigned int edgestipple[2]; // edge stippling [factor, pattern]
enum DrawMode drawmode; // polygon drawing mode

double shiny; // shininess

enum DynamicsType dynamics; // Dynamics for the filament

int isbead; // 1 for bead model, O for segment model
double stdlen; // minimum energy segment length
double stdypr [3]; // minimum energy bend angle

double klen; // force constant for length

double kypr[3]; // force constant for angle

double KkT; // thermodynamic temperature, [0, inf)
double treadrate; // treadmilling rate constant

double viscosity; // viscostity

double beadradius; // bead radiues

} *filamenttypeptr;

Filament types describe various types of filaments, such as actin, microtubule, etc. All filaments of the
same type have the same graphical display, force constants, dynamic simulation methods, etc.

Starting with graphical display parameters, color is the filament color, with red, green, blue, and alpha
values. edgepts is the edge thickness for drawing, edgestipple is the stippling code for the edge stippleing,
if any. drawmode is the polymer drawing mode, which can be face, edge, vertex, of a combination of these.

100 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

shiny is the shininess for graphical display. These graphical display statements are very similar to those
used for surfaces.

Filament mechanics information is in the next elements. dynamics gives the type of simulation dynamics.
stdlen is the standard segment length, meaning the segment length at minimum energy, where segments are
neither stretched nor compressed. stdypr is the minimum energy relative ypr angle. klen is the stretching
force constant. Its value is < 0 for an infinite force constant, meaning that the segment lengths are fixed.
kypr is the bending force constant. For any element, its value is 0 for zero force constant, meaning a freely
jointed chain, and < 0 for an infinite force constant, meaning a fixed bending angle. kT is the thermodynamic
energy. This parameter isn’t ideal here because it allows a different temperature for different components
in the simulation, but it’s here for now. treadrate is the treadmilling rate constant. viscosity is the
medium viscosity for computing drag coefficients. beadradius is the radius of beads, which only applies to
bead models. For 2D filaments, stdypr values 1 and 2 should have value 0 and kypr values 1 and 2 should
have value -1 (i.e. bending out of the z,y plane can’t happen).

typedef struct filamentstruct {

struct filamentsuperstruct *filss; // filament superstructure
filamenttypeptr filtype; // filament type structure

char #*fname; // filament name

int maxseg; // number of segments allocated

int nseg; // mumber of segments

int front; // front index

int back; // back index

beadptr *beads; // array of the beads ?? Initialise to NULL
segmentptr *segments; // array of the segments 22 Intitialise to NULL

} *filamentptr;

Each filament is a pretty simple data structure, including only a type and a list of either beads or segments.
Beads or segments are joined end-to-end. Multiple filaments of the same type (e.g. two microtubules) are
stored in multiple data structures. At some point, we’ll add support for filament joining, such as for multi-
scale filaments, branched filaments, filament meshes, etc., but that’s not here now.

The filss element points to the filament superstructure that owns this filament. fname is the name of
the filament. The filament segment lists are allocated for maxseg total segments, of which nseg of those are
actually used for segments. Each segment list starts at position front and continues to position back-1.
These are implemented so that back is always greater than front. I considered using a circular queue, but
this is easier to use and runs faster in most algorithms.

typedef struct filamentsuperstruct {

enum StructCond condition; // structure condition

struct simstruct *sim; // simulation structure

int maxfil; // mazimum number of filaments
int nfil; // actual number of filaments
char **xfnames; // filament names

filamentptr *fillist; // list of filaments

} *filamentssptr;

The superstructure contains a list of filaments. It also contains a condition element and a pointer up the
heirarchy to the simulation structure.

Filament math

Following are the basic equations for the filament relative angles (A, dem), absolute angles (B, adcm), and
positions (x, xyz).

Bo = Ao

B;=A;-B;

B, = A?+1 ‘Bit1

Function declarations.

As much as possible, functions are declared locally rather than in the smoldynfuncs.h header file. This
simplifies the code reading because it clarifies which functions might be called externally versus those that

5.11. FILAMENTS (FUNCTIONS IN SMOLFILAMENT.C) 101

are only called internally.

char *fildt2string(enum DynamicsType dt,char *string); Local. Converts filament dynamics type
to string. Returns “none” for unrecognized dynamics type. Writes result to string and also returns
it directly.

enum DynamicsType filstring2dt(char *string); Local Converts filament dynamics string to
enumerated dynamics type. Returns DTnone for unrecognized input.

low level utilities

double filRandomLength(const filamenttypeptr filtype,double thickness,double sigmamult);
Local. Returns a random segment length using the mechanics parameters given in filament type
filtype. thickness is the thickness of the new segment and sigmamult is multiplied by the normal
standard deviation of the length. The returned length is Gaussian distributed, with mean equal to
fil->1std and standard deviation equal to amult\/kT/(thickness * Kjen). The returned length is
always positive.

double *filRandomAngle(filamenttypeptr filtype,double thickness,double *angle,double sigmamult);

Local. Returns a random bending angle in angle (a relative ypr angle) for filament type filtype,
without changing the filament. The new segment has thickness thickness and the normal standard
deviation is multiplied by sigmamult.

double filStretchEnergy(filamentptr fil,int segl,int seg2);
Computes the stretching energy for filament £il. Enter segl as the first segment to compute from,
or as -1 to indicate that it should start at the front of the filament, and set2 as the last segment to
compute to, or as -1 to indicate that calculation should end at the end of the filament. The equation
is

thkskien(ls — lsta)?
Estretch = Z ! (2 td) (51)

S

double filBendEnergy(filamentptr fil,int segl,int seg2);
Computes the bending energy for filament £il. Enter segl as the first segment to compute from, or as
-1 to indicate that it should start at the front of the filament, and set2 as the last segment to compute
to, or as -1 to indicate that calculation should end at the end of the filament. The equation is

n

E _ thks_1 + thks ky(ay — ay sta)® + kplap — apsta)” + ke(ar — arsta)®
bend — Z 9 2

(5.2)
s=1

The first term in the sum computes the average thickness of the segment in front of and behind the
bend. The other term is the squared bending angle on each coordintate.

void filArrayShift(filamentptr fil,int shift);
Shifts the bead or segment list in the filament (beads if they are defined and segements otherwise)
either to higher indices or to lower indices, adjusting the front and back elements to account for the
shift. Enter shift as a positive number to increase all of the indices, as a negative number to decrease
all of the indices, and as 0 to have the filament centered in the allocated memory.

This is inefficient currently since it does repeated memory swaps rather than moving blocks of memory
around more intelligently. As a results, empty beads/segments may get moved multiple times in a
single array shift.

Memory management

102 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

beadptr beadalloc();
Allocates memory for a single bead and initializes this bead. Returns a pointer to this bead, or NULL
if memory could not be allocated.

void beadfree(beadptr bead);
Frees memory for a single bead.

segmentptr segmentalloc();
Allocates memory for a single segment and initializes this segment. Returns a pointer to this segment,
or NULL if memory could not be allocated.

void segmentfree(segmentptr segment) ;
Frees memory for a single segment.

filamenttypeptr filamenttypealloc();
Allocates memory for a filament type structure and intilizes it. Returns a pointer to this filament type,
or NULL if memory could not be allocated.

void filamenttypefree(filamenttypeptr filtype);
Frees memory for a single filament type.

filamentptr filalloc(filamentptr fil,int maxbead,int maxseg);
Allocates and initializes a filament for maxseg segments and returns the resulting pointer.

void filfree(filamentptr fil);
Frees a filament and all of the data structures in it.

filamentssptr filssalloc(filamentssptr filss,int maxfil);
Allocates and initializes a filament superstructure for a maximum size of maxfil filaments. This is
set up for expanding the list, but nevertheless needs work, due to the static memory allocation for
individual filaments.

void filssfree(filamentssptr filss);
Fres a filament superstructure and all of the structures within it.

Data structure output

void filtypeoutput(filamenttypeptr filtype,int dim); Outputs all of the key information about a
filament type to the display.

void filoutput(filamentptr fil);
Outputs all of the key information about a filament to the display.

void filssoutput(simptr sim);
Outputs all of the key information about a filament superstructure, and all of the filaments in it, to
the display.

void filwrite(simptr sim,FILE *fptr);
Writes filament information to a file in Smoldyn format for loading in again later on. This function
isn’t written yet.

int filcheckparams(simptr sim,int *warnptr);
Checks filament parameters to make sure they are all reasonable. This function isn’t written yet.

Filament manipulation

int filAddSegment(filamentptr fil,double *x,double length,double *angle,double
thickness,char endchar);
Adds a segment to filament £il. If this is the first segment, then x needs to be set to the starting
location of the filament; otherwise, x is ignored. length is the length of the segment, angle is the

5.11.

FILAMENTS (FUNCTIONS IN SMOLFILAMENT.C) 103

relative angle of the segment facing along the filament from front to back (for the first segment, this
is the absolute angle), thickness is the segment thickness, and endchar should be set to ‘b’ to add
to the back of the filament or ‘f’ to add to the front of the filament. For segments added to the front,
angle is the new angle from the new first monomer to the next monomer, facing towards the back. If
the first segment is added to the back, then angle is the angle of the new segment off of the coordinate
system. If the first segment is added to the front, then angle is the angle from the new segment to
the coordinate system.

For the first segment: xy = x, x; = x¢ + loBg -X
For segments added to the back, with index i: a; = angle, A, = DCM(a;), B, = A; - B;_1,
Xip1 =X +;B] - %

For segments added to the front, with index i (typically equal to 0): B; = Af,; - Bi1, A; = B;
a; = XYZ(Bi), X; = Xj4+1 — liBzT X

int filRemoveSegment (filamentptr fil,char endchar);

void

void

void

void

Removes one segment from either the front or back end of a filament. Specify the end in endchar with
‘t” for front and ‘b’ for back.

filTranslate(filamentptr fil,const double *vect,char func)

Translates an entire filament. Enter vect with a 3-D vector and func with ‘=’ for translate to the
given posiition, with ‘-’ for to subtract the value of vect from the current position, and with ‘4+’ to
add the value of vect to the current position.

filRotateVertex(filamentptr fil,int seg,double *angle,char endchar,char func);

Not written yet. This function is supposed to rotate part of the filament about one of the filament
vertices by ypr angle angle. The character inputs give which end moves and whether it moves the
angle to the given value, whether it subtracts the given value from the current value, or whether it
adds the current value.

fillLengthenSegment (filamentptr fil,int seg,double length,char endchar,char func);
Not written yet. This function is supposed to modify the length of a single segment. As before, the
character inputs give which end moves and whether it moves the length to the given value, whether it
subtracts the given value from the current value, or whether it adds the current value.

filReverseFilament (filamentptr fil);
Not written yet. This will reverse the sequence of segments in a filament.

int filCopyFilament (filamentptr filfrom,filamentptr filto,const char *fname);

This copies all of the values in a filament to another filament.

Structure set up

void

filsetcondition(filamentssptr filss,enum StructCond cond,int upgrade);
Local. This function sets the condition of the filament superstructure. Set upgrade to 1 if this is an
upgrade, to 0 if this is a downgrade, or to 2 to set the condition independent of its current value.

int filSetParam(filamentptr fil,const char *param,int index,double value);

Sets various parameters for a filament, where the parameter name is param and it is set to the value
value. If this parameter has multiple inidices, enter the index to be changed in index, or enter index
as -1 to set all of the indices at once to the same value. Returns 0 for success or 2 for out of bounds
value. The parameter options are: stdlen for the standard length, stdypr for the standard yaw-pitch-
roll angles, klen for the stretching force constant, kypr for the bending force constants, kT for the
thermodynamic energy, treadrate for the treadmilling rate, viscosity for the medium viscosity, and
beadradius for the bead radius.

int filsetcolor(filamentptr fil,double *rgba);

Set the 4-value color vector of the filament to the values entered in rgba. Returns 0 unless one of the
entered values is outside of the range [0,1], in which case this does not change the current color and
returns an error code of 2.

104 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

int filsetedgepts(filamentptr fil,double value);
Sets the drawing thickness of the filament to the value entered in value. Returns 0 for success or 2 if
the entered value is less than 0, which is an error.

int filsetstipple(filamentptr fil,int factor,int pattern);
Sets the stippling factor and pattern for the filament to the entered values. Returns 0 for success or 2
if values are out of bounds.

int filsetdrawmode(filamentptr fil,enum DrawMode dm) ;
Sets the filament drawing mode to the entered value. Returns O for success or 2 if the input value is
unrecognized.

int filsetshiny(filamentptr fil,double shiny);
Sets the shininess for the filament to the entered value. Returns 0 for success or 2 if the value is out
of bounds.

int filenablefilaments(simptr sim,int maxfil);
Allocates a filament superstructure with maxfil filaments, adds it to the simulation structure, and
sets the filament condition to SClists. This function can be called multiple times. Use this function
to expand the number of filaments in the superstructure.

filamentptr filaddfilament (simptr sim,const char *fnames);
Add a new filament to the simulation, which is named fnames, returning a pointer to the new filament.
If a filament with this name already exists, this returns a pointer to the existing filament.

int filAddRandomSegments(filamentptr fil,int number,const char *xstr,const char
*ystr,const char *zstr,double thickness) ;
Adds number segments to the existing filament in fil. The xstr, ystr, and zstr entries are only
considered if the filament previously had no segments; in this case, the filament starting point is at the
coordinates given by them. Each entry can be a ‘u’ to indicate uniform distributed random location
in the simulation volume, or a value for the actual coordinate. Enter thickness with the segment
thickness.

filamentptr filreadstring(simptr sim,ParseFilePtr pfp,filamentptr fil,const char *word,char *line2);

Reads one line of user input within a filament block.

int filload(simptr sim,ParseFilePtr *pfpptr,char *1line2);
Reads multiple lines of user input from within a filament block, calling filreadstring with each line.

int filupdateparams(simptr sim);
Does nothing currently. This function will take compute any simulation parameters necessary from
user parameters.

int filupdatelists(simptr sim);
Does nothing currently. This function will take compute any simulation list changes necessary from
user parameters.

int filsupdate(simptr sim);

Core simulation functions

int filMonomerXSurface(simptr sim,filamentptr fil,char endchar);

int filMonomerXFilament (simptr sim,filamentptr fil,char endchar,filamentptr *filptr);

5.12. BIONETGEN (FUNCTIONS IN SMOLBNG.C) 105

void filTreadmill(simptr sim,filamentptr fil,int steps);

int filDynamics(simptr sim);

5.12 BioNetGen (functions in smolbng.c)

BioNetGen is a separate software tool that expands biochemical reaction network rules to form complete
biochemical reaction networks. Weiren Cui wrote a short perl program, called b2s, which reads BioNetGen
output (.net file) and converts that into Smoldyn input. Inspired by it, I wrote a more elaborate interpreter
into the main Smoldyn source code (in C) so that Smoldyn can read these files directly. The plan is that
Smoldyn will be distributed with the basic BioNetGen perl program. Then, when Smoldyn encounters rules
within an input file, it will automatically call BioNetGen, BioNetGen will expand the rules into a .net file,
and Smoldyn will read the .net file into Smoldyn structures.
Data structures declared in smoldyn.h

typedef struct bngstruct {
struct bngsuperstruct *bngss; // bng superstructure

char *bngname; // bng name
int bngindex; // indexz of this bng structure

int maxparams; // mazimum number of numeric parameters

int nparams; // actual number of numeric parameters

char **paramnames ; // names of parameters [index]
char **paramstrings; // strings for parameter wvalues [indez]

double *paramvalues; // actual parameter values [indez]
int maxmonomer; // mazimum number of monomers
int nmonomer; // actual number of monomers
char **monomernames ; // names of momomers [index]
int *monomercount; // momomer count work space [indez]

double *monomerdifc; // diffustion coefficient of monomer [indexz]
double *monomerdisplaysize; // display size of monomer [indez]

double **monomercolor; // color of monomer [index][RGB]

enum MolecState *monomerstate; // default monomer state [indexz]

int bngmaxsurface; // local copy of mnsurface

enum SrfAction ***monomeraction; // monomer surface actions [index][srf][facel]

surfactionptr ***monomeractdetails; // momomer action details [index][srf][facel]

int maxbspecies; // mazimum number of bng species

int nbspecies; // actual number of bng species

char *xbsplongnames; // complete bng species names [index]
char **bspshortnames; // shortened bng species names [index]
enum MolecState *bspstate; // default species state [indez]

char **xbspcountstr; // strings for initial bng species counts [indez]
double *bspcount; // actual initial bng species counts [indez]
int *spindex; // smoldyn index of this species [indezx]

int maxbrxns; // mazimum number of bng reactions

int nbrxns; // acutal number of bng reactions

char *xbrxnreactstr; // strings for reactants [index]

char **brxnprodstr; // strings for products [index]

char xxbrxnratestr; // strings for reaction rates [indez]

int **brxnreact; // reactant bng species indices [index][rct]
int **brxnprod; // product bng species indices [indexz][prd]
int *brxnorder; // order of bng reaction [indez]

int *brxnnprod; // number of products of bng reaction [index]

106 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

rxnptr *brxn; // pointer to this reaction [indez]
} *bngptr;

typedef struct bngsuperstruct {

enum StructCond condition; // structure condition
struct simstruct *sim; // simulation structure
int maxbng; // mazimum number of bng networks
int nbng; // actual number of bng networks
char **bngnames; // mames of bng networks
bngptr *bnglist; // list of bng networks

} *bngssptr;

Superstucture description. As usual, condition tells about whether this data structure is up-to-date or
not and sim points to the simulation structure. BNG2path is a string with the path information to the BNG2
program, along with the name of the program (usually BNG2.pl). This superstructure allows for multiple
bng networks, the idea being that different macromolecular complexes might be described with separate
sets of rules. Each bng network has a name listed in bngnames and is listed in bnglist. This structure is
allocated for maxbng possible bng networks, of which nbng are currently defined.

Bng structure definition. The bng structure includes a pointer to the bng superstructure that owns it
in bngss, a pointer to its name in bngname, and a copy of its index number in bngindex. The unirate
and birate elements are multipliers for unimolecular and bimolecular reaction rates, respectively, which are
useful due to the possibility of different units in the BNG file.

To understand the monomer elements, each complex is composed of a collection of monomers, also called
seed species (BioNetGen), mols (Moleculizer), or subunits. It is helpful for this parsing software to have a list
of these monomers, so they are stored here. The monomers that are listed here are inferred from the species
names. There are nmonomer monomers, of a total of maxmonomer spaces for them. Each monomer has a
name. The monomercount element is not for storing data, but is purely workspace for the bngparsespecies
function. Monomer diffusion coefficients, in monomerdifc are retrieved from the sim->mols->difc data
location. The monomerdisplaysize and monomercolor elements are also retrieved from the sim->mols
superstructure. The monomerstate element stores the default state of the monomer, which is used to
compute default states for species and then the states for reactions. The rule is that higher value states take
priority over lower value ones (so if a species includes some monomers with default state of MSsoln and one of
state MSup, then the ‘up’ state will win and that becomes the default state for the species). These monomer
lists are sorted so that monomers are listed in alphabetical order. The bngmaxsurface, monomeraction,
and monomeractdetails elements are for molecule-surface interactions. The bngmaxsurface value is the
allocated size of the following two elements, which is made equal to srfss->nsrf when things are updated,
but might be smaller in the meantime. The next two elements store information about monomer interactions
with the surface. The general rule is that more action takes priority over less action.

Most other structure elements correspond to those of the BioNetGen .net file. The species list has
allocated size maxbspecies and actual size nbspecies (the ‘b’ part of these terms is for BioNetGen, to
differentiate these lists from the regular Smoldyn lists). Each species is one that is listed in the .net file.
The listed name is put in the bsplongnames element and the count from the file is put in the bspcountstr
element. The name is parsed to monomers and then simplified to a short species name, in bspshortnames.
The default state is also from the monomers, and is stored in bspstate. The species count is parsed into
the bspcount element. The index of this species within the sim->mols data structure is stored in spindex.

The reaction list has allocated size maxbrxns and actual size nbrxns. The reaction data read in from
the .net file is separated into reactants in brxnreactstr, products in brxnprodstr, and the reaction rate
in brxnratestr. Those items are parsed into bionetgen species numbers (as opposed to Smoldyn species
numbers) in the brxnreact and brxnprod vectors. The reaction has order brxnorder, and number of
products brxnnprod. After the reaction is added to the main Smoldyn program, the pointer to the reaction
data structure for this reaction is stored in brxn.

Function declarations. As much as possible, the smolbng functions are declared locally rather than in
the smoldynfuncs.h header file. This simplifies the code reading because it clarifies which functions might
be called externally versus those that are only called internally. Below, all functions are labeled as either
“Local” or “Global” to indicate this status.

5.12. BIONETGEN (FUNCTIONS IN SMOLBNG.C) 107

Memory management functions

void bngallocsurfacedata(bngptr bng,int maxsurface);
This allocates memory for the surface action elements for the monomers. Enter bng with the bng
to be updated and maxsurface for the desired number of surface spaces (which should be equal to
srfss->nsrf). This function allocates all of the surface spaces for any monomers that don’t have
any yet. It also expands the number of surface spaces for monomers that were allocated when
there were fewer surfaces. This doesn’t return anything except for the updated bng structure. If
the bng->bngmaxsurface element wasn’t updated, then this function wasn’t able to allocate memory.

bngptr bngalloc(bngptr bng,int maxparams,int maxbspecies,int maxbrxns) ;
Local. Allocates or expands a bng structure, returning a pointer to it. Enter bng as NULL to allocate a
new structure, or as an existing pointer to expand lists within the data structure. Spaces for parameters,
species, and reactions are allocated if the entered max value is larger than the current one. Returns a
pointer to the new or previously existing structure on success, or NULL on failure.

void bngfree(bngptr bng);
Local. Frees a bng structure, including all of its contents.

bngssptr bngssalloc(bngssptr bngss,int maxbng) ;
Local. Allocates or expands a bngss structure, returning a pointer to it. Enter bngss as NULL to
allocate a new structure, or as an existing pointer to expand lists within the data structure. Spaces
for bng names and structures are allocated if the entered maxbng value is larger than the current one.
Returns a pointer to the new or previously existing structure on success, or NULL on failure.

void bngssfree(bngssptr bngss);
Local. Frees a bng superstructure, including all of its contents.

Data structure output

void bngoutput (simptr sim);
Global. Outputs the contents of the bng superstructure and all bng structures to the display.

int checkbngparams(simptr sim,int *warnptr);
Global. Checks that the bng parameters are reasonable. This does very little at present.

Structure set up - bng

void bngsetcondition(bngssptr bngss,enum StructCond cond,int upgrade) ;
Local. This function sets the condition of the bng superstructure. Set upgrade to 1 if this is an upgrade,
to 0 if this is a downgrade, or to 2 to set the condition independent of its current value.

int bngenablebng(simptr sim,int maxbng);
Local. This function enables simulation with bng capability. It allocates and initializes the bng
superstructure if it doesn’t already exist. Send in maxbng with -1 for automatic behavior, which is 1
bng structure, or with some other value to specify the number of bng structures. Returns 0 on success
or 1 for failure to allocate memory.

bngptr bngaddbng(simptr sim,const char *bngname) ;
Local. Adds a bng structure to the bng superstructure, returning a pointer to it. The new bng
structure is named bngname. This enables bng function if it hasn’t been enabled already. If a bng
structure already exists with the same name, then a pointer to that bng is returned.

int bngsetparam(bngptr bng,char *parameter,double amount);
Local. Sets the bng structure parameter called parameter to the value amount. The only options
for parameter are “unimolecular_rate” and “bimolecular_rate”. Returns 0 for success, 1 for illegal
parameter string, and 2 for illegal amount value.

108 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

int bngsetBNG2path(bngptr bng,char *path);
Local. Sets the bng superstructure BNG2path element to the string entered in path. Returns 0.

Structure set up - parameters

int bngparseparameter (bngptr bng,int index);
Local. Parses the parameter value string for the parameter with index index, and puts the result
into the parameter value element. Returns 0 for success or 1 for failure. If there is a failure, then its
description can be found using strmatherror.

int bngaddparameter (bngptr bng,const char *name,const char *string);
Local. Adds a parameter, or modifies an existing parameter, in a bng structure. Send in the parameter
name in name. If a parameter of this name doesn’t already exist, one is created. The value of string,
which is allowed to be NULL is copied into the bng->paramstrings element for parsing to a value.
This function sends the new parameter to bngparseparameter for parsing. Returns the index of the
parameter for success, -1 for failure to allocate memory, or -2 for a math parsing error; in the last case,
the error message can be found using strmatherror.

Structure set up - monomers

int bngaddmonomer (bngptr bng,const char *name,enum MolecState ms);

Local. Adds a monomer, or modifies an existing monomer, in a bng structure. Send in the monomer
name in name. If the default state of this monomer is known, enter it in ms; if not, then enter ms
as MSsoln. If a monomer of this name doesn’t already exist, one is created. It is added to the list
while maintaining alphabetical order. The monomer counts are not changed. Returns the monomer
index for success, -1 for failure to allocate memory, or -2 for an invalid monomer name. This sets the
monomer diffusion coefficient and color to values in the main Smoldyn code if it is available. In doing
S0, it looks first for a Smoldyn species name that is the same as the monomer name. If it doesn’t find
one, it looks for a Smoldyn species name that has two dots and where the portion before the first name
is the same as the monomer name (e.g. “X.1.0”).

int bngsetmonomerdifc(bngptr bng,char *name,double difc);
Local. Sets the diffusion coefficient the monomer called name to difc. This also adds the monomer to
the list if it wasn’t there already, and initializes the diffusion coefficient. Returns 0 for success, -1 if
out of memory, or -2 for invalid monomer name.

int bngsetmonomerdisplaysize(bngptr bng,char *name,double displaysize);
Local. Sets the display size of the monomer called name to displaysize. This also adds the monomer
to the list if it wasn’t there already, and initializes the diffusion coefficient. Returns 0 for success, -1 if
out of memory, or -2 for invalid monomer name.

int bngsetmonomercolor(bngptr bng,char *name,double *color);
Local. Sets the color of the monomer called name to color, which is a 3-element vector. This also adds
the monomer to the list if it wasn’t there already, and initializes the diffusion coefficient. Returns 0
for success, -1 if out of memory, or -2 for invalid monomer name.

int bngsetmonomerstate(bngptr bng,char *name,enum MolecState ms);
Local. Sets the state of the monomer called name to ms. This also adds the monomer to the list if it
wasn’t there already, and initializes the diffusion coefficient. Returns 0 for success, -1 if out of memory,
or -2 for invalid monomer name.

Structure set up - species

int bngmakeshortname(bngptr bng,int index,int totalmn,int hasmods);
Local. Generates a short name for a bspecies, saving it in bng->bspshortnames. Send in index as
the index of this species, totalmn as the total number of monomers in this species, and hasmods as
1 if the species has at least one modification site and 0 if not. The monomercount array needs to be
prepared as well. If totalmn is 1 and the species has no modification sites, then this species is just

5.12.

enum

BIONETGEN (FUNCTIONS IN SMOLBNG.C) 109

a simple unmodifiable monomer; in this case, the short name is the name of the monomer with no
suffix. Otherwise, a short name is created which concatenates each monomer name and the number of
copies of that monomer, for each monomer, and then adds an isomer code to the end. Always returns
0. This function is only called by bngparsespecies. If the short name length as defined here would
be longer than the maximum string length, STRCHAR, then the length is truncated at a value that is
slighly less than this and this species is distinguished from others that have the same name with the
isomer number. Thus, errors cannot arise from excessively long strings.

MolecState bngmakedefaultstate(bngptr bng,int index,int totalmn);

Local. Generates and returns the default state for a bspecies, which has index index and total
monomers totalmn. The monomercount array needs to be prepared as well. If the species is also
in Smoldyn, then that value is retrieved. If the species has only 1 monomer, the state is the state of
that monomer. Otherwise, the state is the greatest state of the monomer states (although with a little
re-ordering, so that the priority is MSsoln, MSbsoln, MSfront, MSback, MSup, MSdown. This function is
only called by bngparsespecies.

double bngmakedifc(bngptr bng,int index,int totalmn);

Local. Generates and returns the diffusion coefficient for a bspecies, which has index index and total
monomers totalmn. The monomercount array needs to be prepared as well. If the species is also in
Smoldyn, then that value is retrieved. If the species has only 1 monomer, then the diffusion coefficient
is that of the monomer. Otherwise, it is a weighted average of the monomer diffusion coefficients using
the equation Dgpecies = (D; D;S)_1/3 where Dgpecies is the diffusion coefficient of the species and
D; is the diffusion coefficient of the ith monomer within the species. This function is only called by
bngparsespecies.

double bngmakedisplaysize(bngptr bng,int index,int totalmn);

Local. Generates and returns the display size for a bspecies, which has index index and total monomers
totalmn. The monomercount array needs to be prepared as well. If the species is also in Smoldyn,
then that value is retrieved. If the species has only 1 monomer, then the display size is the display size
of that monomer. Otherwise, it is a weighted average of the monomer display sizes using the equation
Sspecies = (D; SH/3 where Sspecies 18 the display size of the species and S; is the display size of the
1th monomer within the species. This function is only called by bngparsespecies.

int bngmakecolor(bngptr bng,int index,int totalmn,double *color) ;

void

Local. Generates and returns the color for a bspecies, which has index index and total monomers
totalmn. The monomercount array needs to be prepared as well. If the species is also in Smoldyn,
then that value is retrieved. If the species has only 1 monomer, then the color is the color of that
monomer. Otherwise, it is a weighted average of the monomer colors. This averaging is weighted by
the display sizes of each monomer. This function is only called by bngparsespecies.

bngmakesurfaction(bngptr bng,int index,int totalmn,enum SrfAction
xksrfaction,surfactionptr **actdetails);

Local. Generates and returns the surface actions for a bspecies, which has index index and total
monomers totalmn. The monomercount array needs to be prepared as well. If the species is also in
Smoldyn, then those values are retrieved. If the species has only 1 monomer, then the surface actions
are those of that monomer. Otherwise, it is chosen based on priority, so that greater actions take
priority over smaller actions. More precisely, the action ordering is SAtrans | SAmult | SAreflect |
SAjump | SAabsorb j SAport. If the only choice is between SAmult values, then this goes to the rate
values in the action details to decide which has the greater action. This function has barely been
tested.

int bngparsespecies(bngptr bng,int index);

Local. Parses species with index index using its longname. This does lots of things as it goes along.
It determines if there are any new monomers, and adds those to the monomer list if so. This also
generates a short name for the species, its default state, diffusion coefficient, display size, and color.
This species is added to the Smoldyn simulation, including all of its attributes. This then parses the

110 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

species countstring and adds the correct number of molecules to the Smoldyn simulation. Returns 0
for success, -1 for inability to allocate memory, -2 for a longname that cannot be parsed, -3 for an
illegal name (e.g. an asterisk in the name), -4 for a count string that cannot be parsed (in this case,
the error can be found from strmatherror, or -5 if more molecules are requested than the maximum
allowed in Smoldyn, set with maxdlimit.

int bngaddspecies(bngptr bng,int bindex,const char *longname,const char *countstr);
Local. Adds a species, or modifies an existing species, in a bng structure. The bindex value is used to
place the species in the list, meaning that species are not added to the list sequentially, but according
to the bindex values. This copies longname into the bng->bsplongnames element and countstr into
the bng->bspcountstr element. Either or both are allowed to be NULL. This calls bngparsespecies
to parse the species, set up all species parameters, and add it to the Smoldyn simulation. Returns 0
for success or the same error codes as bngparsespecies for failure.

Structure set up - reactions

int bngparsereaction(bngptr bng,int index);
Local. Parses the reaction with index index. This reads the bng reactant and product names, deals
with reactant and product states, and uses this information to create a new Smoldyn reaction. This
also reads the reaction rate and uses it to set the Smoldyn reaction rate. Returns 0 for success, 1 for
failure to add the reaction to Smoldyn, or 2 for inability to parse the rate string.

int bngaddreaction(bngptr bng,int bindex,const char *reactants,const char *products,const

Local. Adds a reaction, or modifies an existing reaction, in a bng structure. The bindex value is
used to place the reaction in the list, meaning that reactions are not added to the list sequentially,
but according to the bindex values. This copies reactants into the bng->brxnreactstr element,
products into the bng->brxnprodstr element, and rate into the bng->brxnratestr element. Any or
all are allowed to be NULL. This calls bngparsereaction to perform all parsing. Returns 0 for success,
1 for failure to allocate memory, or 2 for inability to parse the rate string.

Structure set up - reactions

int bngaddgroup(bngptr bng,int gindex,const char *gname,const char *specieslist);

Adds a group, created in the .bngl file with “begin observables” and in the .net file as “begin groups”
to the Smoldyn simulation, as a species group. Send in the group index as gindex. This value is
ignored. Send in the group name as gname and the species list as specieslist. The species list should
be a comma-separated list of species indices, using the BioNetGen indices. Returns 0 for success or
1 for errors (the only error that should ever arise is an out of memory error). This function converts
the bng species indices to Smoldyn species indices and sends the results to moladdspeciesgroup for
group creation.

Structure set up - high level functions

int bngrunBNGL2(bngptr bng,char *filename,char *outname);
Local. This runs the BNG2.pl program on the BNGL file called filename. The output file name is
returned in outname. Returns 0 for success; 1 for inability to find BNG2.pl software at the stored path
location; 2 for missing input file called filename; or 3 for no output file generated, due to BNG2.pl
terminating because of an error in the input file.

bngptr bngreadstring(simptr sim,ParseFilePtr pfp,bngptr bng,const char *word,char *line2);

Local. Reads a line of input. This input can start with the word ‘name’ to give the name of the
bng structure. Otherwise, it needs to be a line from a BioNetGen .net file, or a few other words.
Returns a pointer to the bng structure for success or NULL for failure.

int loadbng(simptr sim,ParseFilePtr *pfpptr,char* line2);
Reads BioNetGen .net file, or set of statements. Returns 0 for success or 1 for failure. This function
does not require an end statement to stop reading the file, but an end of file serves as well.

char *rate);

5.13. COMPLEXES (NOT WRITTEN YET) 111

int bngupdateparams(simptr sim);
Local. Doesn’t do anything at the moment.

int bngupdatelists(simptr sim);
Local. This does nothing, simply returning 0 to indicate success.

int bngupdate(simptr sim);
Updates a bng structure, bringing it up to the ok condition. This calls the bngupdatelists and
bngupdateparams functions to carry out the updating tasks.

Core simulation functions

No core simulation functions.

5.13 Complexes (not written yet)

It’s becoming increasingly apparent that Smoldyn needs to support macromolecular complexes. This section
presents documentation for code that hasn’t been written yet in the hopes that this will provide a design for
the code once there is time to write it.

Data structures
Each individual complex is listed with a complexstruct, and this complexstruct lists each of its monomers
individually in a monomerstruct.

typedef struct monomerstruct {

struct complexstruct *cmplx; // owning complex superstructure
moleculeptr *mptr; // molecule that 4is this monomer

double *dispsph; // displacement of monomer in 7T,q,f,z

double *dispcart; // displacement of this monomer in z,y,2
struct monomerstruct **xsite; // monomer at each binding site [bs]
int *shape; // shape of each binding site [bs]

} *monomerptr;

typedef struct complexstruct {

struct complexsuperstruct *cmplxss; // owning complexz superstructure
int maxmonomer; // mazimum number of monomers

int nmonomer; // actual number of momomers

monomerptr *monomers; // list of componment monomers

double *pos; // center of mass position [d]

double *posx; // old COM position [d]

double *rotation; // complex rotation in gq,f,x

double mass; // complex mass

double difc; // complex diffusion coefficient

double difstep; // complex rms step length

} *complexptr;

typedef struct complexsuperstruct{

struct simstruct *sim; // owning simulation structure

int maxcomplex; // mazimum number of complezes

int ncomplex; // actual number of complezes

complexptr *complexes; // list of individual complezes
// rules about connectivity

int *nsites; // number of sites on species [1]

int **nshapes; // number of shapes [1][bs]

double ***shapemass; // mass of shape [t][bs][sh]

char *#***shapename; // shape mnames [i1][bs][sh]

double ***xdispsph; // site displacement in r,q,f,z, [t][bs][sh]

112 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS
// rules for complexz mnames (t.e. explicit-species and species-classes)

} *complexssptr;

Add to moleculesuperstruct: double *mass; // mass of species [i]

5.14 Graphics (functions in smolgraphics.c)

Overall, Smoldyn’s graphics use is fairly straightforward, although it is nevertheless a little complicated due
to the design of the OpenGL glut library. For stand-alone Smoldyn, the program’s entry and exit point
are in the main function, which is in smoldyn.c. From here, the program forks to either smolsimulate
(in smolsim.c) if graphics are not used or to smolsimulategl (in smolgraphics.c) if graphics are used. In
the latter case, the OpenGL glut framework is used, in which control is passed from the main program to
OpenGL and is not returned again until the user chooses quit from a menu. This leads to a slightly strange
program structure, although I have attempted to contain all of the strangeness to a few functions at the end
of smolgraphics.c.

If graphics are used, then smolsimulategl sets up a few graphics options that will apply for the
entire simulation, calls gl2Initialize with the system boundaries for more overall set up, sets the
background color, registers RenderScene as the display callback function, registers TimerFunction as the
simulation callback function, and then goes into the black box called glutMainLoop. The only graphics
done in TimerFunction is that it posts a need for graphical update on occasion with glutPostRedisplay.
Meanwhile, RenderScene is just a wrapper for RenderSim, which actually draws the entire graphical output.
The summary is: initialization is done in smolsimulategl and drawing is done by RenderSim.

Data structure

#define MAXLIGHTS 8;
enum LightParam {LPambient ,LPdiffuse,LPspecular ,LPposition,LPon,LPoff,6 LPauto,
LPnonel};

typedef struct graphicssuperstruct {

int graphics; // graphics: O=none, 1=opengl, 2=good opengl
int currentit; // current number of simulation time steps
int graphicit; // number of time steps per graphics update
unsigned int graphicdelay; // minimum delay (in ms) for graphics updates
int tiffit; // number of time steps per tiff save

double framepts; // thickness of frame for graphics

double gridpts; // thickness of wvirtual boz grid for graphics
double framecolor [4]; // frame color [c]

double gridcolor [4]; // grid color [c]

double backcolor [4]; // background color [c]

double textcolor [4]; // text color [c]

int maxtextitems; // allocated size of item list

int ntextitems; // actual stize of item list

char **xtextitems; // items to display with text [item]

double ambient [4]; // global ambient light [c]

int lightstate [MAXLIGHTS]; // whether light 4s on or off [lt]

double ambilight [MAXLIGHTS][4]; // ambient light color [lt][c]
double difflight [MAXLIGHTSI1[4]; // diffuse light color [lt][c]
double speclight [MAXLIGHTS][4]; // spectral light color [lt][c]
double lightpos [MAXLIGHTS]I[3]; // light positions [lt][d]

} *graphicsssptr;

enumerated types

enum LightParam graphicsstring2lp(char *string) ;
Converts a string to an enumerated light parameter.

5.14. GRAPHICS (FUNCTIONS IN SMOLGRAPHICS.C) 113

char *graphicslp2string(enum LightParam lp,char *string)
Converts an enumerated light parameter to a string. The string is returned.

low level utilities

int graphicsreadcolor(char **stringptr,double *rgba);

Reads the text of the string that stringptr points to, to find color information. The data are returned
in the vector rgba, if rgba is not sent in as NULL. The input data are in a pointer to a string, rather
than just a string, so that the string can be advanced to the end of the color information. Upon
return, if this function is successful, the contents of stringptr points to the first word of the string
that follows the color information, or to NULL if the end of the string was reached while parsing color
information. If rgba is supplied, it needs to be allocated to hold at least 4 numbers, which are for the
red, green, blue, and alpha color channels, respectively. The string needs to list the color either with
three space-separated numbers, each between 0 and 1 inclusive, or with a single word. Word options
are: maroon, red, orange, yellow, olive, green, purple, magenta, lime, teal, cyan, blue, navy, black,
gray, silver, and white. Other words are not recognized. Following the color information, the string
can optionally list the alpha value, as a number between 0 and 1. If alpha is not listed, a default value
of 1 is assigned. The function returns 0 for no error, 1 if string is missing or is empty, 2 if too few
numbers are listed, 3 if one or more of the listed color numbers is out of range (the listed numbers are
returned in rgba), 4 if a word was given but it isn’t recognized, 5 if an alpha value was given but can’t
be parsed, or 6 if the listed alpha value is out of range.

memory management

graphicsssptr graphssalloc(void)
Allocates and intializes the graphics superstructure. No OpenGL stuff is intialized here.

void graphssfree(graphicsssptr graphss)
Frees a graphics superstructure.

data structure output

void graphssoutput(simptr sim)
Displays all graphics parameters from the graphics superstructure to stdout. Also displays some
information from the opengl2 library variables, including the TIFF name and TIFF numbering.

void writegraphss(simptr sim,FILE *fptr)
Writes graphics information to fptr as part of a Smoldyn-readable input file.

int checkgraphicsparams(simptr sim,int *warnptr)
Checks graphics parameters for actual or possible errors. Returns the number of errors directly and
returns the number of warnings in warnptr, if warnptr isn’t NULL. At present, this doesn’t check
anything, but just returns two zeros.

structure setup

void graphicssetcondition(graphicsssptr graphss,enum StructCond cond,int upgrade);
Sets the graphics superstructure condition to cond, if appropriate. Set upgrade to 1 if this is an
upgrade, to 0 if this is a downgrade, or to 2 to set the condition independent of its current value. If
the condition is downgraded, this also downgrades the simulation structure condition.

int graphicsenablegraphics(simptr sim,char *type);
Enables graphics by allocating a graphics superstructure and adding it to the simulation structure.
Enter type as “none” for no graphics, “opengl” for minimal OpenGL graphics (molecules are square
dots), “opengl_good” for reasonably good OpenGL graphics (molecules are solid colored spheres),
“opengl_better” for better OpenGL graphics (use of lighting and shininess), or NULL for default enabling
which is no change if graphics already exist and basic OpenGL if they don’t already exist. Returns 0
for success, 1 for inability to allocate memory, 2 for missing sim input, or 3 for an invalid type string.

114

int

int

int

int

int

int

int

int

int

int

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

graphicssetiter(simptr sim,int iter);
Sets the graphicit element of the graphics superstructure, which tells how many simulation iterations
should be allowed to pass between graphics renderings. This enables graphics, if needed. Returns 0
for success, 1 for out of memory enabling graphics, 2 for no sim, or 3 for an illegal iter value (it needs
to be at least 1).

graphicssetdelay(simptr sim,int delay);

Sets the graphicdelay element of the graphics superstructure, which gives the minimum number of
milliseconds that should be allowed to elapse between graphics renderings, to keep simulations from
running too fast to see. This enables graphics, if needed. Returns 0 for success, 1 for out of memory
enabling graphics, 2 for no sim, or 3 for an illegal delay value (it needs to be at least 0).

graphicssetframethickness(simptr sim,double thickness);

Sets the framepts element of the graphics superstructure, which gives the drawing thickness of the
frame that surrounds the simulation volume. This enables graphics, if needed. Returns 0 for success,
1 for out of memory enabling graphics, 2 for no sim, or 3 for an illegal thickness value (it needs to
be at least 0).

graphicssetframecolor (simptr sim,double *color);

Sets the framecolor elements of the graphics superstructure, which gives the color of the frame that
surrounds the simulation volume. Color is a four-element vector (red, green, blue, alpha). This enables
graphics, if needed. Returns 0 for success, 1 for out of memory enabling graphics, 2 for no sim, or 3
for one or more illegal color values (they need to be between 0 and 1, inclusive).

graphicssetgridthickness(simptr sim,double thickness);

Sets the gridpts element of the graphics superstructure, which gives the drawing thickness of the
partitions that separate the virtual boxes. This enables graphics, if needed. Returns 0 for success, 1
for out of memory enabling graphics, 2 for no sim, or 3 for an illegal thickness value (it needs to be
at least 0).

graphicssetgridcolor(simptr sim,double *color);

Sets the gridcolor elements of the graphics superstructure, which gives the color of the partitions
that separate the virtual boxes. Color is a four-element vector (red, green, blue, alpha). This enables
graphics, if needed. Returns 0 for success, 1 for out of memory enabling graphics, 2 for no sim, or 3
for one or more illegal color values (they need to be between 0 and 1, inclusive).

graphicssetbackcolor(simptr sim,double *color);

Sets the backcolor elements of the graphics superstructure, which gives the color of the background.
Color is a four-element vector (red, green, blue, alpha). This enables graphics, if needed. Returns 0
for success, 1 for out of memory enabling graphics, 2 for no sim, or 3 for one or more illegal color
values (they need to be between 0 and 1, inclusive).

graphicssettextcolor(simptr sim,double *color);

Sets the textcolor elements of the graphics superstructure, which gives the color of text drawn to
the graphics window. Color is a four-element vector (red, green, blue, alpha). This enables graphics,
if needed. Returns 0 for success, 1 for out of memory enabling graphics, 2 for no sim, or 3 for one or
more illegal color values (they need to be between 0 and 1, inclusive).

graphicssettextitem(simptr sim,char *itemname);

Adds an item to the list of things that Smoldyn will display to the graphics window. Enter the name of
the item as a string in itemname. This automatically allocates space for text items as needed. Returns
0 for success, 1 if memory could not be allocated, 2 if the item is not a supported string, or 3 if the
item was already listed. Currently supported names are: “time” and species(state) names.

graphicssetlight (simptr sim,graphicsssptr graphss,int 1t,enum LightParam
ltparam,double *value)
Sets parameters for the lighting portions of the graphics superstructure. If graphss is entered as

5.14. GRAPHICS (FUNCTIONS IN SMOLGRAPHICS.C) 115

non-NULL, then it is worked with and sim is ignored; otherwise, this requires the sim input and enables
graphics if needed. 1t is the light number, which should be between 0 and 8, or set 1t to -1 for the
global ambient light source. ltparam is the lighting parameter that should be set. It is only allowed
to be LPambient if It is -1. Otherwise, 1tparam can be LPambient, LPdiffuse, LPspecular and then
value should list the 4 color values. Or, 1tparam can be LPposition and value should list the three
light position values. Or, 1tparam can be LPon or LPoff to turn the light on or off, in which case value
is ignored. No checking is done to see that input parameters are legitimate. Returns 0 for success or
1 if memory could not be allocated for the graphics superstructure.

structure update functions

int graphicsupdateinit(simptr sim);
Performs basic graphics initialization. This calls gl2glutInit to initialize things and then
gl2Initialize to create the graphics window and set the viewing coordinates. This function should
probably be called only once.

int graphicsupdatelists(simptr sim);
Enables lighting models for the graphics display. This only needs to be called when the user requests
the “opengl_better” graphics option.

int graphicsupdateparams(simptr sim);
Updates the lighting model parameters for the graphics display. This should be called every time the
user changes the lighting model. It also sets the background color.

int graphicsupdate(simptr sim);
Updates the graphics superstructure and upgrades the graphics condition element. This calls
graphicsupdateinit, graphicsupdatelists, and/or graphicsupdateparams, depending on the
amount of updating required.

core simulation functions

void RenderSurfaces(simptr sim)
Draws all surfaces in the simulation using OpenGL graphics. The 3-D portion of this function needs
some work, both to fix 3-D disk drawing, to improve 3-D drawing overall, and for overall cleanup.

void RenderMolecs(simptr sim)
Draws all molecules using OpenGL graphics. Because the molecules are not sorted by type, this
function is fairly inefficient; this could be a significant computational burden for movie-making, but
shouldn’t be for most research purposes.

void RenderText (simptr sim);
Draws any requested text to the OpenGL graphics window.

void RenderSim(simptr sim)
Draws the entire graphical output using OpenGL graphics. This calls other functions for most of the
work, although it draws the frame and the grid itself.

Top level OpenGL functions Both RenderScene and TimerFunction are declared locally, rather than
in smoldynfuncs.h. This makes them invisible outside of this source file. They are callback functions
for OpenGL. In addition, the Sim variable is declared as a global variable, with the scope of this file. It
is here because OpenGL does not allow void* pointers to be passed through to all callback functions,
so making it a global variable enables the callback functions to access the simulation data structure.

void RenderScene(void);
RenderScene is the call-back function for OpenGL that displays the graphics. This does nothing but
call RenderSim.

116 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

void TimerFunction(int state);

TimerFunction is the call-back function for OpenGL that runs the simulation. state is positive if the
simulation should quit due to a simulation error or normal ending, state is negative if the simulation
has been over, and state is 0 if the simulation is proceeding normally. This also looks at the state
defined in the opengl2 library; if it is 0, the simulation is continuing, if it is 1, the simulation is in pause
mode, and if it is 2, the user told the simulation to quit. oldstate is the old version of the gl2State
value. This function runs one simulation time step, posts graphics redisplay flags, and saves TIFF files
as appropriate.

oldstate state gl2State meaning next state
1 - 0 leave pause state (0-0)
0 0 0 continue simulating (0 =simstep 0)
- >0 - stop the simulation (--1-)
_ 0 2 "0 (--12)
0 0/-1 1 enter pause state (1-1)
- 0/-1 - in pause state or sim is over (---)

void smolsimulategl(simptr sim) ;
smolsimulategl initiates the simulation using OpenGL graphics. It does all OpenGL initializations,
registers OpenGL call-back functions, sets the global variables to their proper values, and then hands
control over to OpenGL. This function returns as the program quits.

5.15 Simulation structure (functions in smolsim.c)

At the highest level of the structures is the simulation structure. This is a large framework that contains
information about the simulation that is to be run as well as pointers to each of the component structures
and superstructures. It also contains some scratch space for functions to use as they wish.

Data structures

#define ETMAX 10

enum SmolStruct {SSmolec,SSwall,SSrxn,SSsurf,b SSbox,SScmpt,SSport,SScmd,SSmzr,SSsim
,SScheck ,SSall,SSnonel};

enum EventType {ETwall,ETsurf ,ETdesorb,ETrxn0O,ETrxnl ,ETrxn2intra,ETrxn2inter,
ETrxn2wrap ,ETimport ,ETexport};

typedef void (*logfnptr) (struct simstruct *,int,const char*,...);
typedef int (*diffusefnptr) (struct simstruct x*);

typedef int (*surfaceboundfnptr) (struct simstruct *,int);

typedef int (*surfacecollisionsfnptr) (struct simstruct *,int,int);
typedef int (*assignmols2boxesfnptr) (struct simstruct *,int,int);
typedef int (*zeroreactfnptr) (struct simstruct *);

typedef int (*unimolreactfnptr) (struct simstruct *);

typedef int (*bimolreactfnptr) (struct simstruct *,int);

typedef int (*checkwallsfnptr) (struct simstruct *,int,int,boxptr);

typedef struct simstruct {

enum StructCond condition; // structure condition

logfnptr logfn; // function for logging output

FILE *logfile; // file to send output

char *filepath; // configuration file path

char *filename; // configuration file mname

char xflags; // command-line options from user
time_t clockstt; // clock starting time of simulation

double elapsedtime; // elapsed time of simulation

5.15. SIMULATION STRUCTURE (FUNCTIONS IN SMOLSIM.C) 117

long int randseed; // random number generator seed

int eventcount [ETMAX]; // counter for simulation events

int dim; // dimensionality of space.

double accur; // accuracy, on scale from 0 to 10

double time; // current time in simulation

double tmin; // simulation start time

double tmax; // simulation end time

double dt; // simulation time step

int quitatend; // 1 if quit simulation at end

rxnssptr rxnss [MAXORDER]; // reaction superstructures

molssptr mols; // molecule superstructure

wallptr *wlist; // list of walls

surfacessptr srfss; // surface superstructure

boxssptr boxs; // box superstructure

compartssptr cmptss; // compartment superstructure

portssptr portss; // port superstructure

mzrssptr mzrss; // mnetwork gemeration rule superstructure
void* cmds; // command superstructure

graphicsssptr graphss; // graphics superstructure

threadssptr threads; // pthreads superstructure

diffusefnptr diffusefn; // function for molecule diffusion
surfaceboundfnptr surfaceboundfn; // function for surface-bound

molecules
surfacecollisionsfnptr surfacecollisionsfn; // function for surface collisons

assignmols2boxesfnptr assignmols2boxesfn; // function that assigns molecs to
bozes

zeroreactfnptr zeroreactfn; // function for zero order reactions

unimolreactfnptr unimolreactfn; // function for first order
reactions

bimolreactfnptr bimolreactfn; // function for second order
reactions

checkwallsfnptr checkwallsfn; // function for molecule collistions

with walls
} *simptr;

ETMAX is the maximum number of event types, which are enumerated with EventType. These are used
primarily for reporting the number of times that various things happened to the user, although they are
also used occasionally elsewhere in the code so that certain routines are only done if they are necessary.
SmolStruct enumerates the different types of superstructures that a simulation can have. It does not
appear to be used anywhere in the code, so I’'m not sure why I created it.

The list of function pointers defined with typedef statements are used below in the simstruct. They
make it possible for a simulation to use different collections of core algorithms. The first one, logfnptr, is
for an external logging function, for use by Libsmoldyn. Others allow the use of either single-threaded or
multi-threaded algorithm versions. Also, which has not been done but could be, they could be tuned for
better efficiency in, say, a 3D system, rather than being generalists for all system dimensionalities.

simstruct contains and owns all information that defines the simulation conditions, the current state
of the simulation, and all other simulation parameters. The condition element is maintained at the lowest
level of all superstructure conditions. The logfn is typically set to NULL but can be set to point to a function
if text output should be dealt with there instead of in simLog. logfile is used by simLog for sending all
output. The default is stdout. The filepath and filename give the configuration file name and flags lists
the command-line flags that the user supplied. clockstt is used for the clock value when the simulation
starts, and elapsedtime is used for storing the simulation run time while the simulation is paused, both of
which are for timing simulations. randseed is the starting random number seed. eventcount is a list of
counts for each of the enumerated event types. dim is the system dimensionality and accur is the overall
simulation accuracy level. Because this has not proven useful, it should be removed at some point, and a
version of it should be moved to the box superstructure. Finally, time, tmin, tmax, and dt are the current
time, starting time, stopping time, and time step of the simulation, respectively. tbreak is the simulation

118 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

break time, which lets functions that use Libsmoldyn run the simulation for a fixed amount of time and then
stop for other operations. quitatend is a simple flag that is 1 if the simulation should simply quit when
done and 0 if not. This is only relevant for simulations with graphics, because the others automatically quit
at the end anyhow.

The superstructures are listed next. All of them are optional, where a NULL value simply means that
the simulation does not include that feature and an existing superstructure means that the simulation has
that feature. The command superstructure is pointed to with a void* rather than a cmdssptr because the
latter is declared in a separate header file and I didn’t want to require a dependency between the smoldyn.h
header file and the SimCommand.h header file.

Finally, the simulation structure lists the function pointers for the core simulation algorithms.

Functions

enumerated types

enum SmolStruct simstring2ss(char *string)
Returns the enumerated simulation structure type that corresponds to the string input. Returns
SSnone if input is “none” or if it is not recognized.

char *simss2string(enum SmolStruct ss,char *string)
Returns the string that corresponds to the enumerated simulation structure input in string, which
needs to be pre-allocated. The address of the string is returned to allow for function nesting.

char *simsc2string(enum StructCond sc,char *string)
Returns the string that corresponds to the enumerated structure condition input in string, which
needs to be pre-allocated. The address of the string is returned to allow for function nesting.

low level utilities

double simversionnumber(void);
Returns the version number of Smoldyn. This reads the VERSION string from smoldyn_config.h into a
double and returns that value. A value of 0 indicates that the reading didn’t work.

void Simsetrandseed(simptr sim,long int randseed)
Sets the random number generator seed to seed if seed is at least 0, and sets it to the current time
value if seed is less than 0.

memory management

simptr simalloc(char *root)
Allocates a simulation structure. Essentially everything, including superstructures, is initialized to 0
or NULL. Exceptions are that the filepath, filename, and flags strings are allocated, the random
number seed is initialized with a random value, and the command superstructure is allocated. root is
a required input because it is sent to the command superstructure allocation; it is allowed to be NULL.

void simfree(simptr sim)
simfree frees a simulation strucutre, including every part of everything in it.

void simfuncfree(void);
Frees memory that is allocated by functions within the Smoldyn program and that is only kept track
of by the functions themselves, using static variables. This should be called just before program
termination.

int simexpandvariables(simptr sim,int spaces);
Expands the number of variables in a simulation structure by spaces spaces. This allocates memory,
copies over existing variables, and clears new ones as needed.

data structure output

5.15. SIMULATION STRUCTURE (FUNCTIONS IN SMOLSIM.C) 119

void simLog(simptr sim,int importance,const char* format, ...)
All text output should be sent to this function. As a default, it simply prints the output to stdout.
However, this also sends it elsewhere if the user asked for a different destination. This can also send
output to a Libsmoldyn host program. Enter sim with the simulation structure if possible; if it’s not
possible, then this function displays the message to stderr. Enter importance with a value between
0 and 10, as shown below. The format and ... portions are the same format string and arguments
that are used for printf.

importance meaning example flags and display

0 debugging output v enables

1 verbose output box details v enables

2 normal diagnostics reaction parameters q suppresses
3 abbreviated diagnostics basic species (| suppresses
4 important notices simulation has ended (| suppresses
5 warnings time step too big W suppresses
7 minor errors command errors W suppresses

structure condition not updated

8 recoverable errors user input syntax error always shown
9 error in normal operation child structures missing parents always shown
10 unrecoverable errors bug or memory allocation failure always shown

void simoutput(simptr sim)
simoutput prints out the overall simulation parameters, including simulation time information,
graphics information, the number of dimensions, what the molecule types are, the output files, and the
accuracy.

void simsystemoutput(simptr sim);
Displays information about all components of the simulation to stdout by calling output functions for
each superstructure.

void writesim(simptr sim,FILE *fptr)
Writes all information about the simulation structure, but not its substructures, to the file fptr using
a format that can be read by Smoldyn. This allows a simulation state to be saved.

int checksimparams (simptr sim)
checksimparams checks that the simulation parameters, including parameters of sub-structures, have
reasonable values. If values seem to be too small or too large, a warning is displayed to the standard
output, although this does not affect continuation of the program. Returns the number of errors.

structure set up

Initialization procedures are meant to be called once at the beginning of the program to allocate and set
up the necessary structures. These routines call memory allocation procedures as needed. simupdate
is the only one of these routines that should ever need to be called externally, since it calls the other
functions as needed.

int simsetpthreads(simptr sim,int number);
Sets the number of pthreads that the simulation should run in to number. Send in number as 0 for
unthreaded mode, which is the default, or as a larger value for threaded operation. A value of 1 will
causes multi-threaded operation, but with 1 thread. If threading is requested and the function is able
to fulfill it, it returns the number of threads. If threading is not requested, the function returns 0. If
threading is requested and the function fails because it’s not enabled, then it returns -1, and if it fails
because of failure to allocate memory, it returns -2.

void simsetcondition(simptr sim,enum StructCond cond,int upgrade);
Sets the simulation structure condition to cond, if appropriate. Set upgrade to 1 if this is an upgrade,
to 0 if this is a downgrade, or to 2 to set the condition independent of its current value.

120 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

int simsetvariable(simptr sim,char *name,double value);
Sets the value of the variable named name to value. This creates the variable if it doesn’t already
exist. This also allocates memory for new variables as neeed. Returns O for success and 1 for out of
memory.

int simsetdim(simptr sim,int dim)
Sets the simulation dimensionality. Returns 0 for success, 2 if it had already been set (it’s only allowed
to be set once), or 3 if the requested dimensionality is not between 1 and 3.

int simsettime(simptr sim,double time,int code)

Sets the appropriate simulation time parameter to time. Enter code as 0 to set the current time,
1 to set the starting time, 2 to set the stopping time, 3 to set the time step, or 4 to set the break
time. Returns O for success, 1 if an illegal code was entered, or 2 if a negative or zero time step was
entered. This function also keeps track of the times that have been set using a static variable called
timedefined. To see what times have been set, enter code as -1, and this will return a number which
is the sum of: 1 for the current time, 2 for the starting time, 4 for the stopping, 8 for the time step,
and 16 for the break time. For example, and the return value with 14 to check for the start, stop, and
step times.

int simreadstring(simptr sim,char *word,char *line2,char *erstr)
Reads and processes one line of text from the configuration file, or some other source. The first word
of the line should be sent in as word (terminated by a ‘\0’) and the rest sent in as line2. I don’t
think that this function changes either the contents of word or 1ine2, but this should be verified if it’s
important. If this function is successful, it returns 0 and it does not change the contents of erstr; if
not, it returns 1 and it writes an error message to erstr.

int loadsim(simptr sim,char *fileroot,char *filename,char *erstr,char *flags)

loadsim loads all simulation parameters from a configuration file, using a format described above.
fileroot is sent in as the root of the filename, including all colons, slashes, or backslashes; if the
configuration file is in the same directory as Smoldyn, fileroot should be an empty string. filename
is sent in as just the file name and any extension. erstr is sent in as an empty string of size STRCHAR
and is returned with an error message if an error occurs. sim is the simulation structure. This
routine calls loadsurface to load any surfaces. The following things are set up after this routine is
completed: all molecule elements except box; all molecule superstructure elements; all wall elements;
box superstructure element mpbox, but no other elements; no boxes are allocated or set up; all reaction
structure elements except rate2 and the product template position vectors (pos in each product); the
command superstructure, including all of its elements; and all simulation structure elements except
for sub-elements that have already been listed. All new molecules are left in the dead list for sorting
later. If the configuration file loads successfully, the routine returns 0. If the file could not be found,
it returns 10 and an error message. If an error was caught during file loading, the return value is 10
plus the line number of the file with an error, along with an error message. If there is an error, all
structures are freed automatically.

int simupdate(simptr sim,char *erstr)
Updates all parts of the simulation structure. This is called on start up by simUpdateAndDisplay,
and may be called at anytime afterwards. It returns 0 for success or 1 for failure. In the latter case, a
string that describes the error should be returned in erstr.

int simInitAndLoad(const char *fileroot,const char *filename,simptr *smptr,const char *flags)

simInitAndLoad sets up and loads values for all the structures as well as global variables. This
routine calls the other initialization routines, so they do not have to be called from elsewhere. It
also displays the status to stdout and calls output routines for each structure, allowing verification of
the initiallization. Send in fileroot and filename with strings for the path and name of the input
file and send in smptr (pointer to a simulation structure) pointing to a NULL. flags is a string of
command-line flags. This returns 0 for correct operation and 1 for an error. If it succeeds, smptr is

5.16. COMMANDS (FUNCTIONS IN SMOLCMD.C) 121

returned pointing to a fully set up simulation structure. Otherwise, smptr is set to NULL and an error
messages is displayed on stderr. If smptr does not point to NULL, then this simply returns without
doing anything.

int simUpdateAndDisplay(simptr sim)
This calls simupdate to update all aspects of the simulation structure and then outputs the diagnostics
output along with any warnings or errors. Returns 0 for success or 1 for failure.

core simulation functions

int simdocommands(simptr sim) ;
Performs all commands that should happen at the current time. This includes commands that should
happen before or after the simulation. This function leaves data structures in good shape. Returns 0 to
indicate that the simulation should continue, 6 for error with molsort, 7 for terminate instruction from
docommand, or 8 for failed simulation update. These are the same error codes that simulatetimestep
uses.

int simulatetimestep(simptr sim)

simulatetimestep runs the simulation over one time step. If an error is encountered at any step,
or a command tells the simulation to stop, or the simulation time becomes greater than or equal
to the requested maximum time, the function returns an error code to indicate that the simulation
should stop; otherwise it returns 0 to indicate that the simulation should continue. Error codes are 1
for simulation completed normally, 2 for error with assignmolecs, 3 for error with zeroreact, 4 for
error with unireact, 5 for error with bireact, 6 for error with molsort, 7 for terminate instruction
from docommand (e.g. stop command), 8 for failed simulation update, 9 for error with diffuse, 10
for simulation stopped because the time equals or exceeds the break time, 11 for error in filament
dynamics, 12 for error in lattice simulation, or 13 for error in reaction network expansion. Errors 2 and
6 arise from insufficient memory when boxes were being expanded and errors 3, 4, and 5 arise from
too few molecules being allocated initially.

Note that the sequence in which the simulation components are set up is designed carefully and will
likely lead to bugs if it is changed.

void endsimulate(simptr sim,int er)
endsimulate takes care of things that should happen when the simulation is complete. This includes
executing any commands that are supposed to happen after the simulation, displaying numbers of
simulation events that occurred, and calculating the execution time. er is a code to tell why the
simulation is ending, which has the same values as those returned by simulatetimestep. If graphics
are used, this routine just returns to where it was called from (which is TimerFunction); otherwise, it
frees the simulation structure and then returns (to smolsimulate and then main).

int smolsimulate(simptr sim);
smolsimulate runs the simulation without graphics. It does essentially nothing other than running
simulatetimestep until the simulation terminates or stops due to reaching the break time.

5.16 Commands (functions in smolcmd.c)

Writing commands

Command strings are not parsed, checked, or even looked at during simulation initialization. Instead, they
are run by the command interpreter during the simulation. Command routines are given complete freedom
to look at and/or modify any part of a simulation structure or sub-structure. This, of course, also gives
commands the ability to crash the computer program, so they need to be written carefully to prevent
this. Every command is sent a pointer to the simulation structure in sim, as well as a string of command
parameters in 1ine2.

To write a command, do the following steps, which can be done in any order:

122 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

e Write a description of the new command that will go into the reference section of the user’s manual.

e In smolcmd.c, add a new declaration to the top of the file for the command, which looks like:

enum CMDcode cmdname (simptr sim,cmdptr cmd,char *1line2);

e The first function of smolcmd.c is docommand. In it, add an else if line for the new command. It
looks like:

else if (!strcmp(word,"name")) return cmdname(sim,cmd,line2);

e Write the function for the new command, modeling it on the command functions currently in
smolcmd.c. See below.

e Proofread the function and test the command.
e Write documentation about the command for this section of this manual.

e Mention the command in the modifications portion of this manual.

Each command is written with a similar structure. As an example, here is cmdecho:

enum CMDcode cmdecho(simptr sim,cmdptr cmd,char *1line2) {
int er;
FILE *xfptr;
char *termqt,str [STRCHAR];

if (line2 && !strcmp(line2,"cmdtype")) return CMDobserve;
er=scmdgetfptr (sim->cmds,line2,1,&fptr,NULL) ;

SCMDCHECK (er!=-1,"file name not recognized") ;
line2=strnword(line2,2);

SCMDCHECK (1line2=strchr (line2,’"’),"no,starting quote on,string");
strncpy(str,line2+1,STRCHAR-1) ;

str [STRCHAR-1]=’\0"7;

SCMDCHECK (termqt=strchr(str,’"’) ,"no,terminal,quoteon,string");
xtermqt="\0";

strbslash2escseq(str) ;

scmdfprintf (cmd->cmds , fptr,"%s",str);

scmdflush (fptr);

return CMDok; }

Every command has essentially the same function call, where the first parameter is the simulation
structure, the second parameter is the command structure of the current command, and the third parameter
is the remainder of the input line from this command entry in the user’s configuration file.

The first line of code checks to see whether line2 is entered as “cmdtype” (which is never a valid
entry from the user) and if so, returns the type of the current command. These types are CMDcontrol for
commands that control the running of the simulation, CMDobserve for commands for observing the system
but that do not change it, and CMDmanipulate for commands that modify the simulation state but do not
have any output. Conditional commands, all of which have an “if” in the name, return the command type
of the command that they call if the condition is met (see cmdifflag).

The body of the command is after this first line of code. In the body, the command parses 1ine2 while
checking for valid input, does the requested action, flushes any output file (which is opened and closed
elsewhere), and then returns CMDok to indicate that it terminated successfully. Along the way, any errors
are trapped with the SCMDCHECK macro. To isolate commands from the user interface, they get file pointers
by calling scmdgetfptr, they write to the file using scmdfprintf, and they flush the file with scmdflush.

Commands that output data to file should use the scmdfprintf function. This function handles output
precision automatically. Also, you should separate data values using the %, formatting symbol, which the
scmdfprintf function converts to either a space or a comma, depending on whether the user wants space-
separated vectors or comma-separated vectors.

5.16. COMMANDS (FUNCTIONS IN SMOLCMD.C) 123

Commands that read numbers from user input, whether integers or floating point values should not do
so with sscanf but should use strmathsscanf instead. This is a simple replacement for sscanf but it
evaluates any formulas that the user provides for numerical input. To specify that formala evaluation should
be enabled for a specific numerical input, replace the %i format symbol with %mi and replace %lg with
%%mlg. The function call also requires the simulation variable list. These are available as global variables, as
Varnames, Varvalues, and Nvar.

Commands that read molecule species should do so using the string2index1 function. This reads a
string for a species name and an optional state, and then returns the species index and the state. Also, if
the user did not ask for a single species but for a group of species, then this returns the full list of species
in this group. It also returns error codes. The variety of outputs would normally be somewhat annoying,
which is what molscan was written to handle, described next.

A lot of commands scan over all molecules, whether to count the molecules, do other statistics on them,
or other things. This looping is already somewhat complicated, and much more so if commands allow the
user to enter species names with wildcards or species group names. Furthermore, commands are supposed
to support these inputs if at all possible. To simplify the code in the commands, the molecule iteration loop
has been written in molscan, and that function then calls back to the command to actually do whatever
needs to be done with the identified molecules. This leads to a more complicated command structure, of
which an example is in cmdifincmpt, which calls another command if there are some number of molecules
in a specified compartment. Here is part of its listing:

enum CMDcode cmdifincmpt(simptr sim,cmdptr cmd,char *1line2) {
variable declarations
moleculeptr mptr;
static compartptr cmpt=NULL;
static int inscan=0, count=0;

if (inscan) goto scanportion;
if (line2 && !strcmp(line2,"cmdtype")) return conditionalcmdtype(sim,cmd,b4);

cmptss=sim->cmptss;
parsing of line2
cmpt=cmptss->cmptlist[c];

count=0;

inscan=1;

molscan(sim,i,index ,ms,cmd,cmdifincmpt) ;

inscan=0;

if ((ch==’<’ && count<min) || (ch==’=’ && count==min) || (ch==’>’ && count>min))
return docommand (sim,cmd,line2) ;

return CMDok;

scanportion:

mptr=(moleculeptr) line2;

if (posincompart (sim,mptr->pos,cmpt)) count++;
return CMDok; 1}

When the command is called initially, for running it, inscan equals 0 and line2 is the line to be parsed,
so control passes through the first two if statements. The command then parses 1ine2 and sets up the basic
variables. Importantly, any variable that will be used with the individual molecules needs to be declared
as a static variable. To scan through the molecules, the command sets inscan to 1 and runs the scan
using molscan, while telling molscan to call back to itself with each individual molecule. It would be more
straightforward if molscan called a different function, but that would require much more code and would also
make it more difficult to pass information around, so that’s why the control returns to the same function.
When molscan calls back to this function, inscan is set to 1, so the flow jumps down to the scanportion
label, where the individual molecule is processed. The molecule is sent to the command using the 1ine2
parameter, cast as a char*. After the molecule is processed, the command returns CMDok to indicate that
the scan should continue. Finally, all molecules are done, molscan returns control back to the main portion

124 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

of the command, and the command resets inscan back to 0 to indicate that the scan is done. It then finishes
what it needs to do and returns CMDok to indicuate that the task is complete.

Externally accessible function

Not all functions are listed here because many of them don’t require any more description than what is
already given in the Smoldyn User Manual.

CMDcode docommand(void *cmdfnarg,cmdptr cmd,char *line); docommand is given the simulation
structure in sim, the command to be executed in cmd, and a line of text which includes the entire
command string. It parses the line of text only into the first word, which specifies which command
is to be run, and into the rest of the line, which contains the command parameters. The rest of the
line is then sent to the appropriate command routine as line2. The return value of the command
that was called is passed back to the main program from docommand. These routines return CMDok for
normal operation, CMDwarn for an error that does not require simulation termination, CMDabort for an
error that requires immediate simulation termination, CMDstop for a normal simulation termination,
and CMDpause for simulation pausing.

Individual command functions

simulation control

enum CMDcode cmdstop(simptr sim,cmdptr cmd,char *1line?2);
Returns a value of 2, meaning that the simulation should stop. Any contents of 1ine2 are ignored.

enum CMDcode cmdpause(simptr sim,cmdptr cmd,char *line2);
Causes the simulation to pause until the user tells it to continue. Continuation is effected by either
pressing the space bar, if OpenGL is used for graphics, or by pressing enter if output is text only. The
return value is 0 for non-graphics and 3 for graphics. Any contents of 1ine2 are ignored.

enum CMDcode cmdbeep(simptr sim,cmdptr cmd,char *1line2);
Causes the computer to beep (sent to stderr). Any contents of 1ine2 are ignored.

enum CMDcode cmdkeypress(simptr sim,cmdptr cmd,char *1line2);
Sets a key press event as though the key had actually been pressed.

enum CMDcode cmdsetflag(simptr sim,cmdptr cmd,char *1ine2);
Sets the command superstructure flag value.

enum CMDcode cmdsetrandseed(simptr sim,cmdptr cmd,char *1line2);
Sets the random number seed. Negative values indicate that the current time should be used.

enum CMDcode cmdsetgraphics(simptr sim,cmdptr cmd,char *1line2);
Sets the type of graphics output.

enum CMDcode cmdsetgraphic_iter(simptr sim,cmdptr cmd,char *line2);
Sets the number of iterations between each graphics update.

file manipulation

enum CMDcode cmdoverwrite(simptr sim,cmdptr cmd,char *1line2);
Overwrites a prior output file. See the user manual.

enum CMDcode cmdincrementfile(simptr sim,cmdptr cmd,char *1line2);
Closes a file, increments the name and opens that one for output. See the user manual.

enum CMDcode cmdsetrandseed(simptr sim,cmdptr cmd,char *1ine2);
Sets the random number seed.

5.16. COMMANDS (FUNCTIONS IN SMOLCMD.C) 125
conditional

enum CMDcode cmdifflag(simptr sim,cmdptr cmd,char *1line2);
Runs the command in 1ine2 depending on value of the command superstructure flag value.

enum CMDcode cmdifprob(simptr sim,cmdptr cmd,char *1line2);
Runs the command in 1ine2 depending on a random number.

enum CMDcode cmdifno(simptr sim,cmdptr cmd,char *1line2);
Reads the first word of 1ine2 for a molecule name and then checks the appropriate simulation live list
to see if any molecules of that type exist. If so, it does nothing, but returns 0. If not, it sends the
remainder of 1ine2 to docommand to be run as a new command, and then returns 0. It returns 1 if the
molecule name was missing or not recognized.

enum CMDcode cmdifless(simptr sim,cmdptr cmd,char *1line2);
Identical to cmdifno, except that it runs the command in line2 if there are less than a listed number
of a kind of molecules in the appropriate live list.

enum CMDcode cmdifmore(simptr sim,cmdptr cmd,char *1line2);
Identical to cmdifno except that it runs the command in 1ine?2 if there are more than a listed number
of a kind of molecules in the appropriate live list.

enum CMDcode cmdifincmpt(simptr sim,cmdptr cmd,char *1line2);
Runs a command depending on the number of molecules in a compartment.

enum CMDcode cmdifchange(simptr sim,cmdptr cmd,char *1line2);
Runs a command if the number of some species of molecules changes, where the user can specify various
changing criteria. This function uses i1 to indicate whether the function has been called before and
i2 to store the number of molecules that were counted in the prior invocation.

enum CMDcode cmdif (simptr sim,cmdptr cmd,char *1line2);
Runs a command if one value is greater than, less than, or equal to another value.

observation commands

enum CMDcode cmdwarnescapee(simptr sim,cmdptr cmd,char *1line2);
Checks for molecules that escaped from the system and displays information about them.

enum CMDcode cmdecho(simptr sim,cmdptr cmd,char *1line2);
Echos a string of text to the filename that is given.

enum CMDcode cmdevaluate(simptr sim,cmdptr cmd,char *1line2);
Evalutates a math expression (usually a Smoldyn function) and prints the result to the filename that
is given.

enum CMDcode cmdmolcountheader (simptr sim,cmdptr cmd,char *1line2);
Prints a header line for the molcount collection of commands.

enum CMDcode cmdmolcount(simptr sim,cmdptr cmd,char *1line2);
Reads the output file name from line2. Then, to this file, it saves one line of text listing the current
simulation time, followed by the number of each type of molecule in the system. This routine does not
affect any simulation parameters. It accounts for both particle space and lattice space.

enum CMDcode cmdmolcountinbox(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules in a specific box.

enum CMDcode cmdmolcountincmpt(simptr sim,cmdptr cmd,char *line2);
Counts and outputs the number of molecules in a specific compartment.

126 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

enum CMDcode cmdmolcountincmpts(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules in multiple compartments.

enum CMDcode cmdmolcountincmpt2(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules in a specific compartment.

enum CMDcode cmdmolcountonsurf(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules on a specific surface.

enum CMDcode cmdmolcountspace(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules along a line profile, creating a histogram.

enum CMDcode cmdmolcountspace2d(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules in a 2D grid, creating a 2D histogram.

enum CMDcode cmdmolcountspaceradial (simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules as a function of radius, creating a histogram.

enum CMDcode cmdmolcountpolarangle(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules as a function of polar angle, creating a histogram.

enum CMDcode cmdradialdistribution(simptr sim,cmdptr cmd,char *1line2);
Computes and outputs a radial distribution function.

enum CMDcode cmdmolcountspecies(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules of a given species.

enum CMDcode cmdmolcountspecieslist(simptr sim,cmdptr cmd,char *1line2);
Counts and outputs the number of molecules of multiple species.

enum CMDcode cmdlistmols(simptr sim,cmdptr cmd,char *1line2);
Reads the output file name from line2. To this file, it saves a list of every individual molecule in
both live lists of the simulation, along with their positions. This routine does not affect any simulation
parameters.

enum CMDcode cmdlistmols2(simptr sim,cmdptr cmd,char *1line2);
Reads the output file name from line2. To this file, it saves the number of times this command was
invoked using the invoke element of commands, a list of every individual molecule in both live lists
of the simulation, along with their positions. This routine does not affect any simulation parameters.
Routine originally written by Karen Lipkow and then rewritten by me.

enum CMDcode cmdlistmols3(simptr sim,cmdptr cmd,char *1line2);
Reads a molecule name and the output file name from line2. To this file, it saves the number of times
the command was invoked, the identity of the molecule specified, and the positions of every molecule
of the specified type. This routine does not affect any simulation parameters.

enum CMDcode cmdmolpos(simptr sim,cmdptr cmd,char *1line2);
Reads a molecule name and then the output file name from 1ine2. To this file, it saves one line of text
with the positions of each molecule of the listed identity. This routine does not affect any simulation
parameters.

enum CMDcode cmdtrackmol (simptr sim,cmdptr cmd,char *1line2);
Reads a molecule serial number and an output file name from line2. This searches all molecule lists
for a molecule with that serial number, meaning an exact match or one part of the two-part molecule
serial number is equal to the input value. If it is found, this prints out the time, molecule species
name, molecule state, molecule serial number, and whether this molecule is inside or outside of each
compartment sequentially. This function is primarily designed for debugging, but could be useful for
single molecule tracking too. This routine does not affect any simulation parameters.

5.16.

enum

enum

void

enum

enum

enum

enum

COMMANDS (FUNCTIONS IN SMOLCMD.C) 127

CMDcode cmdmolmoments(simptr sim,cmdptr cmd,char *1line2);

Reads a molecule name and then the output file name from 1ine2. To this file, it saves in one line of
text: the time and the zeroth, first, and second moments of the distribution of positions for all molecules
of the type listed. The zeroth moment is just the number of molecules (of the proper identity); the
first moment is a dim dimensional vector for the mean position; and the second moment is a dimxdim
matrix of variances. This routine does not affect any simulation parameters.

CMDcode cmdsavesim(simptr sim,cmdptr cmd,char *1line2);

Reads the output file name from line2 and then saves the complete state of the system to this file, as
a configuration file. This output can be run later on to continue the simulation from the point where
it was saved.

cmdmeansqrdispfree (cmdptr cmd);
A memory freeing routine for memory that is allocated by cmdmeansqrdisp.

CMDcode cmdmeansqrdisp(simptr sim,cmdptr cmd,char *1line2);

This calculates the mean square displacements of all molecules of the requested type, based on the
difference between their current positions and their positions when the command was first invoked.
This uses several of the command memory storage options. i1 is the number of molecules being tracked
and is the size of other arrays; i2 is 0 if memory and initial values have not been set up, 1 if they
have, or 2 if the function failed; v1 is the list of molecule serial numbers; and v2 is the list of initial
coordinates for each molecule.

CMDcode cmdmeansqrdisp2(simptr sim,cmdptr cmd,char *1line2);

This calculates the mean square displacements of molecules of the requested type, based on the
difference between their current or latest positions and their positions when they were first tracked.
This uses several of the command memory storage options. il is the maximum number of molecules
that can be tracked and is the size of other arrays; i2 is 0 if memory and initial values have not
been set up, 1 if they have, or 2 if the function failed; i3 is the actual number of molecules being
tracked; v1 is the list of molecule serial numbers; v2[0] is a code equal to 0 if the molecule is not
being tracked, 1 if it’s not being tracked and exists, 2 if it’s being tracked, or 3 if it’s being tracked
and exists; v2[1,..,dim] is the list of initial coordinates for each molecule; and v2[dim+1, .. ,2*dim]
is the list of current coordinates for each molecule.

CMDcode cmdmeansqrdisp3(simptr sim,cmdptr cmd,char *1line2);

This calculates the effective diffusion coefficient of molecules of the requested type, based on the
difference between their current or latest positions and their positions when they were first tracked,
as well as their diffusion times. FEffective diffusion coefficients are computed by weighting in direct
proportion to the molecule lifetime. To do this, effective diffusion coefficients are the sum of squared
displacements divided by (2 times the dimensionality times the sum of the molecule lifetimes). This
function was modified from cmdmeansqrdisp2. This uses several of the command memory storage
options. il is the maximum number of molecules that can be tracked and is the size of other arrays;
i2 is 0 if memory and initial values have not been set up, 1 if they have, or 2 if the function failed;
i3 is the actual number of molecules being tracked; v1 is the list of molecule serial numbers; v2[0] is
a code equal to 0 if the molecule is not being tracked, 1 if it’s not being tracked and exists, 2 if it’s
being tracked, or 3 if it’s being tracked and exists; v2[1,..,dim] is the list of initial coordinates for
each molecule; v2[dim+1, ..,2+dim] is the list of current coordinates for each molecule, v2[2*dim+1]
is the simulation time when tracking began on this molecule; and £1 is the effective diffusion coeflicient
from the prior invocation, or -1 on initialization.

CMDcode cmdresidencetime(simptr sim,cmdptr cmd,char *1line2);

This calculates the residence time of molecules of the requested type, based on the difference between
the current time and the molecule creation times. This function was modified from cmdmeansqrdisp3.
This uses several of the command memory storage options. i1 is the maximum number of molecules
that can be tracked and is the size of other arrays; i2 is 0 if memory and initial values have not been
set up, 1 if they have, or 2 if the function failed; i3 is the actual number of molecules being tracked; v1

128 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

is the list of molecule serial numbers; v2[0] is a code equal to 0 if the molecule is not being tracked,
1 if it’s not being tracked and exists, 2 if it’s being tracked, or 3 if it’s being tracked and exists; and
v2[1] is the simulation time when tracking began on this molecule.

enum CMDcode cmddiagnostics(simptr sim,cmdptr cmd,char *1line2);
Displays diagnostics about different data structures to the standard output.

enum CMDcode cmdexecutiontime(simptr sim,cmdptr cmd,char *1line2);
Prints simulation time and execution time to file.

enum CMDcode cmdprintLattice(simptr sim,cmdptr cmd,char *1line2);
Prints information about the lattices to the a file. This would be better as part of the cmmddiagnostics
command.

enum CMDcode cmdwriteVIK(simptr sim,cmdptr cmd,char *1line2);
Outputs VTK data for the current simulation state.

enum CMDcode cmdprintdata(simptr sim,cmdptr cmd,char *1line2);
Prints out a data array to a file, another data array, or stdout.

system manipulation

enum CMDcode cmdset(simptr sim,cmdptr cmd,char *1line2);
Reads 1ine2 to extract the first word and the rest of the line. These are passed to simreadstring
where they are interpreted as a configuration file line. Any errors are passed on from simreadstring.

enum CMDcode cmdpointsource(simptr sim,cmdptr cmd,char *1line2);
Reads 1ine2 for a molecule name, followed by the number of molecules that should be created, followed
by the dim dimensional position for them. If all reads well, it creates the new molecules in the system
at the appropriate position.

enum CMDcode cmdvolumesource(simptr sim,cmdptr cmd,char *1line2);
Reads 1line2 for a molecule name, the number of molecules that should be created, and a region. If
all reads well, it creates the new molecules in the system in the appropriate volume.

enum CMDcode cmdgaussiansource(simptr sim,cmdptr cmd,char *1line2);
Reads line2 for a molecule name, the number of molecules that should be created, and a region. If
all reads well, it creates the new molecules in the system with a Gaussian distribution.

enum CMDcode cmdmovesurfacemol (simptr sim,cmdptr cmd,char *1line2);
Probabilistically moves molecules from one surface to another, with an optional state change.

enum CMDcode cmdkillmolinsphere(simptr sim,cmdptr cmd,char *1line2);
Reads line2 for a molecule name and a surface name and then kills all molecules of the given type,
that are in spheres of the listed surface. The molecule name and/or the surface name can be “all”.

enum CMDcode cmdkillmolincmpt(simptr sim,cmdptr cmd,char *1line2);
Reads 1line2 for a molecule name and a compartment name and then kills all molecules of the given
type, that are in the listed compartment. The molecule name can be “all”.

enum CMDcode cmdkillmoloutsidesystem(simptr sim,cmdptr cmd,char *1line2);
Reads 1ine2 for a molecule name and then kills all molecules of the given type that are outside of the
system boundaries. The molecule name and/or the surface name can be “all”.

enum CMDcode cmdfixmolcount(simptr sim,cmdptr cmd,char *1line2);
Fixes the copy number of a specific molecule species, only considering solution phase, to a specified
quantity. This considers the entire system, and adds or removes molecules as required.

5.16.

enum

enum

enum

enum

enum

enum

enum

enum

enum

enum

enum

enum

enum

COMMANDS (FUNCTIONS IN SMOLCMD.C) 129

CMDcode cmdfixmolcountrange(simptr sim,cmdptr cmd,char *1line2);
Fixes the copy number of a specific molecule species, only considering solution phase, to a specified
range. This considers the entire system, and adds or removes molecules as required.

CMDcode cmdfixmolcountonsurf (simptr sim,cmdptr cmd,char *1line2);
Fixes the copy number of surface-bound molecules to a specified value. This considers an entire surface,
and adds or removes molecules as required.

CMDcode cmdfixmolcountonsurf (simptr sim,cmdptr cmd,char *1line2);
Fixes the copy number of surface-bound molecules to a specified range. This considers an entire surface,
and adds or removes molecules as required.

CMDcode cmdfixmolcountincmpt(simptr sim,cmdptr cmd,char *1line2);
Fixes the copy number of molecules in a compartment to a specified value. This adds or removes
molecules as required.

CMDcode cmdfixmolcountrangeincmpt(simptr sim,cmdptr cmd,char *1line2);
Fixes the copy number of molecules in a compartment so that it is within the specified range. This
adds or removes molecules as required.

CMDcode cmdequilmol (simptr sim,cmdptr cmd,char *1line2);

Equilibrates a pair of molecular species, allowing the efficient simulation of rapid reactions. It reads
two molecule names from line2, followed by a probability value. Then, it looks for all molecules in
the live lists with either of the two types and replaces them with the second type using the listed
probability or with the first type using 1 the listed probability.

CMDcode cmdreplacemol (simptr sim,cmdptr cmd,char *1line2);
Replaces one molecule species with another, with some replacement probability. Modified from
cmdreplacecmptmol.

CMDcode cmdreplacexyzmol(simptr sim,cmdptr cmd,char *1line2);

Reads the name of a molecule following by a dim dimensional point in space from line2. Then, it
searches the fixed live list for any molecule that is exactly at the designated point. If it encounters
one, it is replaced by the listed molecule, and then the live lists are sorted if appropriate. This routine
stops searching after one molecule has been found, and so will miss additional molecules that are at
the same point.

CMDcode cmdreplacevolmol(simptr sim,cmdptr cmd,char *1line2);
Replaces one molecule species in a volume with another, with some replacement probability.

CMDcode cmdreplacecmptmol (simptr sim,cmdptr cmd,char *line2);
Replaces one molecule species in a compartment with another, with some replacement probability.
This is a modification of cmdreplacevolmol, and uses a little code from cmdfixmolcountincmpt.

CMDcode cmdmodulatemol (simptr sim,cmdptr cmd,char *1line2);

Identical to cmdequilmol except that the equilibration probability is not fixed, but is a sinusoidally
varying function. After reading two molecule names from line2, this routine then reads the
cosine wave frequency and phase shift, then calculates the probability using the function prob =
0.5 % (1.0 — cos(freq * sim->time + shift)).

CMDcode cmdreactl(simptr sim,cmdptr cmd,char *1line2);

Reads 1line2 for the name of a molecule followed by the name of a unimolecular reaction. Then, every
one of that type of molecule is caused to undergo the listed reaction, thus replacing each one by reaction
products. Molecules are sorted at the end. This might be useful for simulating a pulse of actinic light,
for example.

CMDcode cmdsetrateint(simptr sim,cmdptr cmd,char *1line2);
This reads 1ine2 for the name of a reaction and the new internal rate constant for it. The internal

130

enum

enum

enum

enum

enum

enum

enum

enum

enum

enum

CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

rate constant is set to the new value. Errors can arise from illegal inputs, such as the reaction not
being found or a negative requested internal rate constant.

CMDcode cmdshufflemollist(simptr sim,cmdptr cmd,char *1line2);
Shuffles one or more of the live internal molecule lists.

CMDcode cmdshufflereactions(simptr sim,cmdptr cmd,char *1ine2);

Shuffles reactions for one or more reactant combinations, for bimolecular reactions. This function is
somewhat inefficient in that it shuffles all lists twice if it is called for all reactant pairs, but I decided
to keep the inefficiency because improvement, and still allowing for scanning over all of either reactant
individually, would lead to slower and messier code.

CMDcode cmdsetsurfcoeff (simptr sim,cmdptr cmd,char *1line2);
Sets the surface interaction rate and then calls surfacesupdate to update the probabilities. Zsuzsanna
Sukosd wrote this command.

CMDcode cmdsettimestep(simptr sim,cmdptr cmd,char *1line2);
This reads 1ine2 for the new simulation time step. Nothing else is changed in the simulation, including
binding or unbinding radii, so reaction rates may be observed to change.

CMDcode cmdexcludebox(simptr sim,cmdptr cmd,char *line2);

Allows a region of the simulation volume to be effectively closed off to molecules. The box is defined
by its low and high corners, which are read from line2. Any molecule, of any type, that entered
the box during the last time step, as determined by its pos and posx structure members, is moved
back to its previous position. This is not the correct behavior for a reflective surface, but is efficient
and expected to be reasonably accurate for most situations. This routine ought to be replaced with a
proper treatment of surfaces in the main program (rather than with interpreter commands), but that’s
a lot more difficult.

CMDcode cmdexcludesphere(simptr sim,cmdptr cmd,char *1line2);

Like cmdexcludebox except that it excludes a sphere rather than a box. The sphere is defined by its
center and radius, which are read from line2. Any molecule, of any type, that entered the sphere
during the last time step, as determined by its pos and posx structure members, is moved back to its
previous position. This is not the correct behavior for a reflective surface, but is efficient and expected
to be reasonably accurate for most situations.

CMDcode cmdincludeecoli(simptr sim,cmdptr cmd,char *1line2);

This is the opposite of the excludebox and excludesphere commands. Here, molecules are confined
to an E. coli shape and are put back inside it if they leave. See the user manual for more about it.
Unlike the other rejection method commands, this one works even if a molecule was in a forbidden
region during the previous time step; in this case, the molecule is moved to the point on the E. coli
surface that is closest. Because of this difference, this command works reasonably well even if it is not
called at every time step.

CMDcode cmdsetreactionratemolcount(simptr sim,cmdptr cmd,char *1line2);

This command sets the reaction rate to be a linear function of one or more molecule counts. I considered
letting the user select compartments for the molecules, but that turned out to be too much work.
Instead, I suggest that the user use different species names in different regions of space as much as
convenient, and use wildcards to collect different species together. That will run faster anyhow.

CMDcode cmdexpandsystem(simptr sim,cmdptr cmd,char *1line2);
This command expands or contracts the entire system, including all molecule positions and surfaces.
The work for surfaces is performed by surftransformpanel.

CMDcode cmdtranslatecmpt(simptr sim,cmdptr cmd,char *1line2);
This command translates a compartment, including dealing with molecule displacements. All of the
work is done by comparttranslate.

5.17. TOP-LEVEL CODE (FUNCTIONS IN SMOLDYN.C) 131

enum CMDcode cmddiffusecmpt(simptr sim,cmdptr cmd,char *1line2);
This command diffuses a compartment, including dealing with molecule displacements. All of the work
is done by comparttranslate. For bounded diffusion, a move that would lead to an illegal location is
rejected, and diffusion is attempted again, up to 10 times; if there are 10 failures, then the compartment
simply isn’t moved at all during that command call.

Internal functions

void cmdvifree(cmdptr cmd);
Frees array cmd->v1.

void cmdviv2free(cmdptr cmd);
Frees arrays cmd->v1 and cmd->v2.

enum CMDcode conditionalcmdtype(simptr sim,cmdptr cmd,int nparam) ;
Returns the command type for conditional commands, which are required to return the type of the
function that gets called if the condition is true. cmd is the conditional command and nparam is
the number of parameters for the conditional command (e.g. for cmdifno, the only parameter is the
molecule name, so nparam is 1).

int insideecoli(double *pos,double *ofst,double rad,double length);
This is a short utility routine used by the command cmdincludeecoli. It returns a 1 if a molecule is
inside an E. coli shape and a 0 if not. pos is the molecule position, ofst is the physical location of the
cell membrane at the center of the low end of the cell (the cell is assumed to have its long axis along
the z-axis), rad is the cell radius used for both the cylindrical body and the hemispherical ends, and
length is the total cell length, including both hemispherical ends.

void putinecoli(double *pos,double *ofst,double rad,double length);
This is another short utility routine used by the command cmdincludeecoli. It moves a molecule
from its initial position in pos to the nearest surface of an E. coli shape. Parameters are the same as
those for insideecoli.

int molinpanels(simptr sim,int 11,int m,int s,char pshape);
This function, which might be better off in the smolsurf.c code, is used to test if molecule number m of
live list 11 is inside any of the pshape panels of surface number s. Only spheres are allowed currently
as panel shapes, because neither rectangles nor triangles can contain molecules. If s is sent in with a
value less than 0, this means that all pshape panels of all surfaces will be checked.

5.17 Top-level code (functions in smoldyn.c)

The top-level source code file, smoldyn.c, contains only the main function for the stand-alone Smoldyn
program. It is declared locally in this source file and so cannot be called from externally, except from the
shell. This source code file is not included in Libsmoldyn.

int main(int argc,char *argv([]);
main is a simple routine that provides an entry point to the program from the shell. It checks the
command line arguments, prints a greeting, inputs the configuration file name from the user, and then
calls simInitAndLoad to load the configuration file and set up all the structures. If all goes well, it
calls smolsimulate or smolsimulategl to run the simulation. At the end, it returns to the shell.

132 CHAPTER 5. C CODE: STRUCTURES AND FUNCTIONS

Chapter 6

Code design

This chapter describes interactions between different portions of the code. The code is, and may always be,
in flux. While I try to maintain this section of the documentation, be forewarned that it might not reflect
the most recent changes.

6.1 Memory management
The following table, which is very out of date shows memory allocation and freeing for the different structures.

For both the allocation and freeing columns, the top line shows the function in which the structure is actually
allocated or freed, while subsequent lines show the functions that call the preceding functions.

structure allocation freeing

moleculestruct molalloc molfree
molexpandlist molssfree
molsetmaxmol, molsort simfree

simreadstring (max.mol), 7
loadsim, ?
simInitAndLoad, ?

moleculesuperstruct molssalloc molssfree
molsetmaxspecies simfree
simreadstring (max_species,..)
loadsim
simInitAndLoad

molssetgausstable

simreadstring (gauss_table_size), setupmols
loadsim, simupdate

simInitAndLoad; simInitAndLoad, simulatetimestep

mollistalloc

addmollist

setupmols, simreadstring (molecule_lists), setupports
simupdate, loadsim

simInitAndLoad

wallstruct wallalloc wallfree
wallsalloc wallsfree
walladd simfree

simreadstring (boundaries,..)

133

134

rxnstruct

rxnsuperstruct

panelstruct

surfacestruct

surfacesuperstruct

boxstruct

boxsuperstruct

compartstruct

compartsuperstruct

loadsim
simInitAndLoad

rxnalloc
RxnAddReaction
loadsim (reaction,..)
simInitAndLoad

rxnssalloc

RxnAddReaction

simreadstring (reaction,..), loadrxn
loadsim, ?

simInitAndLoad

panelsalloc

surfreadstring (max_panels)
loadsurface

simreadstring (start_surface)
loadsim

simInitAndLoad

surfacealloc
surfacessalloc
simreadstring (max_surface)
loadsim

simInitAndLoad

surfacessalloc
surfenablesurfaces
simreadstring (max_surface)
loadsim

simInitAndLoad

boxalloc
boxesalloc
setupboxes
simupdate
simInitAndLoad

boxssalloc

boxsetsize

simreadstring (boxsize,..), setupboxes
loadsim, simupdate

simInitAndlLoad, simInitAndLoad

compartalloc

compartssalloc

simreadstring (max_compartment)
loadsim

simInitAndLoad

compartssalloc
simreadstring (max_compartment)
loadsim

CHAPTER 6. CODE DESIGN

rxnfree
rxnssfree
simfree

rxnssfree
simfree

panelfree
surfacefree
surfacessfree
simfree

surfacefree
surfacessfree
simfree

surfacessfree
simfree

boxfree
boxesfree
boxssfree
simfree

boxssfree
simfree

compartfree
compartssfree
simfree

compartssfree
simfree

6.2. DATA STRUCTURE PREPARATION AND UPDATING 135

simInitAndLoad

portstruct portalloc portfree
portssalloc portssfree
simreadstring (max_port) simfree
loadsim
simInitAndLoad

portsuperstruct portssalloc portssfree
simreadstring (max_port) simfree
loadsim
simInitAndLoad

mzrsuperstruct mzrssalloc mzrssfree
mzrssload simfree
simreadstring (read-network_rules)
loadsim
simInitAndLoad

simstruct simalloc simfree
simInitAndLoad

6.2 Data structure preparation and updating

The original Smoldyn design was that it read a configuration file, set up internal data structures, ran the
simulation, and then quit. Two problems arose. First, the sequence for setting up the internal data structures
became increasingly complicated as the program gained features, and second, this overall program flow wasn’t
always what users wanted. As a result, the code is now more modularized and it includes a “condition”
element in each data structure that reports on the overall state of that data structure. These help, but data
structure set up and updating are still somewhat complicated, which is the focus of this section.

Note that the condition element and the data structure updating discussed here are designed for relatively
infrequent system modifications. That is, they are for changes to the system, performed by the user or by
run-time commands. They are not designed for regular simulation operation, such as for updates after
molecules diffuse or reactions occur.

The highest level updating function is simupdate. This can be called with data structures that have
just been loaded in from a configuration file, that have just been created using Libsmoldyn functions, that
have been modified using run-time commands, or that are in good running order. It will take care of all
necessary updates. simupdate calls the other update functions in the order listed below. Because updates
cannot be finished until others are started, simupdate will sometimes call update functions multiple times,
until everything is done.

All update functions return the same types of values. They return 0 for success, 1 if memory could not
be allocated, 2 if a different data structure that needed updating hasn’t been adequately updated yet, or
larger numbers for other errors.

Structure conditions (SC) are divided into four categories: SCinit, SClists, SCparams, and SCok; these
are enumerated in the StructCond enumerated list. SCinit implies that a structure is still being initialized,
SClists implies that one or more of the lists that comprise a structure need updating, SCparams implies
that one or more of the structure simulation parameters need updating, and SCok implies that the structure
is fully updated and ready for use. The items that are initialized for each condition are shown below. This
table was updated after changes for version 2.23.

molsupdate
SClists (molsupdatelists)
gaussian lookup table
mols->exist (calls rxnisprod and issurfprod)

136 CHAPTER 6. CODE DESIGN

creates system molecule lists if none yet

sets any list lookup values that weren’t done yet

sets molecule list values for molecules in dead list
SCparams (molsupdateparams)

mols->difstep

mols->diffuselist

boxesupdate

SClists (boxesupdatelists)
box superstructure (requires walls)
bptr->indx
neighbor boxes
bptr->nwall and bptr->wlist

SCparams (boxesupdateparams)
bptr->npanel and bptr->panel (requires surfaces)
molecules in boxes (requires molecules and assigns mptr->box)

molsort
resets topl indices
sorts and compacts live lists (calls boxremovemol and boxaddmol)
moves molecules from resurrected to reborn lists (calls boxaddmol)
resets sortl indices

compartsupdate
SClists (compartsupdatelists)
does nothing
SCparams (compartsupdateparams)
finds boxes in compartment (requires boxes and surfaces)
finds box volumes and compartment volumes

rxnsupdate
SClists (rxnsupdatelists)
sets reaction molecule lists (requires molecule lists)
SCparams (rxnsupdateparams)
sets rates (may require compartments)
sets products
calculates tau values

surfupdate
SClists (surfupdatelists)
allocates srfmollist arrays (requires molecule lists)
sets srfmollist values (requires molecule lists and calls rxnisprod)
SCparams (surfupdateparams)
sets surface interaction probabilities (requires mols->difc and ->difstep)

portsupdate
SClists (portsupdatelists)
sets port molecule lists (uses molecule lists)
SCparams (portsupdateparams)
does nothing

6.3. SIMULATION ALGORITHM SEQUENCE 137
6.3 Simulation algorithm sequence

In a sense, the core function of the entire Smoldyn program is simulatetimestep, which is in smolsim.c.
Using the assumption that all data structures are given to this function are in good working order,
simulatetimestep runs the simulation for one time step, and then cleans up all of the data structures
as required, thus leaving them again in good working order. The sequence of tasks performed here is central
to accurate and efficient simulation, as well as data structure maintenance.

As mentioned in the Smoldyn User Manual, the simulation concept is that the system can be observed
at a fixed time, then evolves to a new state, can be observed again, and so forth. The details of what
happens during the time evolution should not be relevant to the user. Instead, all that should matter is that
all aspects of the observable simulated states conform as closely as possible to results that would be found
from the ideal and hypothetical continuous-time model system that the simulation is intended to represent.
Furthermore, the simulation results should be as independent of the time step as possible, and they should
converge to those of the hypothetical model system as the time step is reduced towards zero.

Here, we focus on the details of what happens during a time step. The sequence of simulation algorithms
is:

operation error box molecule surface
code assignment sorting sides
—time = f——
observe and manipulate system er ok bad ok
sort molecule lists n/a ok ok ok
graphics are drawn n/a ok ok ok
— start/end of simulatetimestep. ok ok ok
diffusion
molecules diffuse 9 bad ok bad
surface collisions
surface collision interactions n/a bad bad ok
reactions
desorption and surface-state transitions 6 bad bad ok
assign molecules to boxes 2 ok bad ok
Oth order reactions 3 ok bad bad
1st order reactions 4 ok bad bad
2nd order reactions 5 ok bad bad
sort molecule lists 6 ok ok bad
surface collisions again n/a bad ok ok
assign again 2 ok ok ok

—time =t + Afeme—

The overall picture is that the simulation sequence is: diffusion, surface interactions, and reactions. The
“desorption and surface-state transitions” operation is really a reaction, and so it is debatable whether it
should be before or after chemical reactions. I chose to put it where it is because it shares overlap with
surface collision interactions, which have to be before reactions.

After commands are run, graphics are displayed to OpenGL if that is enabled. The evolution over a finite
time step starts by diffusing all mobile molecules. In the process, some end up across internal surfaces or the
external boundary. These are reflected, transmitted, absorbed, or transported as needed. Next, reactions
are treated in a semi-synchronous fashion. They are asynchronous in that all zeroth order reactions are
simulated first, then unimolecular reactions, and finally bimolecular reactions. With bimolecular reactions,
if a molecule is within the binding radii of two different other molecules, then it ends up reacting with only
the first one that is checked, which is arbitrary (but not necessarily random). Reactions are synchronous in
that reactants are removed from the system as soon as they react and products are not added into the system
until all reactions have been completed. This prevents reactants from reacting twice during a time step and
it prevents products from one reaction from reacting again during the same time step. As it is possible for

138 CHAPTER 6. CODE DESIGN

reactions to produce molecules that are across internal surfaces or outside the system walls, those products
are then reflected back into the system. At this point, the system has fully evolved by one time step. All
molecules are inside the system walls and essentially no pairs of molecules are within their binding radii
(the exception is that products of a bimolecular reaction with an unbinding radius might be initially placed
within the binding radius of another reactant).

6.4 Wildcards, species groups, and patterns

Patterns

Most of Smoldyn’s treatment of wildcards, species groups, and patterns is in the molecules and reactions
portion of the code. The basic idea is that any string that the user enters for a species is treated as a
“pattern”. This pattern might represent one species or multiple species.

Patterns are stored in the molecule superstructure. The PatternData enumeration, of which there are
PDMAX options, are for the first PDMAX elements of the mols->patindex array, called the header. This array, as
explained below, lists the species indices that match to text patterns. Each listing requires some information
to describe how long the listing is, what’s stored in it, and what it corresponds to, which is included in
the header. These header elements should be retreived using the enumerated values. See below for their
description.

Patterns are strings, each of which represents one or more species names. Each string that is used gets
recorded as a pattern; however, those that are not used (e.g. species that were generated automatically but
never referenced individually by the user) are not recorded here, so there is no certainty that the list here is
complete. This list is only updated when it is used.

Patterns are stored in the molecule superstructure. This paragraph describes how they are stored.
maxpattern slots are allocated for patterns, of which npattern are actually used. The actual list of patterns
is called patlist; these are sorted by alphabetical order. Sorted in parallel are the lists patindex which is a
list of lists, and patrname, which is a list of reaction names. patrname is only used if the pattern represents
a reaction, and is used to differentiate between multiple different reactions that have identical patterns. In
patindex, there is one element for each pattern. Each element of patindex is a sublist.

The contents of each patindex list starts with a header which gives important information about the
list. The header occupies the first PDMAX list elements. They are:

element name meaning

0 PDalloc allocated sublist size including header values

1 PDnresults number of stored results

2 PDnspecies number of species during last sublist update

3 PDmatch number of “match species” in this pattern

4 PDsubst number of “replace species” in this pattern

5 PDrule 0 if this is not a “rule” and 1 if it is (only rules generate new species)

PDalloc is the total size of the index list. This value is checked when the index list needs to be expanded
and is updated exclusively by molpatternindexalloc. PDnresults is the number of stored results, not
including the values in the header. It may be 0 or more. PDnspecies is the number of species that existed in
the system when the index list was last updated. This value is initialized to 1, because a minimal simulation
that includes molecules includes an empty species. It is increased to sim->mols->nspecies at each update.
This value can also be set to -1 to indicate that it should not be updated in the future, even if more species
are created (appropriate for a pattern that represents only a single species).

The number of spaces used for each stored result is the sum of the match and replace counts. For example,
suppose a pattern is A*\nX#*, which has been found to match and substitute to AB\nXB, AC\nXC, and AD\nXD.
If the sublist were allocated with 20 elements, then element 0 would equal 13, element 1 would equal 3,
element 2 would equal 6 if nspecies was 6 when this sublist was created, element 3 would equal 1 because
there’s one match word here, element 4 would equal 1 because there’s one substitution word here, element
5 would equal 0 if this is not a rule, elements 6 and 7 would be the indices for the “AB” and “XB” species,
elements 8 and 9 for “AC” and “XC” species, elements 10 and 11 for “AD” and “XD” species, and elements

6.4. WILDCARDS, SPECIES GROUPS, AND PATTERNS 139

12 to 19 would be empty. The list of results is sorted in ascending order.

Control flow and functions - species names

The entry point for most functions that deal with species names that are provided by the user is
molstring2indexl. This function takes a string (typically a species name, a species group name, or a
species name with wildcards, optionally followed by the state) and returns an index variable for the species,
creating a new index if needed. It also returns the state, returning MSsoln if the string did not include
a state. For example, adding a species group happens in moladdspeciesgroup; the first thing this does
is to send the species group name to molstring2index1 so that it can get back an index variable for the
species group. The same function also sends its species name to molstring2indexl so that it can get
back an index variable for the species. molstring2index1 is also called by simreadstring for essentially
all input lines that include species, including “difc”, “difm”, “drift”, “surface_drift”, “mol”, “surface_mol”,
“compartment_mol”, “mol_list”, “display_size”, “color”, and “product_placement”. It is also called by a vast
number of commands.

Internally, molstring2index1 sends the string off to molstring2pattern where the string is separated
into a pattern portion, which might be a species name, a species group name, or a species name with
wildcards, and a state for the species. This function can also assemble more complex patterns if used
with non-zero mode values, which are for reactions, described below. No wildcard stuff is parsed in
molstring2pattern. This function simply returns the pattern and the state. Next, molstring2index1
sends the pattern off to molpatternindex which looks to see if the pattern has been exapanded before into
a list of species and, if so, returns that list of species. If not, it performs any necessary wildcard matching
to create a list of species, which it both stores and returns in index. At the end, molstring2index1 returns
the index variable.

Reaction rule storage

Reaction rules are stored within the reaction superstructure. A simulation can have up to three reaction
superstructures, corresponding to order 0, 1, and 2 reactions, but it’s best if all of the rules are stored together
because then it’s possible to keep them in the order that the user entered them. As a result, Smoldyn first
looks for existing rules and if it doesn’t find any, then it stores the rules in the lowest order superstructure
that is currently defined (this happens at the top of RuleAddRule). Any functions that use rules need to
look through all of the superstructures to find them.

The rule list, within the reaction superstructure, has allocated size maxrule, actual size nrule and several
lists, which are rulename, rulepattern, ruledetails, and rulerate. The rulename list contains strings
with the rule names, which are simply the reaction names entered by the user, without any suffix. The
rulepattern list is a list of patterns which serve as reaction rules; a pattern for a bimolecular reaction has
a single-species pattern for the first reactant, which is a species name possibly with wildcard characters, a
space, a second single-species pattern, a newline character, and then space-separated product species names.
The ruledetails list contains arrays of integers, each of which lists the species states cast as integers for
the reactants and products in their sequence, then the compartment number if the reaction is restricted to
a specific compartment, and then the surface number if the reaction is restricted to a single surface. The
rulerate list contains the reaction rate entered by the user. The sole difference between reaction rules
and reactions (which are not stored here) is that the rules are allowed to generate new species whereas
reactions are not. Reaction rules are typically only useful in combination with wildcard characters. These
lists are maintained by the RuleAddRule function. These rules do not need updating during the simulation.
Instead, they are simply stored here and referred to when updating is required. The ruleonthefly element
is initialized to 0. It is then set to 1 if on-the-fly rule generation is desired.

Control flow and functions - reactions

Reactions are initially added to a simulation when the simreadstring function encounters a “reaction” or
“reaction_rule” word in a configuration file. If that happens, the remainder of the line of input file text gets
sent off to rxnparsereaction for processing. This function takes care of parsing that is usually done within

140 CHAPTER 6. CODE DESIGN

simreadstring but got so complicated that it got separated into its own function. That function reads the
reaction name, the names of any compartment or surface that the reaction is restricted to, the reactant names
and states, and the product names and states. As it reads the reactants and products, these get appended to
pattern using the molstring2pattern function. This then calls RxnAddReactionPattern with the reaction
name, the pattern, the reactant and product states, any compartment or surface restrictions, and whether
this is a rule. Note that the reaction rate is not read or used so far.

RxnAddReactionPattern can be called either when a reaction is first created or during reaction expansion,
so it first calls molpatternindex without updating to find the current pattern status. If that function does
not return an index variable, which we’ll assume in this case, that means the pattern is new and an index
variable needs to be created. The function then calls molpatternindex a second time, now with updating,
which creates the index variable. The index variable includes a list all of the species combinations, given
the current species list, that agree with the given pattern. If the reaction does not include wildcards, index
will list only a single reaction; vice versa, if it does include wildcards, then index may list multiple reactions.
If the reaction is a rule, then molpatternindex will create any species that the reaction rule generates and
will add those species to the simulation. Next, RxnAddReactionPattern loops over all of the new reactions
in the index variable, which is all of them in this case, extracts the species identities, tests to see whether an
identical reaction already exists, and calls RxnAddReaction to add the reaction if not. If the reaction does
exist, then this increases the reaction multiplicity.

RxnAddReaction adds a new reaction to the simulation (it also updates an existing reaction if it was
only entered with reactants previously). It takes in the reaction name, species, states, and compartment and
surface restrictions, creates the appropriate reaction superstructure if needed, creates the requested reaction,
adds that reaction to the superstructure, and downgrades the reaction and surface conditions to the SClists
levels. This triggers reaction molecule list, rate, and product placement computations when updating is next
performed. The surface list is here because products with non-zero unbinding radii can cross surfaces, so
surface checking for this needs to be turned on.

After all of the reactions for the given pattern have been added, control returns to rxnparsereaction,
which then reads the reaction rate, if it was entered. It sends this rate off to RxnSetValue if the pattern
corresponded to only one reaction and to RxnSetValuePattern if the pattern corresponded to multiple
reactions. In the latter case, RxnSetValuePattern simply calls molpatternindex without updating to get
the index variable, then goes through the specific reactions in it and calls RxnSetValue for each of them.
Importantly, RxnSetValuePattern checks to see if the reaction is being given a rate for the first time, setting
the rate to the given value if so, and otherwise it adds the given value to the current reaction rate. This
works because this function is only called during setup of multiple reactions or during expansion of rules.
Finally, if the reaction is a rule, then rxnparsereaction calls RuleAddRule to store the rule for later use.

After this, Smoldyn continues on to read more lines from the input file, possibly repeating the same
procedure if another reaction is entered.

Control and flow - network generation

Reaction rule expansion occurs through the RuleExpandRules function. This function is called if the user
uses the “expand._rules” statement, which is parsed by simreadstring. It is also called at every time step
in the main loop, which is in the simulatetimestep function.

The RuleExpandRules function first checks to see if expansion is necessary. If so, it goes through the
rules list sequentially. For each rule, it calls molpatternindex without updating to convert the pattern to an
index, it gets the data it needs from the other rule lists, and then it calls RxnAddReactionPattern with this
information. That function updates the index variable for this pattern and adds any new reactions. After
control returns to RuleExpandRules, it calls RxnSetValuePattern along with the same information and also
the starting point for updating, and that function sets the reaction rates for the new patterns, adding the
rate to the existing rate.

Within the molecule superstructure, expand is a flag for on-the-fly rule-based modeling. It is initialized
to 0 and stays that way so long as there have never been any molecules of this species, it is increased to 1 if
at least one molecule of this species has been created but it has not yet been used for rule expansion, and is
set to either 2 or 3 if it has been used for expansion.

Chapter 7

Smoldyn modifications

Modifications for version 1.5 (released 7/03)
- Added hierarchical configuration file name support.
- Zeroreact assigns the correct box for new molecules.

- The user can choose the level of detail for the bimolecular interactions (just local, nearest neighbor,
all neighbor, including periodic, etc.)

- Bimolecular reactions were slow if most boxes are empty. Solution was to go down molecule list rather
than box list.

- Absorbing wall probabilities were made correct to yield accurate absorption dynamics at walls.
- Cleaned up and got rid of old commands.

- The current time input was made useful.

- Graphics were improved by adding perspective and better user manipulation.

- Simulation pausing was made possible using graphics and improved without graphics.

- If a command was used with a wrong file name, the command string became corrupted during the final
command call. This was fixed by Steve Lay.

- Fixed the neighbor list for bimolecular reactions between mobile and immobile reactants.
- Reactions were made possible around periodic boundaries.

- Molecules were lost sometimes. This bug was fixed: 4 lines before end of molsort: was while(!live[m
1), is now while(!live [m]&&m<nl1[11]).

- Output files now allow the configuration file to be in a different folder as Smoldyn.

- Added an output file root parameter.

- Added the command replacexyzmol. Afterwards, the code for the command was sped up considerably.
- Sped up the command excludebox.

- Command time reports were fixed for type b and a commands.

- Added more types of command timing codes.

- Improved accuracy of unireact so that it correctly accounts for multiple reactions from one identity.
- Improved product parameter entry and calculation, as well as the output about reaction parameters.

- Added the routine checkparams to check that the simulation parameters are reasonable.

141

142 CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 1.51 (released 9/5/03)

- Fixed a minor bug in doreact which allowed the molecule superstructure indices to become illegal if
not enough molecules were allocated.

- Fixed a minor bug in cmdreact1 which did not check for errors from doreact.
- Added command molpos.

- Moved version number from a printf statement to a macro, in smoldyn.c file.
- Added command listmols2, from a file sent to me by Karen Lipkow.

- Fixed a minor bug in checkparams that printed warnings for unused reactions.

- In simulatetimestep in smoldyn.c, the order of operations was diffuse, checkwalls, and then
assignmolecs. The latter two were swapped, which should make wall checking more accurate when
time steps are used that are so long that rms step lengths are a large fraction of box sizes. The new
version is less accurate than before when the simulation accuracy is less than 10, but should be more
accurate when it is 10.

- Replaced the coinrand call in unireact, which determines if a reaction occurred, with coinrand30
to allow better accuracy with low probabilities. Also changed the relevant check in checkparams.

- Improved reactive volume test in checkparams.
- Increased RANDTABLEMAX from 2047 to 4095.
- Some modifications were made to random.h.

- Fixed a major bug in rxnfree, regarding the freeing of the table elements.

Modifications for version 1.52 (released 10/24/03)
- Changed comments in rxnparam.h and rxnparam.c, but no changes in code.
- Changed cmdsavesim in smollib2.c to allow it to compile with gcc.

- Added another call to assignmolecs in simulatetimestep in smoldyn.c, after the call to checkwalls,
to make sure that all molecules are assigned properly before checking reactions. This slows things down
some, but should allow slightly longer time steps.

- To the opengl2.c file, the KeyPush function was modified so now pressing ‘Q’ sets the G12PauseState
to 2, to indicate that a program should quit. A few modifications were also made in smoldyn.c function
TimerFunction to make use of this.

- Corrected two significant bugs in the checkwalls function in smollib.c regarding absorbing walls.
First, it didn’t work properly for low side walls. Also, the probability equation was incorrect, which
was noticed by Dan Gillespie.

- Fixed a minor bug in cmdsavesim in smollib2.c file, which caused an output line for rate_internal
to be displayed for declared but unused reactions.

- Several commented out functions in loadrxn were removed because they were obsolete and have been
replaced by product_param. They were: p_gem, b_rel, b_abs, offset, fixed, and irrev.

- A command superstructure was created, which moved several structure elements out of the simulation
structure. No new functionality was created, but the code is cleaner now. New routines are cmdssalloc
and cmdssfree. Updated routines are: simalloc, simfree, loadsimul, setupstructs, cmdoutput
(including function declaration), openoutputfiles (including function declaration and ending state if
an error occurs), commandpop (including function declaration), checkcommand, endsimulate, savesim,
main, and all commands that save data to files.

- Renamed the “test files” folder to “test_files”.

143

Modifications for version 1.53 (released 2/9/04)

- Cleaned up commands a little more by writing routine getfptr in smollib2.c and calling it from
commands that save data, rather than repeating the code each time.

- All routines that dealt with the command framework were moved to their own library, called
SimCommands. This also involved a few function name and argument changes, affecting smoldyn.c,
smollib.c, smollib.h, smollib2.c, and smollib2.h.

- Formatting was cleaned up for structure output routines.

- Swapped drawing of box and molecules, so box is on top. Also increased default box line width to 2
point.

- Computer now beeps when simulation is complete.

- Modified SimCommand library so that each invocation of a command is counted and also changed
declaration for docommand in smollib2. This change was useful for improving the command 1istmols2
S0 it can be run with several independent time counters. Also, wrote command listmols3.

- Wrote the new configuration file statement boxsize.

- Wrote the new commands excludesphere and includeecoli.

- Wrote the commands overwrite and incrementfile, which also involved some changes to the
SimCommand library and required the new configuration file statement output_file number.

- Added a new configuration file statement frame_thickness.

- When simulation is paused using OpenGL, the simulation time at which it was paused is now displayed
to the text window.

Modifications for version 1.54 (released 3/3/04)

- Swapped order of commands and OpenGL drawing so that commands are executed before displaying
results. Also wrote section 3.2 of the documentation to discuss this ordering and other timing issues.

- Wrote documentation section 3.3 on surface effects on reaction rates and added the reactW set of test
files.

Modifications for version 1.55 (released 8/20/04)

- Improved graphics manipulations and added ability to save image as a TIFF file. This is not
documented yet.

- Made a few tiny changes in random.c and string2.h and .c.

- The configuration file statement max_cmd is now obsolete because the command queue is automatically
created and expanded as needed. Also, lots of changes were made to the library file SimCommand.c so
that there are now two command queues: one is as before and uses floating point times for command
execution and the other uses an integer counter for commands that are supposed to happen every, or
every n’th, iteration.

- Added error strings to commands as well as the macro statement SCMDCHECK.

144 CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 1.56 (released 1/14/05)

- Made lots of changes in opengl2.c.

- #include files for gl.h and glut.h now use brackets rather than quotes.
- Improved graphics significantly.

- Rewrote TimerFunction to clarify code.

- Added ability to save TIFF stacks which can be compiled into movies.
- Added keypress command.

- Added comments to the code.

- User and programmer parts of documentation were split to separate files.

Modifications for version 1.57 (released 2/17/05)

- Added command setrateint.

Modifications for version 1.58 (released 7/22/05)
- Fixed 2-D graphics so they a border is now shown again around the simulation volume.
- Added runtime commands replacevolmol and volumesource.

- Random number table for diffusion is now shuffled before use, which significantly reduces errors from
an imperfect random number generator.

- Added position ranges to mol command.

Modifications for version 1.59 (released 8/26/05)

- Random number seed is now stored and is displayed before a simulation starts.

Modifications for version 1.60 (not released, but given to Karen 9/30/05)

- Fixed a small bug in checkparams.

Modifications for version 1.70 (released 5/17/06)

- Added reflective, absorbing, and transparent surfaces for 1 to 3 dimensions with panel shapes that can
be: rectangle, triangle, and sphere.

- Geometry.c and its header Geometry.h are new libraries that are used.
- Added background and frame color options.

- Reformatted and significantly updated part 2 of the Smoldyn documentation. Added surface
descriptions to part 1 of documentation.

- Changed molecule sorting in molsort so that list compacting maintains list order.

- Wrote reassignmolecs to replace assignmolecs, which should increase efficiency and allow accurate
surface treatment.

- Made it possible to load molecule names individually rather than all at once. New configuration file
statements are max_name and name.

- Added pointers to the live molecule lists called topl (and renamed top to topd), which will differentiate
old molecules from the new “reborn” ones. This is important for treating surfaces after reactions.

145
Modifications for version 1.71 (released 12/8/06)
- Added glutInit call to main function in smoldyn.c.

- Changed OpenGL drawing slightly for surfaces, so now 3D surface colors are always the same on the
front and back, but can also be semi-transparent, although with OpenGL errors.

- Added command killmolinsphere.

- Cleaned up simulation loading some, with minor modifications in setupstructs, loadsimul, and
setupboxes, as well as writing of setdiffusion. This makes it so that molecule sorting only happens
in molsort, and it took some unwanted code out of loadsimul.

- Added molecule serial numbers to the molecule structure and superstructure.

- Added some elements to command structures so that commands now have storage space.

- Added RnSort.c library to project, as well as some new functions in RnSort.c.

- Added command meansqrdisp.

- Completely rearranged order of functions in smollib.c and in documentation part II.

- Cleaned up surface code. Fixed rendering of 3-D spheres. Added support for cylinders and hemispheres.
- Added statements: grid_thickness and block comments with /* and */.

- To action_front and similar statements, allowed “all” for molecule name.

- Tried to stop diffusing molecules from leaking across reflective surfaces.

Modifications for version 1.72 (released 2/26/07)

- Finally got reflective surfaces to stop leaking diffusing molecules. This involved many changes in the
surface code sections.

- Walls are no longer functional when any surfaces are defined, so new surfaces have to be defined to
serve as system boundaries. Also, periodic surfaces are now possible.

- Changed all float data types to doubles throughout smollib.c, smollib2.c, Geometry.c, smoldyn.c, and
their headers.

- Made it so that bimolecular reactions across surfaces can only happen with transparent surfaces.
- Two dimensional graphics now allow panning and zooming.

- Updated savesim command to accomodate surface changes.

Modifications for version 1.73 (released 9/25/07)

- Trivial bug fixed in loadsurface, fixed minor bug regarding periodic surfaces.

- Fixed significant bug regarding 2D triangle surfaces.

- Improved surfaceoutput so that it only prints first 20 panels of each type for each surface.
- Added new commands: settimestep, beep, echo, killmolprob.

- Modified command meansqrdisp to read a dimension number. Also made it so it accounts for periodic
boundaries.

- Added ‘x’ to possible command stepping options; then improved it 5/25/07.

146 CHAPTER 7. SMOLDYN MODIFICATIONS

- Added wrap element to molecules and implemented it.
- Lots of trivial changes so that Smoldyn would compile with gcc using “-Wall” flag without warnings.
- Smoldyn can now compile without OpenGL and/or without libtiff.

- Improvements to Makefiles and improvement of compiling advice.

Modifications for version 1.74 (released 10/22/07)
- Coincident surfaces have defined behavior.
- New statement boundaries replaces low_wall and high wall (but old ones still work).
- New command: warnescapee.
- Disk shaped panels are now possible.

- Surface jumps are now possible, which allow for holes in surfaces as well as for better periodic
boundaries.

- Significant bug fix in reflections at circular and spherical surfaces.
- If 50 surfaces are encountered by a molecule in one time step, a warning is now printed.
- Cleaned up a lot of surface code.

- Replaced the surface statements action front, action_back, and action_both with action;
color_front, color_back, and color_both with color; and polygon_front, polygon_back, and
polygon_both with polygon.

Modifications for version 1.75 (released 11/6/07)

- Added surface-bound molecules. This has involved changes in the molecule superstructure, surface
structures, panel structures, and other structures, changes in the graphics to display these states, new
input statements (surfav::eJnol7 epsilon, action, neighbor, changes to color, display_size, difc,
surface rate, surface rate_internal, reaction statements, and others), and a lot of new functions
in the code. Nearly every function in smollib.c required at least some changes to account for this
addition. Many additions have not been debugged yet.

- New library dependency: Sphere.c and Sphere.h.
- Rewrote the graphics code for drawing molecules and part of the code for drawing surfaces.

- Changed panel names, so now they are unique for each panel within a surface, not just each panel
within a shape. Also, panel names are available from panels.

- Removed the assignmolecs function, which was superceded by reassignmolecs.

- Changed several character type structure elements to enums, including PanelShape, PanelFace, and
SrfAction.

- Made it so the read_file statement can be used within surface or reaction statement blocks. This
included adding a short Parse section and structure to the code.

- Renamed test_files folder to examples. Also, updated the configuration files so that they run with
the current syntax.

- Improved error reporting, so now the problematic line of text is displayed.

- Cleaned up reaction loading by adding new functions that allocate reaction structure space for reactants
and products.

- Starting adding a user manual section to the documentation.

147

Modifications for version 1.76 (released 11/7/07)

- Split smollib.c and smollib.h source code files into smolload.c, smolrun.c, and their headers. Also,
moved some functions from smoldyn.c into the libraries.

- Renamed some functions.
- Added and implemented more command-line flags.

- Put most global variables into sim, but killed off the event counters.

Modifications for version 1.77 (released 11/18/07)
- Overall, few changes that affect users.

- Made it so surfaces outside of the simulation volume are checked, just like those within the volume.
This fixes errors that can occur.

- Rewrote checkwalls so that it’s more robust for molecules with long rms step lengths and so that its
inputs mimic checksurfaces.

- Modified line2nextbox so that it accounts for boxes that are outside of the system volume.
- Made most files in smolrun.c so that they can operate on either complete molecule lists or only those
that are in single boxes. This may help for parallelization.
Modifications for version 1.78 (released 11/29/07)
- Minor changes with graphics.
- Changed the overwrite and incrementfile commands so that they no longer run a second command.

- Added and implemented the CMDcode enumerated list in SimCommand.c. Also in SimCommand.c,
added an iter parameter to scmdexecute and aded the functions scmdcmdtype and scmdnextcmdtime;
these may be useful for parallelization.

- Fixed a bug in surface actions.

- New functions: readmolname, molsetdifc, molsetdifm, molsetdisplaysize, molsetcolor. These
clean up code that was elsewhere, allowed more “all” input parameters, and simplify the linking of
Smoldyn to other applications. Also, the input formats of some statements (difc, difm, surface mol,
display_size, color, permit, products) and a lot of commands were changed to use readmolname,
which improves them.

- Fixed bugs in lots of commands, which were created by the addition of surface-bound molecules in
version 1.75.

- Added function molcount, which was used to simplify and improve several runtime commands.

- Rewrote savesim command, which involved new functions: writesim, writewalls, writesurfaces,
writereactions, writecommands, and writemols.

- Added command timing option ‘j’.

- Added sname to surface structure and changed jumpp in panel structure to point to a panel.
- Added reaction reversible parameter ‘X’.

- Fixed a major bug in findreverserxn that caused it to fail.

- Added checking to checkrxnparams for multiple bimolecular reactions with same reactants and for
defaults used for the reversible parameter.

148 CHAPTER 7. SMOLDYN MODIFICATIONS

- The permit element in reactions was changed from size MSMAX to size MSMAX1, including also
implementation in the bireact functions and reaction set up functions.

- Changed addrxnstostruct parameter list to make it easier to use and to support an improved reaction
input format.

- Added command molcountinbox.

Modifications for version 1.79 (released 12/6/07)

- Fixed several bugs in scmdexecute. Commands no longer execute repeatedly after the simulation is
finished.

- (Several of the following corrections were suggested by Kevin Neff; thanks!)
- Added newlines to the ends of header files to avoid compiler warnings.
- Fixed types of some stand-in functions for compiling without OpenGL.

- In opengl2.c, WriteTIFF function, changed uint32 to unsigned int. Also, changed inclusion of
“tiffio.h” to <tiffio.h>.

- Changed the Makefile so that it is easier to configure for no OpenGL and/or no Libtiff. Also, included
linked library option (thanks to Upi) and an option for converting line terminating characters from
Magc to Linux.

- Added basic compartments.

- Added commands molcountincmpt and molcountonsurf.

- Fixed a bug in the molcount function.

- The savesim command now works again, at least mostly.

- Replaced all %1f format specifiers in printf statements with %g and %1f in scanf to %1g.

- Changed the program license from “permission is granted for non-commercial use and modification of
the code” to LGPL.

Modifications for version 1.80 (released 12/22/07)

- Changed the exiting code some so ‘Q’ quits the program.
- Commands that don’t work now print errors only once and aren’t repeated.

- Modified setrates, setproducts, and setupsurfaces so that the time step can be modified during
the simulation. Also modified command settimestep to work properly.

- Command savesim now does not save the output file name in the list of output_files, which means
that the saved result can be run without overwriting it.

- Implemented rxn->permit element in setrates and also fixed a bug in setrates. A slight change in
setrates is that rate2 was not overwritten if it already had a positive value; now it is overwritten.

- Added and implemented Simsetrandseed function.
- Wrote part of checksurfaceparams function.

- Finished basic compartment implementation. setupcomparts was written, as well as new functions
boxrandpos and compartaddbox.

149

- Added basic molecule porting for supporting MOOSE, with a new “port” surface action. Currently,
this is more of a hack than a proper addition. New functions include molgetexport and molputimport,
as well as mollistnum, moldummyporter, and getnextmol. Also, there is an nlist element in molecule

superstructures, the number of live lists was expanded from 2 to 3, and there is a 1ist element in
molecules. molsort required some changes, as did various other functions.

Modifications for version 1.81 (released 1/22/08)

- Changed developing environments from Macintosh Codewarrior to Macintosh gcc with XCode as an
editor.

- Restructured code from smolload.c, smolrun.c, and smollib2.c libraries, to smolmolec.c, smolsurface.c,
smolboxes.c, smolgraphics.c and others. All headers are now in smoldyn.h.

- Rearranged and tidied up all code.

- Rearranged else if order in loadsim function.

- Replaced the fixed number of live lists (2 up to version 1.79, 3 for version 1.80) with a variable
number. Also, changed the molecule superstructure significantly to implement these multiple lists.

Most molecule functions required changes, as did some reaction functions, and many others.

- Added molecule porting properly instead of as a hack, which involved new structures, new functions,
and a new source code file.

- Added a lot of new molecule functions, as well as some surface and reaction functions.
- Added statements gauss_table_size, molecule_lists, and mol_list.

- Added and implemented prob and tau elements to the reaction structure.

- Fixed many minor bugs throughout the code.

- Cleaned up various minor issues in diagnostics output.

- Added simulation event counters to sim, which involved minor changes in several top-level functions
including checksurfaces, checkwalls, zeroreact, unireact, and bireact.

- Added and implemented event counters to the simulation structure.

- Lots of work went into part I of the documentation, along with many new and improved example files.

Modifications for version 1.82 (released 2/28/08)

- Changed readmolname so now a name without a state implies MSsoln rather than MSall, as it was
before.

- Fixed bireact and unireact so that now molecule identities are checked before reactions are performed
to make sure that they didn’t just get killed off in a prior reaction.

- Reactions were overhauled with all new configuration file commands, new data structures, a lot of
new functions, new diagnostics output, changes in every function in smolreact.c, improved example
configuration files, and updated text in the user manual. A bug was fixed in which reaction permissions
did not always correspond to those that were entered. Another bug was fixed in which reaction products
frequently escaped the simulation volume.

150 CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 1.83 (released 3/14/08)

- Fixed minor bug with allosteric reactions.

- Changed order 1 reaction probabilities so that multiple reaction pathways now simulate with the correct
rates (example file is unireactn.txt).

- Added command setrandseed.

- Actual surface action rates are now displayed.
- Verified that surface sticking rates are correct.
- Fixed a minor bug in line2nextbox function.

- Added drift to molecular motions.

Modifications for version 1.84 (released 4/11/08)

- Fixed a very minor bug in line2nextbox function.
- Added -o command line option
- Changed command meansqrdisp so that it now outputs (r#) as well as (r?).

- Rewrote command for changing the time step, which also included some new set time step functions
and changes in a few setup functions.

- Added an enumeration for Smoldyn structures (enum SmolStruct), as well as text input and output
functions to support them.

- Made a minor change to reassignmolecs, so the function doesn’t bother running if there is only 1
box.

- Added commands killmoloutsidesystem, diagnostics, setgraphics, and setgraphic_iter.
- Fixed a bug in fixpt2panel regarding cylinders with their fronts inside.
- Cross-compiled Smoldyn for Windows using mingw compiler.

- Added order 0 and order 1 compartment reactions.

Modifications for version 1.85 (released 6/3/08)

- Changed command execution timing for ‘x’ type commands so that they do not execute any more often
than the simulation time step.

- Added command molcountspace.
- Fixed some minor bugs in srfcalcrate.

- Replaced the use of the system-supplied random number generator with the SIMD-oriented Fast
Mersenne Twister (SFMT).

- Fixed a bug in which molecules leaked out of the corners of sticky boxes.
- Fixed a bug that was created in version 1.84 in which reversible reactions led to leaky surfaces.
- Fixed a trivial bug in which the wall list wasn’t freed upon program termination.

- Fixed minor bugs in circle and arc drawing code.

151

- Ran Valgrind on Smoldyn with several configuration files and found no memory errors in the Smoldyn
code (although several are reported for OpenGL).

- Fixed a bug in findreverserxn for reactions with 3 or more products.
- Fixed a bug in rxnsetproduct regarding type RPpgemmax parameters.
- Cleaned up set up functions some, with new documentation.

- Fixed a bug in zeroth order compartment reactions.

- Parser code was separated from molecules source file, and smoldyn.h header file, and put into parse.h
and parse.c. Also, this code got a lot of improvements, including support for macro substitution. New
statements include define, define_global, undefine, ifdefine, ifundefine, else, and endif.

- Renamed allosteric reactions to conformational spread reactions. This included changes in smoldyn.h,
smolreact.c, and the documentation.

Modifications for version 1.86 (released 11/17/08)

- Small progress on implementing accurate adsorption algorithms.
- Added display size checking for molecules.

- Fixed a bug that arose if both max names and names were used.
- Fixed a bug in molcountspace command.

- Fixed a bug in define statements

- Changed makefiles to not assume availability of SSE2 processors

- Changed queue.c source file so that the voidcomp.c source file is no longer needed; this should enable
compiling on 64-bit computers without problems.

- Fixed a bug in which molecules that were created only through commands did not interact with
surfaces.

Modifications for version 1.87 (released 12/7/08)
- Fixed a minor bug in line parsing.

- Vastly improved the wrl2smol utility program.

Modifications for version 1.88 (released 1/16/09)
- Added accurate adsorption, desorption, and partial transmission algorithms.
- Added commands fixmolcount and fixmolcountonsurf, molcountheader.
- Fixed minor bug regarding 256+ character config. files lines.
- Smoldyn now recognizes Macintosh format config. files.
- Added SmolCrowd utility program to the distribution.
- Added areas to surface outputs.
- Changed config. file molecule names from “names” to “species”.
- Simplified config. file for start_reaction, start_surface, start_compartment, and start_port.

- Added command timing options A, B, &, I, E, and N. Also, fixed a minor bug in integer command
queue timing (these were changed from ints to long long ints).

- Added compartment definitions that logically combine other compartments.

152 CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 1.89 (released 2/11/09)
- Wrote documentation for “simulation settings” and started documentation for “network generation”.
- Added some code for libMoleculizer linking. This is very preliminary.

- Added surface-specific reactions, and also made compartment-specific reactions work for bimolecular
reactions.

- Completed support for adsorption, desorption, and partial transmission. This required many bug fixes
and lots of work on SurfaceParam.c. All of these functions were tested and seem to work well. Also,
reasonably thorough quantitative tests were run for all algorithms and all appear excellent.

- Lots of work on code modularization. This involved some data structure modifications (moved the
nspecies, maxspecies, and spnames elements from the simstruct to the molecule superstructure),
lots of cleaning up in smolmolec.c, and a lot of changes in loadsim. One result is that many config.
file statements that could only be entered once before can now be entered multiple times, and each
time overwrites the last one. This work is needed for a command line user interface and for Moleculizer
linking.

- Progress towards making the setup functions able to run more than once, to allow for mid-simulation
updates.

- Removed math2.h dependency of rxnparam.c file, and also improved documentation for it.

- Removed the confspread flag from the reaction structure since it was redundant with rparamt being
equal to RPconfspread.

- Modified the molcountspace command slightly so that its spatial domains no longer include the
endpoints; i.e. to (low,high), from [low,high].

- Changed surface molecule lists so that surface-bound reaction products are now checked for their
positions after reactions and surface-bound actions (e.g. desorption) is handled better and more
efficiently.

- Added “bounce” reaction product placement option. Molecules can now have excluded volume.

Modifications for version 2.00 (released 2/17/09)

- Fixed a trivial bug so that the time_start statement now sets both the start time and the current
time.

- Updated the version number to 2.00 to reflect the fact that all aspects of simulations with surfaces are
now complete, as are a tremendous number of other improvements.

Modifications for version 2.01 (released 3/3/09)

- Fixed a bug with compartment volume calculations, and improved compartment setup. Renamed
compartaddbox to compartupdatebox, and largely rewrote it.

- Fixed a bug in SurfaceParam.c regarding rate calculation for reversible transmission.
- Added command setsurfcoeff, which Zsuzsanna Sukosd wrote.

- Separated loadsim, loadsurface, loadcompart, and loadport into two functions each, where the
new functions are simreadstring, surfreadstring, compartreadstring, and portreadstring. Also
added new statements to make the use of statement blocks optional within configuration files.

- Added command set.

153

- Made it possible for panel neighbors to be on other surfaces. As part of this, wrote function
surfchangeneighbors, along with a few other functions.

- Substantially revised and improved surface diffusion. Checked all 2-D and 3-D panel shapes for basic
functionality.

Modifications for version 2.02 (released 5/5/09)

- Changed molcount function so that it now works for unsorted molecule lists as well as for sorted
molecule lists. This will affect most molecule counting commands.

- Some code modularization so that most statements in simreadstring now work through functions
rather than directly. More work is needed for surfreadstring, in particular. Also, decreased
dependence of modules on each other.

- Added and implemented a condition element to each superstructure, which will allow for improved
modularity. This will also allow changes during run-time, such as new species.

- Fixed bugs in which reactions between solution-phase and surface-bound molecules didn’t always
happen.

- Added command molcountincmpt.

- Added command meansqrdisp2.

Modifications for version 2.03 (released 5/22/09)

- Changed build system from a simple makefile to the GNU Autoconf/Automake system. This works
for many systems but not all.

- Added parallel operation using pthreads. This seems to work well, but doesn’t actually lead to much
speed up.

- Added support for libMoleculizer, which includes a lot of new code.

Modifications for version 2.04 (released 6/27/09)

- Lots of improvements to the same changes that were made for version 2.03. Now, all of these features
appear to be stable and the build system appears to work for most Mac or Linux systems. However,
some documentation is still lacking.

- Added boundary absorption for effective unbounded diffusion.

- Improved SurfaceParam.c some to remove all dependencies and to make it run a little faster.

Modifications for version 2.05 (released 7/23/09)

- Improved Smoldyn build system so that it now works for most Mac and Linux platforms.
- Some updates to the documentation, particularly in the compiling section.
- The Smoldyn release now includes the libmoleculizer documentation.

- Changed Smoldyn license from LGPL to GPL because of realization that large parts of the code could
easily be used in proprietary software, which would hurt development of the Smoldyn project.

154 CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 2.06 (released 11/6/09)

- Lots of code cleanup, including formatting changes, removal of unused variables, adding function
declarations, etc.

- Subversion site cleanup, with removal of unimportant files.

- Added jump behaviors for peripheral surface-bound molecules.

- Improved conversions between strings and enumerated types for surfaces.

- Added a graphics time delay for simulations in pause mode or completed simulations.

- Added optional species conversion at surfaces.

- Fixed a bug in molecule existence checking.

- Tidied up execution time reporting.

- Fixed several minor bugs in parameter checking.

- Fixed a bug in which the maximum number of species was incremented twice for empty molecules.

- Got compilation for Windows to work again, using a hand-written makefile (no libmoleculizer support).

- New release shell script.

Modifications for version 2.07 (released 11/17/09)

- Trivial updates to surface mol and compartment mol (to support 0 molecules)

- Fixed a bug in molexpandlist.

- Fixed a bug in setupmols, regarding fixedlist and diffusinglist.

- Fixed a minor bug in rxnsetproducts.

- Fixed several bugs in savesim command and added writemolecules and molpos2string.

- Fixed a major bug in diffusion of surface-bound molecules between panels.

- Fixed a bug in Geometry.c, in finding closest point on ring.

- Fixed a bug in reaction product placement, which shouldn’t affect function but should speed code up.
- Fixed a bug in execution time reporting, and added time output to diagnostics.

- Fixed a minor bug with neighbor_dist statement.

Modifications for version 2.08 (unofficially released 11/20/09)

- Fixed a bug for reactions between 2 surface-bound molecules, where the destination panel was
sometimes wrong.

- Cleaned up release files some.

155

Modifications for version 2.09 (released 1/6/10)

- Nathan fixed “make dist” build function.

- Fixed a small bug in wrl2smol, in which it didn’t print out the input file name.
- Fixed a bug in unbounded_emitter surfaces which caused Smoldyn crashes.

- Fixed a minor bug in surfstring2dm for “polygon none” statement.

- Added command molcountincmpt?2.

- Added statement and data structure portions for surface shininess, surface edge stippling, and graphics
lights.

- Spun off the graphics stuff from simstruct and put into new graphics superstructure.
- Substantial work on graphics, including new opengl_better graphics drawing option.
- Added function readsurfacename.

- Added command movesurfacemol. It had a bug during initial release, which was fixed for re-release
(1/12/10).

- Fixed two minor bugs in opengl2.c that only applied to compiling without opengl support. Re-released
1/20/10.

Modifications for version 2.10 (released 3/24/10)

- Lots of work on libmoleculizer. Mostly rewrote smolmoleculizer.c file, and redid most of the Smoldyn
moleculizer data structures. More work is needed though.

- Fixed a few minor bugs.
- Fixed a bug in which cylinders weren’t always put into boxes.

- Moved text from the INSTALL_NOTES file into the manual and killed the file.

Modifications for version 2.11 (released 5/4/10)

- Nathan added -1glut flag to standard configure for building.

Modifications for version 2.12 (released 6/10/10)

- Changed panel input so that a panel can be input multiple times and the new data will overwrite the
old.

- Added commands replacecmptmol and molcountincmpts.
- Changed molchangeident to allow it to kill molecules.

- Changed readmolname to allow it to read empty molecules, and also updated the code where this
function was called. Now, many commands allow “empty” as a molecule species.

156 CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 2.13 (released 7/15/10)

- Fixed reaction output slightly, so that activation-limited reaction rate is displayed and binding radius
is not displayed for order 1 reactions.

- Various bug fixes in smolmoleculizer.c.

- Changed all molcount commands to be able to handle nspecies changing during the simulation.

- Improved molsetexist function, and set existence for Imzr species.

- Tidied libmoleculizer-dependent commands speciesstreamcountheader and speciesstreamcount.

- Substantial libmoleculizer work. Nathan made generated species have complex-form names rather than

mangled names and he improved Python error reporting. I improved diffusion coefficients for generated
species, including several new Smoldyn statements. More work is needed though.

Modifications for version 2.14 (released 7/18/10)

- Fixed #ifdef portion of queue.h so that it will compile on Windows correctly.

- Added default product placement parameter for continuation reactions.

Modifications for version 2.15 (released 7/20/10)

- Fixed bug that I just introduced for version 2.14 with default product placement parameter for
continuation reactions.

- Fixed bug that didn’t allow libmoleculizer to run.

Modifications for version 2.16 (released 9/24/10)

- Added statement expand network.
- Lots of work on libmoleculizer documenting and examples.
- Fixed yet another bug in rxnsetrate regarding automatic setting of product placement.

- Fixed a bug in which desorbed molecules could escape being checked for surface crossings.

Modifications for version 2.17 (released 11/19/10)

- Added compile flag =1GLU to configure.ac file, which seems to be necessary for Ubuntu systems.

- In SurfaceParam.c, surfaceprob function, SPArevTrans algorithm section, replaced exp(2*xcixc1)x*
erfcdD(SQRT2*c1) with experfcD(SQRT2*c1) to expand the input domain.

Modifications for version 2.18 (released 1/6/11)

- Fixed a small bug in molchangeident function. Before, panel data was retained for molecules that
desorbed to MSbsoln, whereas it should not have been.

157

Modifications for version 2.19 (released 2/11/11)

- Converted programmer’s documentation from Word to LaTeX.

- Changed build configuring so that Libmoleculizer is now disabled by default, but can be enabled using
the flag ——enable-libmoleculizer. Before, it was enabled by default, but could be disabled.

- Cleaned up and documented pthreads code that Nathan wrote in the smoldyn.h, smolsim.c, and
smolsurf.c files. More work is still needed for other files.

- Cleaned up simulatetimestep function, for slight efficiency improvements and better code.

- Renamed unthreaded functions from Nathan’s names, which included a “_unitary” portion of the name,
back to what I had before.

- Moved code for putting surface-bound molecules back on their surfaces from checksurfaces to
diffuse.

- Enabled surface collisions for surface-bound molecules. This involved adding the surface action data
structure, redesigning surface rate inputs and outputs, and redesigning surface action and rate indices.
It also involved lots of new functions in smolsurface.c.

- Wrote documentation section on the simulation algorithm sequence.

- Improved surface and surface superstructure allocation so that they can be called more than once and
the max_surfaces statement is no longer required.

- Modularized code in smolsurface.c, so that all statements recognized by srfreadstring now call
functions rather than assigning directly to data structures.

- Swapped positions of PFnone and PFboth in the enumeration definition (from 3 and 2, respectively, to
2 and 3, respectively). T don’t think this will cause problems, but I'm not certain.

- Added color words for all color inputs.

- Edited SimCommand.c to enable dynamic allocation for output files.
- Added and enabled append _file statement.

- Added ifincmpt and killmolincmpt commands.

- Added “~define” option for command line.

Modifications for version 2.20 (released 3/4/11)

- Fixed bug which causes crashes if species change at surface was to “empty”.

- Fixed a major bug, which caused Smoldyn to crash if it was compiled without threading support (this
included the Windows version).

- Threading is now disabled by default.

- Fixed a few define statement issues. Trailing whitespace after replacement text is no longer part of the
replacement. Multiple replacements no longer occur in the same piece of text (e.g. the AB of ABC is
replaced with DE, making DEC, and then the EC is replaced with FG to yield DFG). Finally, long
keys now take priority over short keys when both are able to match the same text.

- Added display_define statement.

158 CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 2.21 (released 3/11/11)

- Fixed bugs in Geometry.c for nearest triangle column and nearest triangle points.
- Trivial change to opengl2.c, so that it now displays the file name as the window name.
- Fixed rare bug in which line2nextbox couldn’t find a next box due to roundoff error.

- Enabled diffusion for surface-bound molecules from spherical or similar panels to neighboring panels
that happens when a collision occurs (new code in dosurfinteract).

- Increased the number of panel neighbors that can be entered on one line from 32 to 128.
- Improved but did not fix problem in checksurfaces where a molecule interacts with surface A and
when it is placed on the correct side of surface A it is inadvertently placed on the wrong side of surface

B due to round-off error.

- Improved SmolCrowd user interface.

Modifications for version 2.22 (released 3/22/11)

- Fixed a trivial mistake in opengl2.c that I created in version 2.21 that arose when compiling without
opengl.

- Worked on shared library compilation and hand-coded makefiles. Added libsmoldyn.c and libsmoldyn.h
to the Smoldyn source and added the libsmoldyn directory to the Subversion site and distribution.

Modifications for version 2.23 (released 6/24/11)

- Wrote most of libsmoldyn.h and libsmoldyn.c.

- Improved modularization and dynamic memory allocation for compartments.
- Improved modularization and dynamic memory allocation for ports.

- Added commands shufflemollist and shufflereactions.

- Fixed some minor bugs regarding jump panel display and error checking.

- Improved robustness and conciseness of molecule parameter display.

- Added display of time and molecule counts to graphics window.

- Cleaned up conditional compiling switching in opengl2.c and smolgraphics.c, so that each function only
has one opening line, which is the same for all configure options.

- Added default product placement type for bimolecular reactions with two products to RPpgemmaxw.
- Added commands ifflag, ifprob, and setflag.

- Removed the need for max_species and max_mol statements by implementing automatic memory
allocation for both.

- Added a simupdate call from simulatetimestep, which will take care of data structure changes that
commands cause.

- Fixed a minor bug in parse.c, Parse_ReadLine, for define statements that have no replacement text.

159

- Renamed, edited, and wrote several functions so that each module now has a function for updates,
and this updating function now calls separate functions for updating at the lists level and at
the parameters level. setupmols became molsupdate, molcalcparams became molsupdateparams,
setupboxes became boxesupdate, setupcomparts became compartsupdate, setuprxns became
rxnsupdate, rxnsetmollist became rxnsupdatelists, rxnsettimestep became rxnsupdateparams,
setupsurfaces became surfupdate, surfsettimestep became surfupdateparams, and setupports
became portsupdate.

- Checked entire code to make sure that data structure condition elements are modified correctly upon
system changes. With these changes, all system changes, performed either before or during simulations,
should trigger the necessary updates and thus take care of themselves.

- Edited Parse_ReadLine so that it now checks for lines that are too long and returns errors. Comment
lines are allowed to be any length.

- Improved rxnsetproduct so that it now sets unbindrad and prdpos to 0, rather than assuming that
they already were 0. Also, it copes better with conformational spread and other reaction types.

- Added checks for order 0 reactions with surface-bound products and no defined surface. Bug reported
by Christine Hoyer.

- Added command listmolscmpt.

- Fixed a bug in which reactions between surface-bound molecules and solution-phase molecules could
result in products that went to the wrong side of the surface. This involved changes to the panel
assignment of the reaction position, and the reaction position, in doreact.

- Added a margin to each panel, so that diffusing surface-bound molecules that need to get moved back
to panels that they diffused off of (or onto neighboring panels) no longer get moved to the exact panel
edge, but to distance margin inside of the panel edge. Adding this involved adding a margin element
to the surface superstructure, adding a margin statement, adding the surfsetmargin function, and
adding margin parameters to movept2panel and movemol2closepanel.

Modifications for version 2.24 (released 7/27/11)

- Modularized graphics input, so all assignments are now made in smolgraphics functions rather than
directly in simreadstring.

- Added basic graphics support to libsmoldyn.

- Edited unireact so that it now tests for reaction probability first, and also it tests for compartments
and surfaces independently. This version should be slightly faster than prior ones.

- Libsmoldyn now compiles as both a static and a dynamic library with the GNU autotools. This is
mostly from additions to Makefile.am in the source/Smoldyn directory.

- Lots of edits to configure.ac. This included some cleaning up, adding —enable-libsmoldyn option, and
removing search for pre-installed Libmoleculizer. I also added an option for —enable-swig, although
that will probably need modification soon.

- Added and implemented condition element in graphics superstructure.
- Moved most of the contents of smolsimulategl function into new graphics updating functions.
- Moved top level OpenGL functions out of smoldyn.c and into smolgraphics.c.

- Removed function declarations from smoldyn.h and put them in smoldynfuncs.h. This hides them
from Libsmoldyn users.

- Removed library dependencies from smoldyn.h.

160 CHAPTER 7. SMOLDYN MODIFICATIONS

- sim-jcmds is now a void* instead of a cmdssptr. This requires type casting in the code, but was
required to remove a Simcommand.h dependency from smoldyn.h.

- Removed GLfloat data types from the graphics superstructure to remove an OpenGL dependency from
smoldyn.h.

- Fixed all OpenGL data types in smolgraphics.c so that they will work even if, for example, GLdouble
differs from double. I have not fixed data types in opengl2.c yet.

- Status note: both Smoldyn and Libsmoldyn compile well with AutoTools. For Mac, this includes
all configure options, including with Libmoleculizer enabled. However, Libsmoldyn doesn’t seem to
actually work when it calls Libmoleculizer. With MinGW, both Smoldyn and Libsmoldyn seem to
compile well and install to the windows directory, although not with Libmoleculizer. The Libsmoldyn
build with MinGW is suffixed with .a; I don’t know if it’s supposed to have a .dll, nor how to create
such a thing.

- Added molcountspecies and mollistsize commands.

- Wrote release.sh shell script for releasing, including building pre-compiled versions for the Mac and
windows directories. Also wrote install.sh shell script for Mac version.

- Added simversionnumber and smolGetVersion functions.

- Got SWIG working for Python, although more work is needed in AutoTools stuff for SWIG code.

Modifications for version 2.25 (released 9/26/11)

- In configure.ac file, line 278, swapped sequence of a couple of lines. For version 2.24, the 3 lines starting
with "# This is probably redundant" were first and then the 2 lines starting with OPENGL_CFLAGS.
I swapped this sequence. See e-mail 9/13 with Pascal Bochet regarding compiling on Ubuntu.
Apparently, this change did not fix his problem, but instead he added “LIBS="-Iglut -1IGLU”” to
his ./configure line and that worked.

- Added functions surfexpandmaxspecies and rxnexpandmaxspecies, and also edited molenablemols
and rxnssalloc. This should fix bugs that arose when users added species without allocating memory
using max_species.

Modifications for version 2.26 (released 3/2/12)

- Added some support for species name entry using enhanced wildcards. This included new matching
functions in string2.c, a logic expansion function in string2.c, the function molwildcardname, additions
to many parameter setting functions, and additions to molcount. Support is fairly limited so far, and
needs to be added to lots of commands and reactions.

- Added simfuncfree function.

- Libmoleculizer is close to working fully, including returning correct reaction rates. Membrane-bound
states still pose problems. Also, checking has still been minimal.

- Fixed bug that made it impossible for excluded volume reactions to occur across periodic boundaries.
In the process, also slightly improved reaction location determination for reactions that occur across

periodic boundaries.

- Fixed a minor bug with define statement in which recursive defines sometimes got overlooked.

161

Modifications for version 2.27 (released 7/26/12)
- Merging in VCell changes.

- VCell people are now accessing Smoldyn code from hedgehog.thcrc.org server. They used my user
name on 4/10/12 but should be using their own user names from 4/11/12 onwards.

- Changed Smoldyn to Cmake. This conversion still needs substantial work. It needs Libmoleculizer,
it needs to compile SmolCrowd and wrl2smol, it needs to work with MinGW, and it needs to create
statically linked binaries that will work elsewhere.

- Changed all for loops over enumerated types to include explicit type conversions.

- Major work on error handling. Moved CHECK and CHECKS from individual files to smoldynfuncs.h.
Changed their definitions some and added CHECKMEM and CHECKBUG macros. The basic error
handling design is changed. Now, functions typically catch errors using one of the CHECK macros.
This writes an error string to the global variable ErrorString and sends control to the local failure
label. At this point, functions clean up as needed and call simLog to report the error. simLog may
throw an exception to higher up or may return. On the latter case, the function with the error passes
an error code up to its calling function. The calling function usually catches this error with CHECK
but does not report it with simLog because it has already been reported. As a result of this change,
functions no longer pass strings with error messages, but instead messages always transmit via the
global ErrorString function. The exception is for library functions, such as Parse.c.

- Replaced all printf functions in the core code with calls to simLog.

- Added triangle area function to geometry.c and replaced Ye Li’s function with a more numerically
stable one.

- Improved initial window placement in opengl2.c (Jim Schaff’s change).
- Changed char* to const char* for C++ compatibility in: boxsetsize and lots of other functions.

- Added a strict parameter to the panelside function to fix bugs that arose from coincident panels
that face in opposite directions.

- Changed molecular desorption from surfaces from a simple change in molecule state and position, to
a killing of the original molecule and a creation of a new molecule with the correct new parameters.
This causes the desorbed molecule to be checked for further surface crossings with the other reborn
molecules, which prevents it from leaking out of the system in case it desorbs across a surface. Also,
changed surface checking for reborn molecules so that all reborn molecules are checked and not just
those that can undergo reactions.

- When existing molecules are replaced by new ones, which occurs now in desorption and also in bounce
reactions and conformational spread reactions, they now keep their serial numbers and their posoffset

vectors.

- Added support for molecular drift that is relative to the local panel orientation. This included the
surfdrift part of the molecule superstructure and all of its setting, allocating, freeing, and functioning.

- For bounce type reactions, added a default behavior where the unbinding radius isn’t fixed but is the
binding radius plus the amount of overlap between the two molecules, when they were collided.

- Added a precision to the numerical output for commands.

- SCMDCHECK was changed to accept a format and message string, rather than just a static message.

162

CHAPTER 7. SMOLDYN MODIFICATIONS

- VCell group added lots of stuff to compartments. In particular, it can now use volume sampling to

determine what fraction of each box is in which compartment, rather than testing random points. This
is vastly faster. compartmentIdentifierpair name is compartment name and pixel is the compartment id.
As part of this, VolumeSamples is struct in smoldyn.h. num|3] is size of grid on x,y,z. size[3] is the width
of each volume element on each dimension. origin[3] is the grid origin. volsamples is array with each
unsigned char equal to the compartment ID for the center point of that volume element. ncmptidpair
is number of possible compartments (maximum ID number + 1). This functionality is not available
in stand-alone Smoldyn. getcompartmentid is new function. posincompartment is rewritten. Lots
of new stuff is on top. Uses volumesamples method. compartupdatebox is rewritten, and now called
compartupdatebox_volumesample. VCell group added zlib dependency to unpack volume samples data.
Also added fromHex function and loadHighResVolumeSample function. They made lots of changes in
compartsupdateparams and added compartsupdateparams_volumesample.

- Added some error catching stuff to main.
- Added a separate VCell main
- Added a little stuff to sim struct.

- In retrospect, this release was okay, but the build system was far from adequate. It did not cross-compile

for Windows and the compiled version did not work on Mac OS 10.5.

Modifications for version 2.28 (released 8/28/12)

- Fixed a bug in morebireact, in smolreact.c, where molecule positions were moved to account for

periodic boundary wrapping, but the posoffset element was not updated.

- Added 1istmols4 command.
- Improved the build system. Now, zlib is not a standard dependency.
- product_placement can now be entered multiple times.

- Commands no longer output using fprintf, but now use scmdfprintf. This enables output using user-

chosen precision. It will also be useful for output from simulations to libsmoldyn, but that hasn’t been
added yet. Because of this change, there is a whitespace change in essentially all text output files. As
a result, the regression tests show that all files differ from version 2.27 to version 2.28. However, I went
through the files and verified that there are no other changes.

Modifications for version 2.29 (released 4/10/13)

- Fixed a minor bug in molismobile, in smolmol.c, which caused bugs for some species with surface

drifts.

- Surrounded most VCell code with conditional compiling statements, so it’s no longer part of standard

Smoldyn builds. The reason was primarily so Libsmoldyn could be C compatible.

- Various minor Libsmoldyn fixes (smolAddReaction was missing a check on product states, changed

default throwing threshold and debug mode behaviors, and added call to checksimparams to
smolDisplaySim).

- Improved CMakeLists.txt file for Libsmoldyn compiling.
- Fixed CMakeLists.txt file so that it now installs Python libraries for Libmoleculizer.
- Added several new colors to the color words that can be used, in smolgraphics.c.

- Added command called executiontime.

163
- Renamed rand_seed statement to random_seed, but left it backward compatible.

- Added extern ”C” stuff to libsmoldyn.h.

Modifications for version 2.30 (released 8/21/13)

- Fixed a bug in Geo_Cyl2Rect, in the Geometry library. It was causing leaking surfaces.

- Added function checksurfaceslimol, for checking surfaces after a molecule hits a port. This also
required minor changes in molchangeident, molkill, and surfinteract.

- Fixed a minor bug in surfaddpanel that didn’t allow panels to be redefined.

- Changed the termination text because some users didn’t understand how to quit properly.
- Added meansqrdisp3 command.

- Added ifchange command.

- Added residencetime command.

- Changed license from GPL to LGPL to promote Smoldyn’s use in other software. In particular, VCell
can’t use Smoldyn under the GPL license. Also, I think that NSF and other funding agencies prefer
LGPL.

Modifications for version 2.31 (released 9/9/13)

- Added command called setreactionratemolcount.
- Added a line to rxnsetproduct that enables product setting even if the reverse reaction has rate 0.

- Modified command meansqrdisp3 so that it weights diffusion coefficients based on molecule lifetimes
and also so it works with all states of a species.

Modifications for version 2.32 (released 8/29/14)

- Overhaul of wildcard support. This included work on the wildcard match and substitute functions
in string2.c, addition of pattern data structure components in the sim-;mols superstructure,
addition of some pattern handling functions including molstring2pattern, molpatternindex,
molstring2index1, and memory allocation functions for patterns and pattern lists, a rewrite of the
molcount function, and implementation of wildcards in simreadstring. This task is not complete yet;
see below in the wish/ to do list.

- Added lattice support by merging nsv branch into trunk. The following functions are new and
some of these still require documentation: smolemd.c: cmdwriteVTK, cmdprintLattice, edits to
cmdmolcount, cmdmolcountspace, cmdsavesim; libsmoldyn.c: smolAddLattice, smolGetLatticelndex,
smolGetLatticelndexNT, smolGetLatticeName, smolAddLatticeMolecules, smolAddLatticePort,
smolAddLatticeSpecies, smolAddLatticeReaction; smolport.c: portgetmols2, portputmols2; all of
smollattice.c; smolsurface.c: checksurfaceslmol; smolgraphics.c: RenderMolecs.

- Documentation was partly updated but both docl and doc2 still require many updates.
- Substantial editing of CMakeLists.txt file and release scripts.

- Added BioNetGen to Smoldyn utility programs. They still need work, but they’re incuded in the
distribution now.

164

CHAPTER 7. SMOLDYN MODIFICATIONS

- Removed Libmoleculizer, pthreads code, and the last vestiges of the AutoTools build system. None of

these things ever worked quite as intended, so they were removed to clean up the code.

- Improved “bounce” reactions so that they now enable simulations of cluster formation.
- Wrote and added SmoldynQuickGuide to the Smoldyn documentation collection.

- Fixed a minor bug that recorded periodic boundaries in boxes even when surfaces were defined. This

led to surface leaking.

- Fixed a minor bug in which the “keypress” command would cause crashes if the simulation was run

without OpenGL support.

Modifications for version 2.33 (released 10/9/14)

- Fixed a minor but important bug in changemolident.
- Made input names UK English compatible.
- Fixed typos in the QuickGuide.

- Updated all example files, so they no longer use reaction blocks and they don’t use static memory

allocation with max_ statements.

- Fixed a bug in which desorbed molecules could cross surfaces without detection.

- Added cmdtrackmol function.

Modifications for version 2.34 (released 1/8/15)

- Nearly complete BNG conversion code.
- Added lattice code to default (pre-compiled) distribution.
- Fixed several small bugs.

- Changed lattice code so that molecules from continuous space to lattice space only get placed into first

subvolume. This leads to more accurate diffusion results.

Modifications for version 2.35 (released 4/23/15)

- Fixed substantial bugs in rxnsetrate and rxncalcrate, in smolreact.c. The bug was that unimolecular

reactions that had multiple reaction channels (e.g. A — B and A — C) computed the conditional
probability (the probability of reaction given that the prior reactions did not happen) for the second and
subsequent reactions incorrectly. This was only a problem with relatively high reaction probabilities.

Modifications for version 2.36 (released 6/9/15)

- Fixed a bug in doreact in which bounce reactions did not work when both reactants had exactly the

same locations.

- Changed the default graphic iteration value from 1 to 20.

- All output commands now flush the output buffer after the command is done.

165
Modifications for version 2.37 (released 10/7/15)

- Fixed a bug in parse.c in which global definitions weren’t being passed to upstream files.
- Added a check at the cmd statement to make sure that simulation times have been entered.

- Fixed a bug in which surface-bound molecules diffused onto new panels incorrectly. This required
quite a lot of work including many new functions in Geometry.c (all of the exit functions and several
new triangle functions), a new function in Sphere.c (Sph_RotateVectWithNormals3D), expansion of
the panel points elements to include edge normals, and lots of work in smolsurface.c. This work
included: a complete rewrite of movemol2closepanel, additions to surfaddpanel, movept2panel,
closestpanelpt, and the new lineexitpanel and paneledgenormal functions. I think all bugs are
fixed but if not, see debugging advice in movemol2closepanel. One result of this fix is that surface-
bound molecules that diffuse onto a panel that has a jump action no longer jump when that happens.
That feature was added for Hugo’s work, but I'm removing it at this point because I think there are
better ways of accomplishing the same thing.

- Added reaction_serialnum statement and implemented it. This involved a small amount of code, mostly
in smolreact.c.

- Added reaction_log and reaction_log_off statements and implemented them. This mostly involved a
fairly small amount of code in smolreact.c. Also, I started a new library file called List.c for this.
This addition, and the reaction_serialnum addition, should make it much easier to do particle tracking
simulations.

Modifications for version 2.38 (released 10/22/15)

- Added line to cmake file to enable building for Macs with OS 10.5 or above.

- Changed boundaries statement to allow 'x’, 'y’ and 'z’ inputs for dimension values. Same change to
low_wall, high_wall, panel rectangle, and some commands.

- Added updategraphics command.
- Added quit_at_end statement.

- Improved product_placement so that it now checks product states and it allows the user the specify
products with “product_n”.

- Fixed minor bug in parse.c that required all lines to end with
n, which didn’t work if there was an end of file within the line.

- Fixed minor bug in simParseError that didn’t return an error if a file wasn’t found.

- Changed sim-jcmds from a void* to a cmdssptr. I have no idea why it was a void* before.
- Improved reaction logging output by changing from fprintf to scmdfprintf.

- Edited scmdfprintf to allow for NULL cmds input.

- Edited closestsurfacept to allow for a box input.

- Fixed bug in doreact which occurred when the reactants were bound to two different panels, and
the reaction occurred in yet a third panel. Also, substantially cleaned up doreact, RxnSetRevparam,
and rxnsetproduct to make code clearer, more consistent, and generally better, and to improve
documentation. Now, confspread and bounce reactions can have any number of products. Also, bounce
reactions now measure the vector from the reaction position rather than from the center between the
two reactants (typically the same, but not for curved surfaces). I suspect that bounce reactions are
now as good as they can be made, within the limitations of the basic algorithm (e.g. only one bounce
per time step).

166

CHAPTER 7. SMOLDYN MODIFICATIONS

- Fixed doreact so that reaction products that are surface-bound get moved to the surface right away.

- Changed parse.c so that Smoldyn can read Mac and, hopefully, Windows files without them needing

to be converted to Linux format first.

- Added systemcenter function to smolwalls.c.

- Added expandsystem command and surftransformpanel, as first steps towards having moving

surfaces. They work ok (at least the parts that I tested), but the lack of panel distortion with anisotropic
expansion means that molecules can escape across surfaces in some cases.

- Added fixmolcountrange, fixmolcountrangeonsurf, and fixmolcountrangeincmpt commands.

- Added intersurface reactions, including the reaction_intersurface statement, the

RxnSetIntersurfaceRules function, and implementation in morebireact and doreact.

- Fixed a minor bug in smollattice.c which arose when surface panel definitions were changed in version

2.37.

- Fixed bugs in doreact that caused surface-bound molecules in bounce type reactions to jump between

surface panels. This was caused by incorrect setting of the new panel value.

Modifications for version 2.39 (released 1/15/16)

- Fixed a bug in Geo_NearestTrianglePt2, which led to incorrect answers for points that were outside

of the triangle. This fixed a bug that was detected in S7_surfaces/surfacediffuse/simple3a.txt.

- Added cmdmolcountspaceradial function.

- Made several very minor modifications requested by VCell. Mostly, changed #if OPTION_VCELL to

#ifdef OPTION_VCELL, but also changed use of NAN and INFINITY.

- Added a check to surfupdatelists so that the SMLdiffuse flag is not set if all molecule-surface

actions are “no” or “transmit” and there are no other details of interest. In other words, this prevents

surface checking if there are no surface actions to check for.

- Modified reassignmolecs, from smolboxes.c, to make it much faster. Before, if a molecule needed

to move boxes, this searched through the current box’s molecule list for the molecule, which it then
removed. Now, the same routine is used if only reborn molecules are assigned but otherwise this clears
all box molecule lists and assigns them from scratch. This is vastly faster if boxes have lots of molecules
in them.

- Fixed minor bugs in meansqrdisp, meansqrdisp2, and meansqrdisp3 which did not allow

computations for all axes.

Modifications for version 2.40 (released 3/22/16)

- This is somewhat of a beta release, since a lot of things have changed and not all are documented or

fully tested.

- BioNetGen support now works.

- Improved install for Mac slightly and Windows substantially.

- Added support for wildcards and formulas in essentially all statements and commands.
- Added “csv” output format and implemented it.

- Added " operator to strmatheval function.

167

- Edited molpatternindex and added moladdspeciesgroup function. Also implemented this with the
new species_group statement.

- Added species groups.

- Added wildcard reaction expansion, including several new parts to the data structures.

- Removed readmolname and molwildcardname functions.

- Added molgeneratespecies function.

- Modified graphicsenablegraphics trivially so that graphics are not enabled by default.
- Improved graphics so surfaces in 3D now allow combinations of polygon values.

- Added molcountspacepolarangle command.

- Fixed several bugs in surface-bound molecule diffusion.

- Started updating the user’s manual, but there’s much more to be done.

Modifications for version 2.41 (released 4/8/16)

- Fixed a trivial bug that caused crashes.

- Added a “Getting Started” chapter to the User’s Manual and reformatted the whole manual.
- Added molecule-surface interactions for new species to the BioNetGen code.

- Fixed a bug in molkill calls in commands which prevented molecules from being killed.

- Added an improved bounce reaction algorithm, for ballistic reflection.

- Improved the Windows installation script. It might not work yet, but it’s probably closer.

Modifications for version 2.42 (released 4/29/16)

- Added command for radial distribution function, also including a boxscan function.

- Fixed bugs in excluded volume reacions, so they now work with periodic boundaries and have been
thoroughly validated.

- Modified all listmols commands so that they now output molecule serial numbers. This causes all
of the regression tests to report a different behavior, but that’s because of the expanded output, not
different simulation results.

Modifications for version 2.43 (released 5/18/16)

- Renamed Smoldyn_docl to SmoldynUsersManual, and split Smoldyn_doc2 to SmoldynCodeDoc and
LibsmoldynManual.

- Fixed excessive include files for Libsmoldyn. Also fixed some bugs in Libsmoldyn. It now works for
the test files.

- Added gaussiansource and molcountspace2d commands.

168

CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 2.44 (released 6/27/16)

- Added reversible reaction definitions. In the process, moved reaction parsing to the new function

rxnparsereaction and added function molreversepattern.

- Fixed release.sh slightly so that freeglut.dll is included in the windows release.

Modifications for version 2.45 (released 7/15/16)

- Fixed bugs in equilmol and modulatemol where they returned the wrong probabilities. These were

caused by the change to using molscan in version 2.40.

- Fixed minor bug in molreversepattern that causing compiling errors on Red Hat Linux.
- Renumbered User Manual chapters to re-align them with the example file directories.
- Fixed a bug in strmatheval that read 27-3 as a binary - sign when it should be a unary - sign.

- Fixed a bug in nsv_print in which it could only print to a fixed size buffer. It now allocates the buffer

as needed.

- Added some checks to the lattice code to ensure that lattices have an integer number of compartments

on each axis, that ports are at compartment boundaries, and that there is at least one compartment
on either side of the port.

Modifications for version 2.46 (released 7/30/16)

- Added section S94_archive to the examples files. It currently has files for my 2016 Bioinformatics

paper.

- Added multiplicity element to the reaction structure and implemented it. As part of this, added a

“reaction_multiplicity” statement to the input format.

- Major overhaul of molpatternindex. As part of this, it now has 2 levels of updating.
- Overhaul of RxnTestExist.

- On-the-fly wildcard expansion is now truly on-the-fly so that it expands around individual species

as they are populated rather than expanding one entire level at a time. Added several files to the
regression tests that all agree with the BioNetGen expansion, making them validated models.

Modifications for version 2.47 (released 8/30/16)

- Added a new rules section to the code. This includes a rules portion of the data structure, the

smolrules.c file, and functions in that file. In the process, I removed rules from the reaction
superstructure. I also replaced the RxnAddRule and RxnExpandRules functions with RuleAddRule
and RuleExpandRules functions. This is a cleaner design and should accomodate diffusion and other
rule types.

- Added rules for molecule properties. These include for diffusion coefficients, diffusion matrices, drifts,

surface drifts, molecule lists, display sizes, colors, surface actions, surface rates, and internal surface
rates.

- Added a reaction template to the rule structure so now reaction modification statements, such as

product_placement, can write to this template. The relevent portions of the template are then copied
over when the rule is expanded.

169

- Expanded readrxnname so that it now returns reactions with the given name, rules with the given
name, or reactions that start with the given name. Also, implemented this so that reactions entered
with wildcards, whether rules or not, can be modified using reaction modification statements.

- Added molcountspecieslist command.
- Made the text_display statement functional with rules.

- Fixed bugs in strEnhWildcardMatchAndSub so that it now works with empty pattern or destination
strings and also does one to many, many to one, zero to many, many to zero, many to many, etc.

- Updated a lot of commands so that if they request a species name and it doesn’t exist, but there are
reaction rules, then this isn’t an error. Instead, an implicit assumption is made that the species will
exist later on.

- Fixed bugs in reaction logging.

- Fixed a compiling bug in smolmolec.c in which const char* was being converted to char* in a strchr
function.

Modifications for version 2.48 (released 11/16/16)

- Fixed a minor bug in strmathsscanf.
- Added several example files in archive directory for Bioinformatics and MMB papers.
- Fixed bug in latticeaddmols.

- Added requirement that ‘dim’ has to be entered before reactions because not doing this causes crashes.
It’s likely required before other things, but I didn’t modify others.

Modifications for version 2.49 (released 2/17/17)

- Fixed bugs in molcount and molcountspace commands that arose if lattice species didn’t align with
Smoldyn species.

- Made it an error to call the reaction_log statement multiple times with the same reaction and different
filenames. Previously, this was allowed and new filenames overwrote the old ones, but this behavior
was confusing because it seemed as though there should be multiple output files.

- Wrote SmolEmulate, including 2D emulation code. This is not integrated into Smoldyn yet and is not
ready for general release.

- Added cmdtranslatecmpt and cmddiffusecmpt commands. In the process, wrote several new
functions for surface, panel, and compartment moving. Also, surfaces now have a list of their membrane-

bound molecules.

- Added function parsing to string2.c, so Smoldyn now recognizes sqrt, sin, cosh, etc.

Modifications for version 2.50 (released 2/27/17)

- Added infrastructure for Smoldyn functions. This involved the command cmdevaluate, the functions
fnmolcount, molscanfn, loadsmolfunctions, and others. Also renamed molscan to molscancmd]|.

170

CHAPTER 7. SMOLDYN MODIFICATIONS

- Added oldpoint and oldfront elements to surface panels. Now, when a panel is moved, the old

location (oldpos) is stored in these old elements and the new ones are updated. Then, molecule
adjustment is determined using the correct combination of old and new locations. Molecules still cross
surfaces incorrectly if they get squeezed between a moving surface and a static surface (or two moving
surfaces), but this is unavoidable. Several functions now include an oldpos input to see if the function
should use the old or new panel positions.

- Added if command.
- Added molcountonsurf function.

- Added a moleculetouch element that records each time the molecules were touched. It lets functions

not recompute if the touch value is the same as it was during a prior call.

Modifications for version 2.51 (released 3/15/17)

- Fixed a bug in which surface-bound molecules could leak through another surface. The problem was

that the surface-bound molecule code was designed with relatively large panels in mind, and is generally
exact for those panels, when they are planar. However, small panels are more complicated. As a result,
I added the pnlx element to the molecule structure to keep track of the prior panel. Also, I changed
the reflection algorithm in dosurfinteract so now the back-up plan in the case that reflection does
not place the molecule on the correct side of the reflecting panel is to put the molecule back where
it started from. The prior back-up plan was to fix the molecule to the correct side of the reflecting
surface, but this made the system extremely sensitive to any future molecule adjustments. I also added
the fixpt2panelnocross function which fixes a point to a panel but doesn’t cross any other panels
in the process. The final result works well, but it is still conceivable to have molecule leaks in rare
situations.

Modifications for version 2.52 (released 5/16/17)

- Martin Robinson fixed a minor bug in smolcmd.c that had to do with the lattice code.

Modifications for version 2.53 (released 5/25/17)

- Fixed minor bugs in smolcmd.c that had to do with the lattice code. Part of the version 2.49

modifications was that I “fixed bugs in molcount and molcountspace commands that arose if lattice
species didn’t align with Smoldyn species.” However, I now think the code was correct originally (at
version 2.48) and that these changes for version 2.49 were incorrect. Martin effectively reverted one
of them in molcountspace for version 2.52. I just finished that reversion and also reverted the one in
molcount. Now, that portion of the code is identical to how it was in 2.48 and it seems to run well. I
still don’t know what prompted me to make these changes in the first place.

- Documented some of the nsvc.cpp functions.

- In strloadmathfunctions, which is in string2.c, the code now assigns function pointers to variables

before sending them off to strevalfunction. This provides the context that C++ compilers need to
determine which address to choose for the functions because their names are overloaded.

Modifications for version 2.54 (released 8/27/17)

- Added a line to molpatternindex that sets the PDrule element of the index variable if update is

requested, index already existed, and the element wasn’t already set. The only thing this does is to
prevent a bug warning in the output.

171

- Fixed two small bugs in lineXpanel for sphere and cylinder crossing checking. These failed if the two
points were the same because then the geometry function returned NaN and then that failed the test.
The solution was to move to negative logic so that NaN would have the correct result. These failure
arose because I changed to fixpt2panelnocross and that checks for lines crossing panels, often with the
same beginning and ending points. Added surfacedrift2 and 3 to the regression files because these were
the ones that failed.

Modifications for version 2.55 (released 7/16/18)

- Added a ‘time’ option to the random_seed statement for setting the value to the current time.
- Added math functionality for command timing.

- Trivial improvement to wall output dimensions from numbers to letters.

- Wrote bindingradiusprob and numrxnrateprob functions in rxnparam.c.

- The MinGW build system that I've been using for years (/opt/local/bin/i386-mingw32-gcc) quit
working because I did a Mac OS upgrade last summer which somehow killed it (the upgrade was
after Smoldyn 2.54 was released). After lots of effort, I found a MinGW version that was precompiled
for Mac (an older OS, but that doesn’t seem to matter), which I installed. It seems to work well. It’s at
Jusr/local /gce-4.8.0-qt-4.8.4-for-mingw32 /win32-gee/bin /i586-mingw32-gee. I updated the Toochain-
mingw32 file for this change.

- The Windows install wasn’t working because the BioNetGen directory was called bin rather than
BioNetGen. I think that’s fixed by now.

- Added several lines of code to the adsorb section of dosurfinteract so that surface-bound molecules that
adsorb onto a new surface end up on the correct side of the original surface, as well as on the correct
side of the new surface. In particular, molecules starting in the up or down states end up equally
distributed above and below the original surface.

- Largely rewrote molsetlistlookup so that it now sets the table for both MSsoln and MSbsoln. This
change also required expanding the listlookup element slightly in the memory alloction function to
allow for the MSbsoln option. The listlookup values are always set to the same lists for both solution
phase options. As another part of this change, molismobile now allows for a MSbsoln input.

Modifications for version 2.56 (released 9/18/18)

- Fixed a bug that arose when the system was expanded and then some molecules were killed. System
expansion triggered boxupdateparams which then removed molecules from boxes but didn’t clear the
mptr-;box value and then boxremovemol crashed due to the molecule not being in the box. Fix
involved allowing for molecule not in box in boxremovemol and not adding dead molecules to boxes
in boxupdateparams. In the process, I discovered that molecule assignment may be done more often
than necessary.

- Removed a call to molsort from cmdgaussiansource. I'm fairly certain it was unnecessary, and tests
showed that it still worked without it.

- Lots of struggles with MinGW. The version at /usr/local/gce-4.8.0-qt-4.8.4-for-mingw32/win32-
gce/bin/1586-mingw32-gee didn’t work. I got it with MacPorts but that didn’t work either. Yet more
versions also didn’t work. I finally killed off all of them and tried fresh. Solved MinGW compiling but
not with LibTiff, which remains to be solved. See the MinGW cross-compiling documentation section.

- The MinGW compiler is more strict and found several minor bugs. Fixed some of them, but there are
still possible string overwrite and truncation issues that it complains about.

172

CHAPTER 7. SMOLDYN MODIFICATIONS

- Implemented most of lambda-rho algorithm. As part of this, I did a lot of work on the SmolEmulate

utility, computed reaction rate lookup tables for non-unit reaction probabilities, debugged the
numrxnrateprob and bindingradiusprob functions, and then updated all calls to numrxnrate and
bindingradius to these probabilistic functions. These updated functions call the original functions
in the usual case that the reaction probability is 1. The functions in rxnparam.c are generally good
now, but still not quite perfect.

- An another part of lambda-rho, added the input file statement “reaction_chi” and implemented it.

This addition seems to work reasonably well, but Smoldyn isn’t always able to align the simulated and
requested reaction rates yet. In particular, it has trouble with the pgem, pgemmax, and pgemmaxw
reverse parameters.

Modifications for version 2.57 (released 3/21/19)

- Moved Smoldyn source from the Fred Hutchinson Center’s “hedgehog” subversion server to github,

where it is called “Smoldyn_Official”.

- Fixed minor bugs in cmdwriteVTK that caused compiling errors when compiling with OPTION_VTK

turned on.

- Added support for scientific notation in string math parsing.

- Added option for species change upon surface action. Example is

s7_surfaces/ReflectToNewSpecies.txt.

- Major change with serial numbers to enable single molecule tracking where two molecules can bind

together and retain both serial numbers and then dissociate and have their original serial numbers.
Changed molecule serial numbers to unsigned long long, but left most other serial number values
as long int.

Modifications for version 2.58 (released 3/29/19)

- Fixed minor bug in string2.c that caused loss of numerical precision when using strmathsscanf.

- Changed the serial number coding for single-molecule tracking some, which also had some effects on

the user’s input format.

- Fixed important bug in molscancmd which caused it to scan over some molecules twice in some cases.

For example, if called from cmdkillmolprob, this would test molecules twice to see if they should be
killed, leading to incorrect kill probabilities. The problem was that some commands change the sortl
elements, making them bad things to assume aren’t changing.

- Added replacemol command.
- Re-released 4/2/19 with following changes:

- In CMakeLists.txt, I changed the minimum deployment for Mac from OS 10.5 to 10.9. This removed

a compiling warning about libstdc++ being discontinued.

- Copied libstde++-6.dll from /opt/local/x86_64-w64-mingw32 to Smoldyn-official/windows. Also,

edited the windows install.bat file so that this dll is copied when Smoldyn is installed. This will
hopefully fix an error that Kevin Chen told me about.

173
Modifications for version 2.59 (released 5/15/19)

- Trivial changes to the code to remove compiler errors and warnings.

- Major effort to compile for Windows. I failed at getting cross-compiling working and actually made
it worse by replacing a cross-compiler that worked for non-graphics Smoldyn to one that didn’t work
at all. Instead, I now compile by hand on a Windows computer. This still doesn’t support LibTiff or
NSV but at least it does work.

Modifications for version 2.60 (released 6/7/19)

- Further improvements on Windows support. This release now builds SmolCrowd and wrl2smol on a
Windows computer. It also uses static linking so that dll files aren’t needed. I also improved the
Windows install script.

- Modified the BNG2_path statement so that it now reads the entire line of text after the statement
word rather than just the first word in the line, thus allowing for spaces in file names.

- Fixed a trivial bug for the “stipple” statement, which was trying to read hex code with the math
parser.

Modifications for version 2.61 (released 7/22/19)

- Rewrote boxscansphere, which is called by the commands radialdistribution and radialdistribution2.
This function only worked for systems that had their low corner of space at (0,0,0) and that used
periodic boundaries. Now, it works for all systems.

- Fixed a very minor bug in Geo_CylisXaabb3, in which the code didn’t check for a zero denominator,
although I don’t think this actually affected results at all.

- When boxes determine what panels are in them, the edge boxes used to extend to =MAX_DBL. However,
this caused problems in some geometry functions, so I defined a new global variable called VERYLARGE,
which I set to 102°, which is now effectively the edge of simulated space, at least for determining what
panels are in what boxes.

Modifications for version 2.62 (released 10/14/20)

- Extended the pointsource, volumesource, and gaussiansource commands so that they now allow non-
integer numbers of molecules to be requested. If a non-integer value is requested, these functions choose
a Poisson-distributed random number of molecules.

- Windows version is now compiled with MSVC and includes support for hybrid simulation with NSV
package and saving images with LibTiff.

- Added Python support, which was mostly Dilawar Singh’s work. This includes the pybind11 library
and new Python code. The pre-compiled Mac version now comes with a Python wheel. The Python
wheel can also be downloaded from PyPI with pip. This also included substantial editing of the
Libsmoldyn documentation.

- Substantial CMakeLists.txt clean-up, along with updates to the build system documentation.

- Cross-compiling from Mac to Windows with MinGW works again, but not with graphics, so this was
used for the SmolCrowd and wrl2smol utilities, but not for Smoldyn.

- Dilawar added several things that I haven’t addressed yet: Travis continuous integration, Doxygen,
readthedocs website compatibility, and several scripts.

174

CHAPTER 7. SMOLDYN MODIFICATIONS
Modifications for version 2.63 (released 12/15/20)

- Documented Dilawar’s work on Python bindings in code documentation and Libsmoldyn manual.

- Dilawar added test for SMOLDYN_NO_PROMPT environment variable, which is essentially the same as

setting the sim->quitatend flag.

- I made lots of minor fixes in the Python bindings, including fixing the Python example files. Dilawar

made more fixes and also added many more Python example files.

- Dilawar added smolSetMoleculeColor, smolSetMoleculeSize, smolSetIntersurfaceRules to

libsmoldyn.

- Lots of changes by Dilawar to scripts, including particularly for documentation. He also fixed some

issues in the CMake build system.

- Dilawar added Python callback functionality. This includes a few minor changes in smoldyn.h, including

new code in the sim structure, and a short bit of code in simulatetimestep, in smolsim.c; this code
is in C++, so the file got renamed to smolsim.cpp.

- Dilawar made some minor changes in libsmoldyn.c smolGetPanelIndex and smolGetPanelIndexNT for

searching for a panel in a panel list. As part of the same changes, he added a C++ array to smoldyn.h.
These changed both files from C to C++. I don’t understand these updates.

- Added data tables to the command superstructure, so that output data can be stored internally

rather than only in external files. As part of this, wrote double-double list types in Lists.c, added
several functions to support data arrays in SimCommand.c, edited all observation commands to
work with the new function calls and also to enable data storage where possible, added statement
“output_data” and command “printdata”, edited reaction logging in smolreact.c, added Libsmoldyn
functions smolAddOutputData and smolGetOutputData.

- Fixed bugs in cmddiffusecmpt.

- Added maxmollist element to surface structure because memory management here was sloppy, which

led to errors.

- Fixed some bugs with reassignmolecs function. First of all, it’s now called as the system is set up,

before the simulation starts. Also, it now runs even if there is only 1 box, which is a little less efficient
in rare cases, but more reliable.

- Tried to get freeglut to work, without success.

- Added Chapter 15 to user’s manual on Python bindings.

Chapter 8

The wish/ to do list

8.1 Bugs and issues to fix

- The comparttranslate function isn’t written well for molecules that get squeezed. What’s needed is
to write a second version of checksurfaceslimol that explicitly accounts for surface motion, rather
than to just use this function, which is written for molecule motion, in the surface’s moving reference
frame.

- Surfaces now have lists of molecules adsorbed to them. The code would be faster if these lists were
used as appropriate, such as for checking the actions of surface-bound molecules.

- Smoldyn shouldn’t terminate if pattern or species name is over-length during on-the-fly expansion, but
ignore it and issue a warning.

- Should expand length from STRCHAR to STRCHARLONG for patterns because they are for reactions
too.

- The binding radius if time step is 0 output doesn’t account for surface-bound species.

- The unbinding radius if time step is 0 output doesn’t always work (it sometimes displays -2). This
may have been fixed for version 2.13.

- If time_now is not start time, then all commands from start time to current time get run. They
shouldn’t.

- Reaction molecule states should be improved. At present, rxnXsurface doesn’t allow, for example,
fsoln molecules to reaction with back molecules, but this is over-ridden in bireact. It would be better
to use the reaction permit array more effectively, and also to allow users to enter relative reactions,
such as same side, opposite side, surface-bound, etc.

- Excluded volume reactions do not work with periodic boundaries. Fixed for version 2.26. They also
don’t work with the meansqrdisp commands.

- Need to finish writing checksurfaceparams function. In particular: check probabilities, if panels are
wholly outside volume, and if jump panels source and destination panels are compatible.

- 3-D box cross testing, done in Geometry.c, isn’t correct for all shapes (triangles and disks in particular,
maybe others).

- Surface rendering still has some problems.

- If there are multiple reaction channels for a first order reaction and if the rate of one is set as a rate
while the rate of a later one is set with the probability, and then the simulation time step is then
changed by a command, then the reaction probability of the later one does not properly account for

175

176 CHAPTER 8. THE WISH/ TO DO LIST

the changed conditional probability of the first occurring. The solution is to add a data structure
element called probreq, for probability requested, and to then calculate the simulation probability
from this, so that the original user-entered information is never overwritten.

8.2 Desired features
Libsmoldyn

- Test libsmoldyn.

- Modularize commands.

- Libsmoldyn needs functions such as: smolGetMolCount, smolGetMolCountCmpt,
smolGetMolCountPort, smolGetMolCountSurf, smolGetMolPositions, smolGetNumSpecies, etc. Also,
matched functions smolGetMolecules and smolSetMolecules.

- Prefix all pointer inputs with const if the memory that they point to won’t be changed.

- Finish swigging for Python, and then swig for R and Octave.

Code acceleration

- There are lots of little tweaks that could be made to speed up the code. For example:

- Replace most if...else constructs in the core simulation code with switch

- Replace mol-;via with a local vector.

- Check for system dimensionality from 3 to 2 to 1, rather than in ascending order.

- Pre-compute and store the panel margin data with the panels rather than re-computing frequently.
- Unroll loops when possible, often creating separate code for 1D, 2D, and 3D.

- Try to replace division with multiplication and get rid of square roots and trig. functions, as possible.

Electrostatics

- Arnd Pralle wants Smoldyn to simulate electrostatic interactions. At first, I was thinking that this
would be a big pain. But then I realized that it’s actually just a very minor tweak of the bounce type
reactions. Instead of the product distance being some fixed distance or the collision distance plus the
overlap distance, the product distance should be a function of the overlap. For attractive interactions,
if the overlap is small, then the molecules get sucked in slightly, and if the overlap is large then they get
sucked in more. An issue to deal with is that there will likely be multiple reactions listed for the same
pair of molecules, and the right ones need to be executed at the right times. For example, there might
be electrostatic interaction at relatively long distances but also chemical reactions at short distances.

BioNetGen

- Need to finish groups stuff. More testing would be good, too.

Math

- Add functions that have parentheses, such as sin(x) and atan2(x,y). Also add a molcount function.

8.2. DESIRED FEATURES 177

Commands

- Commands need to be overhauled. They need to be modularized, they need to support wildcards, and
they need to be able to export data to Libsmoldyn.

- To commands, add an argument to the functions for data export by observation commands. I'm
thinking that this should be a data structure that includes a header, maxcolumns, ncolumns, maxrows,
nrows, and a data table. Also create a command adding function that Libsmoldyn can use to add
commands to the system, and also get data back from commands.

- Simple spatially separated macromolecular complexes. Karen wants to be able to model Tar-CheA
dimers, plus their interactions with their neighbors. My idea is to add a command which creates
a “child” CheA for each Tar molecule, which are the “parents”, and this CheA would have a fixed
offset position from the Tar. When this command is called later on, every child is moved to the fixed
offset value, thus causing the child molecules to always track their parents. This motion would ignore
surfaces.

- It should be possible to change single reaction rates during a simulation. It’s possible at present to
change the internal value for the reaction rate, but not more user-friendly values. I think this is now
possible in version 2.23 but I haven’t verified it yet.

- It would be nice if commands could communicate with each other. An idea for this is to establish a
bulletin board within the command superstructure, on which commands could post and read memos.
More generally, this could be expanded into an entire programming language if desired, although it
would take some thought on how to do it in the best way.

- A new runtime command for more versatile text output. Rather than having a pile of specialized
output commands, it would be nice to have something akin to a print statement, where any of a wide
variety of simulation variables could be printed with a user-defined format.

Distribution

- Sourceforge. The account has been set up but needs code, etc. Then, I should e-mail everyone who
might be interested to invite them to join the mailing lists.

- The Calibayes project might be a good place to integrate Smoldyn into, to enable parameter fitting.

- Need to improve Windows distribution. Write a batch file for installing. Note that the download
location appears to be %WUSERPROFILE%\ Downloads\smoldyn-2.xx-windows.zip. It should be moved
to %ZPROGRAMFILES%. Instructions: user needs to right-click the downloaded zip file, which will
normally be in C:\Users\your_name\Downloads, and then select ”Extract without confirmation” or
something else that extracts the zipped file into the current directory. Next, run the install.bat file.

Next step: Try to release again and test on Windows. To install on Windows, use notepad to edit the
install file, which opens a gui, then edit the destination directory to something that I don’t need admin
prvileges for. Mac stuff seems good now. Trying to get Windows good in all ways next, including with
BioNetGen.

For Windows, FROMDIR should be the current working directory. Also the DESTDIR thing doesn’t
work because it isn’t being substituted correctly.

- Smoldyn distribution should be made much easier. For example, distribute pre-compiled Mac software,
and add Smoldyn to MacPorts, Fink, etc. code databases. This has be done to some extent.

Core Smoldyn

- Add a surface panel shape called a holey sphere. This would be a sphere but with as many holes as
desired. It could serve as a neuron junction, the end of a dividing cell, etc. Another idea is to add a new
surface feature for holes. These could be added to spheres, cylinders, triangles, etc. The simplest hole

178

CHAPTER 8. THE WISH/ TO DO LIST

is a spherical hole; it says that the normal surface rules apply unless the molecule is within this sphere,
in which case the surface effectively isn’t there. This would be easy to define, easy to implement, and
efficient, but would be a challenge for graphics.

- Movable internal surfaces. Lots of people have asked for this collection of new features. At a minimum,

it should be possible to move surfaces using commands. Note that these moving commands should not
use absolute coordinates but relative ones; this is so a repeated command would cause continuous
motion. FEventually, surfaces should also move with diffusion coefficients, in response to specific
molecules, etc. Also, deformable surfaces. A tremendous amount of work could be done here and
would be very useful.

- Adaptive time steps.

- Check bimolecular reaction rates for surface-bound molecules.

Graphics and I/0

- Off-screen rendering would be very helpful. Two options seem most promising. (1) Off-screen rendering

with OpenGL. This requires a frame buffer object, which looks relatively straightforward but still has
some challenges. (2) Dump the data to a text file that can be post-processed by VMD (visualization
of molecular dynamics). For this, John Stone (VMD author) e-mailed me 3/31/11 to suggest that I
use the XYZ file format for the molecules plus a VMD script for the surfaces.

- A minor but helpful feature would be the possibility of graphing molecule concentrations at the bottom

of the graphics window.

- In loadsim, output_files, a file name that is identical to the config. file name should result in a

warning and ask user if it’s desired. (There is already a file overwrite warning, so this isn’t really
needed; it’s also a bit harder to add than it seemed it might be.)

- Keypress ‘i’ should enter interactive mode in which the user can type commands into the standard

input and they will be executed right away.

- There should be statements and Libsmoldyn functions for removing things from Smoldyn. Like

removing surfaces, surface panels, reactions, molecules, etc. Species removal would be harder.

Code improvements

- First order reactions would be more efficient with an event queue rather than a probabilistic likelihood

at each time step.

- I'think I see two ways to improve performance in checksurfaces: (1) instead of for (bptri=pos2box...),

do for(bptri=mptr->box,...). (2) End this same box loop when crossmin<?2.

- Speed for 3D systems can be improved by always checking for 3D first, rather than last.

- Various cleanups would be nice for reactions: (1) doreact could be streamlined slightly for order 2

reactions by precomputing z, (3) rxnss->table symmetry is performed by having separate identical
sides, but one side could just as easily point to the same data as does the other side, (5) allostery may
need improvement, (6) derive theory for non-one reaction probabilities, (7) implement unimolecular
equilibrium constant reactions in which the user just enters the reactants, the equilibrium constant,
and the time constant (which may be 0) and Smoldyn calculates transition probabilities.

8.2. DESIRED FEATURES 179

Major additions

- Fibers (such as DNA, actin, microtubules, MinD, FtsZ, etc.), fiber-bound molecules, etc. Also,
membrane-bound polymers would be nice.

- Intrinsic molecular parameters. In this idea, the user enters fundamental intrinsic molecular
parameters, and then Smoldyn calculates the model parameters from them. For example, the
user enters molecular weight, and the occupied membrane area for surface-bound molecules, and
Smoldyn calculates the diffusion coefficient from those things (see my diffusion coefficient rule-of-
thumb in the MMB paper and the Saffman-Delbruck equation in PNAS 1975). Also, the user enters
intrinsic reaction rates or activation energies, and ideal (short time step) binding radii, and Smoldyn
calculates reaction rate constants from them. Ideally, the user could also specify viscosities for different
surfaces and different compartments, and Smoldyn would adjust diffusion coefficients and binding radii
automatically. Christine (Le Novere group) has already written some code that may be relevant to
this idea. Having this feature would save the user from creating an explosion of molecular species for
the various molecular environments. However, it might slow the program down substantially to check
the environment for every potential dynamic aspect.

- Inclusion of continuous concentrations for chemical species that are abundant. Ideally, these
concentrations should be updated with ODEs, PDEs, spatial- or non-spatial Langevin dynamics, or
spatial- or non-spatial Gillespie algorithm, according to the user’s choice.

- Derive theory for bimolecular reaction rates with probabilistic reactions.

