
Libsmoldyn User’s Manual
for Smoldyn version 2.63

Steve Andrews

c©December, 2020

2

Contents

1 About Libsmoldyn 5

2 Use with Python 7
2.1 Installing . 7
2.2 Current limitations . 7
2.3 Python API example . 8
2.4 Callback functions . 10

3 Use with C/C++ 13
3.1 Compiling . 13
3.2 Linking . 14
3.3 Memory management . 14
3.4 Error trapping . 14
3.5 Error checking internal to libsmoldyn.c . 15

4 C/C++ and low-level Python API 17
4.1 Quick function guide . 17
4.2 Enumerations . 21
4.3 Miscellaneous . 22
4.4 Errors . 22
4.5 Sim structure . 23
4.6 Read configuration file . 24
4.7 Simulation settings . 25
4.8 Graphics . 26
4.9 Runtime commands . 27
4.10 Molecules . 29
4.11 Surfaces . 31
4.12 Compartments . 35
4.13 Reactions . 36
4.14 Ports . 37
4.15 Lattices . 38

3

4 CONTENTS

Chapter 1

About Libsmoldyn

Libsmoldyn is a C, C++, and Python interface to the Smoldyn simulator. Libsmoldyn is complementary
to the stand-alone Smoldyn program in that it is a little more difficult to use, but it provides much more
flexibility. In addition, Libsmoldyn provides: (i) an application programming interface (API) that will be
relatively stable, even as Smoldyn is updated and improved, (ii) function names that are relatively sensible
and that shouldn’t collide with other function names in other software, and (iii) reasonably thorough error
checking in every function which helps ensure that the user is using the function in a sensible way and in a
way that won’t crash Smoldyn.

Libsmoldyn was originally written as a C API, but one that should work with C++ as well. Then, in
2019 and 2020, Dilawar Singh added Python bindings to it, which are still quite new but generally work well.

5

6 CHAPTER 1. ABOUT LIBSMOLDYN

Chapter 2

Use with Python

2.1 Installing

It’s best to install Smoldyn twice. First, download the latest package from http://www.smoldyn.org and
run the install script. This will install the stand-alone program, the C/C++ libraries, and the BioNetGen
code, and will also give you the documentation and example files.

Next, install the Python components from PyPI with:

pip install smoldyn

If this doesn’t work, then a different possibility is:

python3 -m pip install smoldyn --user --pre

Either of these should install the smoldyn nightly package, from: https://pypi.org/project/smoldyn/.
For Windows, Python is often called “py”, so try this if the above doesn’t work (or your computer asks you to
download Python from the Windows store, which probably isn’t necessary). For those who are curious, the
“-m” option means to run pip as a python module, the “–user” option means to install to the user directory,
and the “–pre” option means to include pre-release versions. Feel free to try more or fewer options, of course.
Also, some other useful pip options are: “pip uninstall smoldyn”, “pip cache purge” (pip installs from its
cached version if it already has one, so this is useful if you want to force it to download the online version),
and “pip search smoldyn”.

Alternatively, the Mac distribution, downloaded from http://www.smoldyn.org/downloads/ comes with
a Python wheel, called something like smoldyn-2.62-py3-none-any.whl. After installing with the software with
the “install.sh” script, you should be able to write “pip install smoldyn...whl” and that will install it for you
as well.

After installing, it might just run. If not, then the next challenge is to get your system to know that
it’s allowed to run the files. There are a few ways to do this. (1) You can navigate to one directory above
where the “ init .py” file gets stored and work from there. To try this out, go there and start Python; then
try import smoldyn and see if it works. (2) You can set PYTHONPATH environment variable to the install
location. However, this only works for the current command-line session and needs to be reset for the next
one. To see its current value, for Mac or Linux, enter echo $PYTHONPATH. (3) You can modify your sys.path
variable to include a path to the install location, which then lasts for new command-line sessions as well. To
see its current value, start Python and enter: import sys; print(sys.path).

2.2 Current limitations

The Python interface has a few limitations that users should be aware of. We are working on fixing them.
Rule-based modeling. Rule-based modeling support, including both BioNetGen and Smoldyn

wildcards, has not been added to Libsmoldyn yet, including its Python API.
Hybrid simulation. Smoldyn has built-in support for multiscale simulation in which part of the model

volume is simulated with particle-based methods and part with spatial Gillespie methods. These parts are

7

8 CHAPTER 2. USE WITH PYTHON

typically adjacent to each other but can also overlap. This functionality has not been added to Libsmoldyn
yet, including its Python API.

Python quits after simulation if graphics are used. A particular benefit of running Smoldyn
through the Python interface is that the simulation and data analysis code can be included in the same
Python file. Unfortunately, Smoldyn displays its graphical output using the OpenGL glut library, which
never returns control to the calling program (Smoldyn) once it has been started. As a result, quitting
OpenGL leads to a termination of the Python session, so no further Python code gets run. The only good
solution for now is to display graphics while developing a simulation, and then re-run simulations with
graphics turned off when collecting quantitative data. Note that the random number seed can be set to the
same value in each case so that the simulation will be exactly the same.

TIFF output doesn’t work on some computers. For some reason, Smoldyn cannot output TIFF
files when run through the Python interface, at least on some computers. The Smoldyn code itself runs just
fine, but it calls the TIFFOpen function in the libtiff library, which somehow refuses to open a new TIFF file.
Alternative options for exporting graphics are: (1) rewrite the model without the Python interface, (2) save
the current model and state using the savesim command, and then run that using the stand-alone Smoldyn
software (i.e. the Smoldyn application, without the Python interface), (3) pause the simulation and capture
the graphics using a screen grab, (4) use the VTK graphical output option. Yet another option is to convince
a Smoldyn developer to add png export support for Smoldyn, such as with the “Tiny PNG Output” project,
which looks fairly easy but hasn’t been done yet.

2.3 Python API example

The following example, template.py, is from the examples directory in the Smoldyn download. It simulates
a Michaelis-Menten reaction in which substrates and products diffuse freely within a circular membrane (it’s
simulated in two dimensions, for simplicity) and enzymes are bound to the membrane.

1 """ Template for writing Smoldyn model in Python

2
3 Use standard docstring to list basic file information here , including your

4 name , the development date , what this file does , the model name if you want

5 one , units used , the file version , distribution terms , etc.

6
7 Enzymatic reactions on a surface , by Steve Andrews , October 2009. Modified by

8 Dilawar Singh , 2020. This model is in the public domain. Units are microns and seconds.

9 The model was published in Andrews (2012) Methods for Molecular Biology , 804:519.

10 It executes a Michaelis -Menten reaction within and on the surface of a 2D circle.

11 """

12
13 __author__ = "Dilawar Singh"

14 __email__ = "dilawars@ncbs.res.in"

15
16 import smoldyn

17
18 # Model parameters

19 K_FWD = 0.001 # substrate -enzyme association reaction rate

20 K_BACK = 1 # complex dissociation reaction rate

21 K_PROD = 1 # complex reaction rate to product

22
23 # Simulation starts with declaring a Simulation object with the system boundaries .

24 s = smoldyn.Simulation(low=[-1, -1], high=[1, 1])

25
26 # Molecular species and their properties

27 # Species: S=substrate , E=enzyme , ES=complex , P=product

28 # Type ‘help(smoldyn.Species)‘ in Python console to see all parameters .

29 S = s.addSpecies("S", difc=3, color=dict(all="green"), display_size=dict(all =0.02))

30 E = s.addSpecies("E", color=dict(all="darkred"), display_size=dict(all =0.03))

31 P = s.addSpecies("P", difc=3, color=dict(all="darkblue"), display_size=dict(all =0.02))

32 ES = s.addSpecies("ES", color=dict(all="orange"), display_size=dict(all =0.03))

33
34 # Surfaces in and their properties . Each surface requires at least one panel.

35 # Add action to ‘both ‘ faces for surface. You can also use ‘front ‘ or ‘back ‘

2.3. PYTHON API EXAMPLE 9

36 # as well. Here , ‘all ‘ molecules reflect at both surface faces.

37 sph1 = smoldyn.Sphere(center =(0, 0), radius=1, slices =50)

38 membrane = s.addSurface("membrane", panels =[sph1])

39 membrane.setAction(’both’, [S, E, P, ES], "reflect")

40 membrane.setStyle(’both’, color="black", thickness =1)

41
42 # Define a compartment , which is region inside the ’membrane ’ surface.

43 inside = s.addCompartment(name="inside", surface=membrane , point =[0, 0])

44
45 # Chemical reactions. Here , E + S <-> ES -> P

46 r1 = s.addBidirectionalReaction(

47 "r1", subs =[(E,"front"), (S,"bsoln")], prds =[(ES,"front")], kf=K_FWD , kb=K_BACK)

48 r1.reverse.productPlacement("pgemmax", 0.2)

49
50 r2 = s.addReaction(

51 "r2", subs =[(ES , "front")], prds =[(E, "front"), (P, "bsoln")], rate=K_PROD)

52
53 # Place molecules for initial condition

54 inside.addMolecules(S, 500)

55 membrane.addMolecules ((E, "front"), 100)

56
57 # Output and other run -time commands

58 s.setOutputFile(’templateout.txt’, True)

59 s.addCommand(cmd="molcountheader templateout.txt", cmd_type="B")

60 s.addCommand(cmd="molcount templateout.txt", cmd_type="N", step =10)

61
62 s.setGraphics(

63 "opengl_good", bg_color="white", frame_thickness =1,

64 text_display =["time", S, (E, "front"), (ES, "front"), P])

65 s = s.run(stop=10, dt =0.01)

1-11. The file starts with a docstring, which is a useful way to provide information about the model,
authors, etc. Smoldyn does not handle units at all, so it’s the user’s responsibility to make sure that all units
are consistent with each other. The best approach is simply to make sure that all lengths use the same units,
such as nanometers or microns, and all times use the same units, such as milliseconds. This also applies to
derived units, such as volumes and rate constants.

13-14. Entering the author and email address with double underscores follows good Python form.
16. Import the Smoldyn Python API with import smoldyn. If you want the low-level Python API, then

import it with import smoldyn. smoldyn.
18-21. This file defines some variables, which are just regular variables and not part of Smoldyn at all.

The file uses upper case variable names to stay consistent with the stand-alone Smoldyn example file with
the same name, but this isn’t really the best convention in Python.

23-24. All models start by creating a Simulation object, which includes the boundaries of the system
space. The dimensionality of the space, whether 1D, 2D, or 3D, is inferred from the number of boundary
coordinates given. Smoldyn actually tracks molecules outside of this volume, too, but it runs most efficiently
if most of the action in the simulation occurs within the system volume. It’s possible to create multiple
simulation objects if you want.

26-32. Add species to a simulation with sim.addSpecies. Each species is required to have a name. The
diffusion coefficient, given with difc, defaults to a value of 0, such as for the “E” species. The color, which
is only used for graphical output, can often be given with a simple assignment, such as color=’green’.
However, that’s not used here because these molecules can have multiple states, including in solution or
bound to the surface. Instead, the colors are specified here with dict() functions, showing that these colors
apply to all of the molecule states. Similarly, the display size argument is only used for graphical output,
and is given with dict() functions here because of the multiple states.

34-40. This model includes surface, called “membrane”. This surface is composed of one circular panel,
which is called a sphere here because Smoldyn names its panels based on analogous 3D shapes. The panel
is created first by defining its center and radius. The “slices” parameter refers to how many sides should be
drawn on the circle for graphical output, since Smoldyn doesn’t actually draw perfect circles. Internally, a
circle or sphere is defined using the mathematical definition of a circle or sphere, so it doesn’t have flat sides.
Each surface has a front and back face; for a spherical panel, as used here, the front face is the outside by
default. After defining the panel, the code defines a surface and the panel is added to it. Then, the surface

10 CHAPTER 2. USE WITH PYTHON

actions are defined, meaning what happens to molecules that diffuse into it. In this case, for both the front
and back faces of the surface, any molecule of the given list of species (which happens to be all of them) is
reflected back toward where it came from. Finally, the surface drawing style is defined, here showing that
both the front and back faces should be black and have a thickness of 1 pixel.

42-43. Compartments are regions of space that are bounded by surfaces, in this case “membrane”.
Also, they have “interior-defining points”, which define which side of the surface represents the inside of the
compartment.

45-51. Chemical reactions have names, substrates, products, and rate constants. Here, each of the
substrates and products are listed with both species and states, although states are assumed to be solution
if not given. Because the front face of a spherical panel is the outside, the fact that the substrates enter from
the back side of the surface is specified by specifying that they have “bsoln” states, meaning in solution on
the back side. The products are similar. For reversible reactions, there is always some probability that the
two product molecules of one of the reaction directions will diffuse back together and bind back together
again, which is called a geminate recombination. It’s not essential, but it’s good practice to tell Smoldyn
how likely this recombination should be. Here, it’s set to a maximum probability of 0.2, which generally
works well.

53-55. Add molecules to the simulation with the addMolecules function, where its used here both for
adding molecules into the compartment and onto the surface.

57-60. Run-time commands are used for manipulating or observing the simulated system as it runs,
effectively acting as the experimenter. In this case, an output file is declared, called “templateout.txt”.
Then, right before the simulation runs, given by command type ‘B’, the command called “molcountheader”
is run with parameter “templateout.txt”, which is the file name that it should write to. This prints out
a header for the molcount command, which is just a list of species names. The other command is type
‘N’, which means that it runs every n time steps, which is this case is every 10 steps. It is the “molcount”
command with parameter “templateout.txt”, which prints out the number of each molecule type to the same
file.

62-64. Smoldyn run-time graphics show the simulation as it runs, always using the OpenGL library.
Here, the “opengl good” method is used, which produces nice output but without any lighting effects. The
background color is white and the frame thickness is 1. Also, this statement says to show text on the graphics
window listing the time and numbers of the different molecule types.

65. Finally, the simulation is run, here for 10 time units in steps of 0.01 time units.

2.4 Callback functions

Python offers a callback function that enables Smoldyn setup functions to be called repeatedly and
automatically.

For example, suppose we have the following function, computeVm, which generates a noisy value using
the current time, t, and a list of arguments, args. Also, we have a molecular species, ca. The output of the
computeVm function can be connected to the ca.difc parameter, which is called every 10th step in this case.

def computeVm(t, args):

x, y = args

return math.sin(t) + x * y + random.random ()

...

import smoldyn

sim = smoldyn.simulation(low=[0, 0], high =[10, 10])

ca = sim.addSpecies(’ca’, difc=1, color=’blue’, display_size =1)

...

sim.connect(func = computeVm , target = ’ca.difc’, step=10, args =[1 ,2.1])

Both source and target in the connect function must be global variables. In the example below, a global
variable is made before it is used it in connect because otherwise there would be a runtime error.

import smoldyn

import random

a = None

2.4. CALLBACK FUNCTIONS 11

def new_dif(t, args):

global a

x, y = args

print(a.difc)

return t + random.random ()

def test_connect ():

global a

sim = smoldyn.Simulation(low=(0, 0), high =(10, 10))

a = sim.addSpecies(’a’, color=’red’, difc =1)

sim.connect(func = new_dif , target = ’a.difc’, step=10, args=[0, 1])

sim.run(100, 1)

print(’All done’)

test_connect ()

The following example shows that connect accepts a function.

def new_dif(t, args):

global a, avals

x, y = args

note that b.difc is not still updated.

avals.append ((t, a.difc["soln"]))

return x * math.sin(t) + y

def update_difc(val):

global a

a.difc = val

def test_connect ():

global a, avals

sim = smoldyn.Simulation(low=(0, 0), high =(10, 10))

a = sim.addSpecies(’a’, color=’black’, difc =0.1)

sim.connect(new_dif , update_difc , step=10, args=[1, 1])

sim.run (100 ,1)

for a, b in zip(avals [1:], expected_a [1:]):

print(a, b)

assert math.isclose(a[1], b[1], rel_tol =1e-6, abs_tol =1e-6), (a[1], b[1])

test_connect ()

Additional examples of connect are included in examples/S99 more/change env.py, which simulates a
pre-synaptic bouton with N synaptic vesicles. These vesicles fuse with the bottom of the bouton (red
surface). Upon fusion, one vesicle releases 1000 neurotransmitters which decay with time-constant τ . The
rate of release is controlled by a function that is set by connect. The function generates a spike 0 or 1; if
the value is 1, the rate is set to 1000, else it is 0.

12 CHAPTER 2. USE WITH PYTHON

Chapter 3

Use with C/C++

3.1 Compiling

Header files

To enable a C or C++ program to call Libsmoldyn, it has to include the Libsmoldyn header file. Libsmoldyn
comes with one header file, libsmoldyn.h, which has function declarations for all of the Libsmoldyn functions.
For most Libsmoldyn applications, this is the only header file that you will need to include. For Mac and
Linux, it is typically installed to /usr/local/include. This is one of the standard system paths, so include it
with

#include <libsmoldyn.h>

If the libsmoldyn.h header file is in some other directory or if your system isn’t seeing its path as a system
path, then include the file using double quotes rather than angle brackets and/or include more information
about the path. For example, #include ”/user/local/include/libsmoldyn.h”.

Libsmoldyn.h calls a second header file, smoldyn.h, which is also typically installed to /usr/local/include/.
If you plan to access the Smoldyn data structure directly, then you will also need to include it with
#include <smoldyn.h>. In general, it is safe to read from this data structure but it can be dangerous
to write to it unless you really know what you are doing. Also, working with this data structure directly
bypasses one of the benefits of using Libsmoldyn, which is that the interface should be relatively immune to
future Smoldyn developments, because different aspects of the internal data structure get changed once in a
while.

The smoldyn.h header calls yet another header file, smoldynconfigure.h, which is also installed by default
in /usr/local/include/. That file is automatically generated by the build system. It describes what Smoldyn
components are included in the build, what system the build was compiled for, etc. This might be helpful
to include for some applications.

Compiling example

In the examples/S97 libsmoldyn/testcode/ directory, you’ll find the testcode.c program. To compile this
source code to object code, enter:

gcc −Wall −O0 −g −c testcode.c

The compile flags -O0 -g aren’t necessary but can be useful for debugging purposes. If compiling
doesn’t work at this stage, it’s probably because you’re missing the header files. Make sure that you have
libsmoldyn.h, smoldyn.h, and smoldyn config.h in the /usr/local/include directory.

13

14 CHAPTER 3. USE WITH C/C++

3.2 Linking

Linking the different object files together to create an executable that actually runs is often one of the
greatest frustrations of using software libraries. It should be easy but usually isn’t.

The Libsmoldyn library can be linked statically, meaning that the Libsmoldyn code will be copied into the
final result, or it can be linked dynamically, so that the final result will simply reference the Libsmoldyn code
that is stored separately. Dynamic linking is somewhat more elegant in that it doesn’t create unnecessary
copies of the compiled code. It can also be easier. On the other hand, it’s less convenient if you plan to
distribute your software, because then you need to make sure that you distribute the Libsmoldyn header file
and library code along with your own software. Also, I can only get the gdb debugger to help find errors
within Libsmoldyn if the library is statically linked.

The Libsmoldyn static library is called libsmoldyn static.a and the Libsmoldyn dynamic library is called
libsmoldyn shared.so (on Linux; the .so suffix is replaced by .dylib on a Mac and by .dll on Windows). By
default, these libraries are installed to /usr/local/lib/.

Linking examples

Following are several example for static and dynamic linking. They are shown for C; if you use C++,
then link with g++ instead of gcc. The linking options for Smoldyn compiled with OpenGL are shown for
Macintosh; these lines are simpler for other systems.

I have had a hard time getting static linking working on a Mac, although apparently it works fine on
Ubuntu. The problem is that it doesn’t find the standard C++ library. The solution is to build the Smoldyn
library without NSV, so that the standard C++ library isn’t needed. I also commented out a few “throw”
statements from smolsim.c and libsmoldyn.c for this purpose.

Static link, no OpenGL:

gcc testcode.o /usr/local/lib/libsmoldyn static .a −o testcode

Static link, with OpenGL:

gcc testcode.o /usr/local/lib/libsmoldyn static .a −I/System/Library/Frameworks/OpenGL.framework/Headers −I/System/Library/Frameworks/GLUT.framework/Headers −framework GLUT −framework OpenGL −framework Cocoa −L/System/Library/Frameworks/OpenGL.framework/Libraries −o testcode −ltiff

Dynamic link, no OpenGL:

gcc testcode.o −o testcode −lsmoldyn shared

Dynamic link, with OpenGL:

gcc test1 .o −L/usr/local/lib −I/System/Library/Frameworks/OpenGL.framework/Headers −I/System/Library/Frameworks/GLUT.framework/Headers −framework GLUT −framework OpenGL −framework Cocoa −L/System/Library/Frameworks/OpenGL.framework/Libraries −o test1 −lsmoldyn shared −ltiff

3.3 Memory management

None of the Libsmoldyn functions allocate memory, except within the simulation data structure. This means,
for example, that all functions that return strings do not allocate these strings themselves, but instead write
the string text to memory that the library user allocated and gave to the function. That memory clearly
needs to be freed, by the library user, when it is done being used. When the simulation is complete, the
simulation data structure should be freed, which will automatically free all substructures in the process.

Nearly all strings are fixed at STRCHAR characters, where this constant is defined in string2.h to 256
characters.

3.4 Error trapping

Every function in Libsmoldyn checks that its input values are acceptable and also that no errors arise in the
function execution. These errors are returned to the host library in a number of ways. Most Libsmoldyn

3.5. ERROR CHECKING INTERNAL TO LIBSMOLDYN.C 15

functions (e.g. smolRunSim) return any error codes directly, which makes it easy to see if an error arose.
However, a few functions (e.g. smolNewSim) return other types of values and so return some other indication
of success or failure (e.g. NULL). In addition, some functions can raise warnings, which indicate that behavior
is unusual but not incorrect.

For all of these errors and warnings, get the details of the problem using the function smolGetError,
which will return the error code, the name of the function where the error arose, and a descriptive error string.
This will also clear the error, if desired. If errors are not cleared, they are left until they are overwritten by
subsequent errors. Warnings are also left until they are cleared or overwritten.

When writing code that calls Libsmoldyn, it can be helpful to put Libsmoldyn into its debugging mode
using the smolSetDebugMode function. Doing this causes any errors that arise to be displayed to stderr.

The possible error codes are declared in libsmoldyn.h with:

enum ErrorCode {ECok=0, ECnotify=-1, ECwarning=-2, ECnonexist=-3, ECall=-4, ECmissing=-5,

ECbounds=-6, ECsyntax=-7, ECerror=-8, ECmemory=-9, ECbug=-10, ECsame =-11}

Their interpretations are:

value code interpretation
0 ECok no error
-1 ECnotify message about correct behavior
-2 ECwarning unusual but not incorrect behavior
-3 ECnonexist a function input specifies an item that doesn’t exist
-4 ECsame error code should be unchanged from a prior code
-5 ECall an argument of “all” was found and may not be permitted
-6 ECmissing a necessary function input parameter is missing
-7 ECbounds a function input parameter is out of bounds
-8 ECsyntax function inputs don’t make syntactical sense
-9 ECerror unspecified error condition
-10 ECmemory Smoldyn was unable to allocate the necessary memory
-11 ECbug error arose which should not have been possible

3.5 Error checking internal to libsmoldyn.c

This section describes how to write Libsmoldyn functions using error checking. While it is an essential part
of all Libsmoldyn functions, these details are not important for most Libsmoldyn users.

1. The first line of every Libsmoldyn function should be const char *funcname="function name";. This
name will be returned with any error message to tell the user where the error arose.

2. Within the function, check for warnings or errors with either the LCHECK or LCHECKNT macros. In
both cases, the macro format is LCHECK(condition, funcname, error code, "message");. The macros
check that the test condition is true, and calls either smolSetError or smolSetErrorNT to deal with
it if not. The message should be a descriptive message that is under 256 characters in length. Use the
regular version (not the “no throw” or “NT”) version for errors that arise within the function, and the
“NT” version for errors that arise is subroutines of the function, so that only a single error message is
displayed to the output.

3. Most functions return an “enum ErrorCode”. If this is the case for your function, and your function
might return a notification and/or a warning, then end the main body of the function with return

libwarncode;. If it cannot return a notification or a warning, then end it with return ECok;. Finally,
if it does not return an “enum ErrorCode”, then it needs to return some other error condition that
will tell the user to check for errors using smolGetError.

4. After the main body of the function, add a goto target called failure:.

5. Assuming the function returns an “enum ErrorCode”, end the function with return liberrorcode;.

16 CHAPTER 3. USE WITH C/C++

The smolSetTimeStep function provides an excellent and simple example of how Libsmoldyn functions
typically address errors. It is:

enum ErrorCode smolSetTimeStep(simptr sim , double timestep) {

const char *funcname="smolSetTimeStep";

LCHECK(sim , funcname , ECmissing , "missing sim");

LCHECK(timestep >0, funcname , ECbounds , "timestep is not > 0");

simsettime(sim , timestep , 3);

return ECok;

failure:

return liberrorcode; }

The smolGet...Index functions are worth a comment. Each of these functions returns the index of an
item, such as a species or a surface, based on the name of the item. If the name is not found or other errors
arise, then these functions return the error code, cast as an integer. Also, if the name is “all”, then these
functions return the error code ECall and set the error string “species cannot be ‘all’”, or equivalent. A
typical use of these functions is seen in smolSetSpeciesMobility, which includes the following code:

i=smolGetSpeciesIndex(sim , species);

if(i==(int)ECall) smolClearError ();

else LCHECK(i>0, funcname , ECsame , NULL);

In this particular case, this function permits an input of “all”, so it clears errors that arise from this
return value, and leaves i as a negative value for later use.

Chapter 4

C/C++ and low-level Python API

4.1 Quick function guide

Most Libsmoldyn functions correspond relatively closely to the Smoldyn language statements, although not
perfectly. However, all functionality should be available using either method. The following table lists the
correspondences. Statements preceded by asterisks need to be either entered in statement blocks or preceded
by the statement’s context (e.g. with surface name). Where correspondence does not apply, the table lists
“N/A”. The Libsmoldyn functions are available either through the C/C++ API or through the low-level
Python API, with essentially identical input styles.

Statement Function
About the input

N/A
/* ... */ N/A
read file LoadSimFromFile

ReadConfigString

end file N/A
quit at end
define N/A
define global N/A
undefine N/A
ifdefine N/A
ifundefine N/A
else N/A
endif N/A
display define N/A
variable N/A
N/A SetError

N/A GetError

N/A ClearError

N/A SetDebugMode

N/A ErrorCodeToString

Space and time
dim NewSim

boundaries NewSim

SetBoundaryType

low wall NewSim

SetBoundaryType

high wall NewSim

SetBoundaryType

17

18 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

time start SetSimTimes

SetTimeStart

time stop SetSimTimes

SetTimeStop

time step SetSimTimes

SetTimeStep

time now SetTimeNow

Molecules
species AddSpecies

species group
N/A GetSpeciesIndex

N/A GetSpeciesName

difc SetSpeciesMobility

difc rule
difm SetSpeciesMobility

difm rule
drift SetSpeciesMobility

drift rule
surface drift
surface drift rule
mol AddSolutionMolecules

surface mol AddSurfaceMolecules

compartment mol AddCompartmentMolecules

molecule lists AddMolList

mol list AddSpecies

SetMolList

mol list rule
N/A GetMolListIndex

N/A GetMolListName

max mol SetMaxMolecules

N/A GetMoleculeCount

Graphics
graphics SetGraphicsParams

graphic iter SetGraphicsParams

graphic delay SetGraphicsParams

quit at end
frame thickness SetFrameStyle

frame color SetFrameStyle

grid thickness SetGridStyle

grid color SetGridStyle

background color SetBackgroundStyle

display size SetMoleculeStyle

color SetMoleculeStyle

tiff iter SetTiffParams

tiff name SetTiffParams

tiff min SetTiffParams

tiff max SetTiffParams

light SetLightParams

text color SetTextStyle

text display AddTextDisplay

Run-time commands
output root SetOutputPath

output files AddOutputFile

output data

4.1. QUICK FUNCTION GUIDE 19

output precision
append files AddOutputFile

output file number AddOutputFile

output format
cmd AddCommand

AddCommandFromString

Surfaces
start surface AddSurface

new surface AddSurface

* name AddSurface

N/A GetSurfaceIndex

N/A GetSurfaceName

* action SetSurfaceAction

* action rule
* rate SetSurfaceRate

* rate rule
* rate internal SetSurfaceRate

* rate internal rule
* neighbor action
* color SetSurfaceFaceStyle

SetSurfaceEdgeStyle

* thickness SetSurfaceEdgeStyle

* stipple SetSurfaceEdgeStyle

* polygon SetSurfaceFaceStyle

* shininess SetSurfaceFaceStyle

* panel AddPanel

N/A GetPanelIndex

N/A GetPanelName

* jump SetPanelJump

* neighbors AddPanelNeighbor

* unbounded emitter AddSurfaceUnboundedEmitter

* end surface N/A
epsilon SetSurfaceSimParams

margin SetSurfaceSimParams

neighbor dist SetSurfaceSimParams

Compartments
start compartment AddCompartment

new compartment AddCompartment

* name AddCompartment

N/A GetCompartmentIndex

N/A GetCompartmentName

* surface AddCompartmentSurface

* point AddCompartmentPoint

* compartment AddCompartmentLogic

* end compartment N/A
Reactions

reaction AddReaction

N/A GetReactionIndex

N/A GetReactionName

reaction compartment=... SetReactionRegion

reaction surface=... SetReactionRegion

reaction rule
reaction rate AddReaction

SetReactionRate

20 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

reaction multiplicity
confspread radius SetReactionRate

binding radius SetReactionRate

reaction probability SetReactionRate

reaction chi
reaction production SetReactionRate

product placement SetReactionProducts

expand rules
reaction serialnum
reaction intersurface
reaction log
reaction log off

Ports
start port AddPort

new port AddPort

* name AddPort

N/A GetPortIndex

N/A GetPortName

* surface AddPort

* face AddPort

* end port N/A
N/A AddPortMolecules

N/A GetPortMolecules

Rule-based modeling with BioNetGen
start bng
end bng
name
BNG2 path
multiply unimolecular rate
multiply bimolcular rate
monomer
monomers
monomer difc
monomer display size
monomer color
monomer state
expand rules

Lattices
start lattice
* name
* type
* port
* boundaries
* lengthscale
* species
* make particle
* reaction
* reaction move
* mol
* end lattice

Simulation settings
random seed SetRandomSeed

accuracy not supported
molperbox SetPartitions

4.2. ENUMERATIONS 21

boxsize SetPartitions

gauss table size not supported
epsilon SetSurfaceSimParams

margin SetSurfaceSimParams

neighbor dist SetSurfaceSimParams

Libsmoldyn actions
N/A UpdateSim

N/A RunTimeStep

N/A RunSim

N/A RunSimUntil

N/A FreeSim

N/A DisplaySim

N/A PrepareSimFromFile

4.2 Enumerations

In C, enumerations are already defined, so they can be used as is. Here is an example of using an enumerated
error code as an argument,

smolErrorCodeToString(ECwarning , mystring)

In Python, enumerations are most easily dealt with by defining a variable for the enumerated list and
then choosing from it. Here is an example,

import smoldyn._smoldyn as S

EC=S.ErrorCode

S.errorCodeToString(EC.warning , mystring)

Surface actions (SrfAction)

Statement Libsmoldyn Python Notes
reflect SAreflect reflect
transmit SAtrans trans
absorb SAabsorb absorb
jump SAjump jump
port SAport port
multiple SAmult mult multiple actions
N/A SAno no static surface-bound molecules
N/A SAnone none none of the other options
N/A SAadsorb adsorb internal use only
N/A SArevdes revdes internal use only
N/A SAirrevdes irrevdes internal use only
N/A SAflip flip internal use only

Molecule state (MolecState)

Statement Libsmoldyn Python Notes
soln MSsoln soln
front MSfront front
back MSback back
up MSup up
down MSdown down
bsoln MSbsoln bsoln pseudo-state for surface interactions
all MSall all for model creation by user
N/A MSnone none internal use only

22 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

Panel face (PanelFace)

Statement Libsmoldyn Python Notes
front PFfront front
back PFback back
N/A PFnone none internal use only
both PFboth both for model creation by user

Panel shape (PanelShape)

Statement Libsmoldyn Python Notes
rect PSrect rect rectangle
tri PStri tri triangle
sph PSsph sph sphere
cyl PScyl cyl cylinder
hemi PShemi hemi hemisphere
disk PSdisk disk disk
all PSall all for model creation by user
N/A PSnone none internal use only

Libsmoldyn error code (ErrorCode)

Statement Libsmoldyn Python Notes
N/A ECok ok value 0
N/A ECnotify notify value -1
N/A ECwarning warning value -2
N/A ECnonexist nonexist value -3
N/A ECall all value -4
N/A ECmissing missing value -5
N/A ECbounds bounds value -6
N/A ECsyntax syntax value -7
N/A ECerror error value -8
N/A ECmemory memory value -9
N/A ECbug bug value -10
N/A ECsame same value -11
N/A ECwildcard wildcard value -12

4.3 Miscellaneous

GetVersion
C/C++: double smolGetVersion(void)

Python: float getVersion()

Returns the Smoldyn version number.

4.4 Errors

SetError
C/C++: void smolSetError(const char *errorfunction, enum ErrorCode errorcode, const

char *errorstring)

C/C++: void smolSetErrorNT(const char *errorfunction, enum ErrorCode errorcode,

const char *errorstring)

Python: N/A
These functions are probably not useful for most users. Sets the Libsmoldyn error code to errorcode,

4.5. SIM STRUCTURE 23

error function to errorfunction, and error string to errorstring. The sole exception is if errorcode
is ECsame then this does nothing and simply returns. Back to it’s normal operation, this also either
sets or clears the Libsmoldyn warning code, as appropriate. If errorstring is entered as NULL, this
clears the current error string, and similarly for errorfunction. For the regular version without the
“NT”, if the library is being run in debug mode, then this function prints the notification, warning,
or error out to stderr. It would also ideally throw exceptions if the error code is more severe than the
LibThrowThreshold value, but this throwing doesn’t work at present because throwing exceptions to
the host code is incompatible with static linking.

The “NT” version is the “no throw” version, which is the same as the regular version but doesn’t
display messages to stderr and doesn’t throw exceptions. In general, library functions should call
smolSetError for errors caught by that function itself, and smolSetErrorNT for errors caught by
subroutines of that function, so that each error only leads to a single call of smolSetError.

GetError
C/C++: enum ErrorCode smolGetError(char *errorfunction, char *errorstring, int

clearerror)

Python: N/A
Returns the current LibSmoldyn error code directly, returns the function where the error occurred in
errorfunction if it is not NULL, and returns the error string in errorstring if it is not NULL. Set
clearerror to 1 to clear the error and 0 to leave any error condition unchanged.

ClearError
C/C++: void smolClearError(void)

Python: N/A
Clears any error condition.

SetDebugMode
C/C++: void smolSetDebugMode(int debugmode)

Python: setDebugMode(int debugmode)

Enter debugmode as 1 to enable debugging and 0 to disable debugging. When debug mode is turned
on, all errors are displayed to stderr, as are all cleared errors. By turning on debug mode, you can often
avoid checking for errors with additional code and you also typically don’t need to call smolGetError.

ErrorCodeToString
C/C++: char* smolErrorCodeToString(enum ErrorCode erc, char *string)

Python: str errorCodeToString(enum ErrorCode erc, str string)

Returns a string both directly and in string that corresponds to the error code in erc. For example,
if erc is ECmemory, this returns the string “memory”. To do: The string is not needed or used in the
Python version.

4.5 Sim structure

NewSim
Python: sim = Simulation(low = List[float],high = List[float])

Python: simptr newSim(int dim, List[float] lowbounds, List[float] highbounds)

C/C++: simptr smolNewSim(int dim, double *lowbounds, double *highbounds)

Creates and returns a new sim structure. The structure is initialized for a dim dimensional system
that has boundaries defined by the points lowbounds and highbounds. Boundaries are transmitting
(modify them with smolSetBoundaryType). Returns NULL upon failure.

UpdateSim
Python: N/A
Python: ErrorCode updateSim()

C/C++: enum ErrorCode smolUpdateSim(simptr sim)

Updates the simulation structure. This calculates all simulation parameters from physical parameters,

24 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

sorts lists, and generally does everything required to make a simulation ready to run. It may be called
multiple times.
Python low-level to do: doesn’t work. Python wants no argument, but Libsmoldyn then complains
about no argument.

RunTimeStep
C/C++: enum ErrorCode smolRunTimeStep(simptr sim)

Python: ErrorCode runTimeStep()

Runs one time step of the simulation. Returns an error if the simulation terminates unexpectedly
during this time step or a warning if it terminates normally.
Python to do: doesn’t work. Python wants no argument, but Libsmoldyn then complains about no
argument.

RunSim
C/C++: enum ErrorCode smolRunSim(simptr sim)

Python: ErrorCode runSim()

Python: run(stop=None, start=None, step=None)

Runs the simulation until it terminates. Returns an error if the simulation terminates unexpectedly
during this time step or a warning if it terminates normally.
Python to do: doesn’t work. Python wants no argument, but Libsmoldyn then complains about no
argument.

RunSimUntil
C/C++: enum ErrorCode smolRunSimUntil(simptr sim, double breaktime)

Python: ErrorCode runSimUntil(float breaktime)

Python: runUntil(t, dt)

Runs the simulation either until it terminates or until the simulation time equals or exceeds breaktime.
Python to do: doesn’t work. Python wants no argument, but Libsmoldyn then complains about no
argument.

FreeSim
C/C++: enum ErrorCode smolFreeSim(simptr sim)

Python: ErrorCode freeSim()

Frees the simulation data structure.

DisplaySim
C/C++: enum ErrorCode smolDisplaySim(simptr sim)

Python: ErrorCode displaySim()

Displays all relevant information about the simulation system to stdout.

4.6 Read configuration file

PrepareSimFromFile
C/C++: simptr smolPrepareSimFromFile(char *filepath, char *filename, char *flags)

Python: simptr prepareSimFromFile(str filename, str flags)

Reads the Smoldyn configuration file that is at filepath and has file name filename, sets it up,
and outputs simulation diagnostics to stdout. Returns the sim structure, or NULL if an error occurred.
flags are the command line flags that are entered for normal Smoldyn use. Either or both of filepath
and flags can be sent in as NULL if there is nothing to report. After this function runs successfully, it
should be possible to call smolRunSim or smolRunTimeStep.

LoadSimFromFile
C/C++: enum ErrorCode smolLoadSimFromFile(char *filepath, char *filename, simptr

*simpointer, char *flags)

Python: ErrorCode loadSimFromFile(str filename, str flags)

Loads part or all of a sim structure from the file that is at filepath and has file name filename.

4.7. SIMULATION SETTINGS 25

Send in simpointer as a pointer to sim, where sim may be an existing simulation structure that this
function will append or NULL if it is to be created by this function. flags are the command line flags
that are entered for normal Smoldyn use. Either or both of filepath and flags can be sent in as
NULL if there is nothing to report. After this function runs successfully, call smolUpdateSim to calculate
simulation parameters.

ReadConfigString
C/C++: enum ErrorCode smolReadConfigString(simptr sim, char *statement, char

*parameters)

Python: ErrorCode readConfigString(str statement, str parameters)

Reads and processes what would normally be a single line of a configuration file. The first word
of the line is the statement name, entered here as statement, while the rest of the line is entered
as parameters. Separate different parameters with spaces. The same parser is used as for normal
Smoldyn configuration files. This function does not make use of block style input formatting, such as
for surface definitions. This means that a new surface needs to declared with “new surface name”
and all subsequent surface definitions need to start with “surface name”. Analogous rules apply to
compartments and port.

4.7 Simulation settings

SetSimTimes
C/C++: enum ErrorCode smolSetSimTimes(simptr sim, double timestart, double

timestop, double timestep)

Python: ErrorCode setSimTimes(float timestart, float timestop, float timestep)

Sets all of the simulation time parameters to the values entered here. In addition the simulation “time
now” is set to timestart.

SetTimeStart
C/C++: enum ErrorCode smolSetTimeStart(simptr sim, double timestart)

Python: ErrorCode setTimeStart(float timestart)

Sets the simulation starting time.

SetTimeStop
C/C++: enum ErrorCode smolSetTimeStop(simptr sim, double timestop)

Python: ErrorCode setTimeStop(float timestop)

Sets the simulation stopping time.

SetTimeNow
C/C++: enum ErrorCode smolSetTimeNow(simptr sim, double timenow)

Python: ErrorCode setTimeNow(float timenow)

Sets the simulation current time.

SetTimeStep
C/C++: enum ErrorCode smolSetTimeStep(simptr sim, double timestep)

Python: ErrorCode setTimeStep(float timestep)

Sets the simulation time step, which must be greater than 0.

SetRandomSeed
C/C++: enum ErrorCode smolSetRandomSeed(simptr sim, double seed)

Python: ErrorCode setRandomSeed(int seed)

Sets the random number generator seed to seed if seed is at least 0, and sets it to the current time
value if seed is less than 0.

SetAccuracy
C/C++: not supported
Python: accuracy(accuracy: float)

Sets or gets the simulation accuracy.

26 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

SetPartitions
C/C++: enum ErrorCode smolSetPartitions(simptr sim, char *method, double value)

Python: ErrorCode setPartitions(str method, float value)

Python: Partition(name: str, value: float)

Sets the virtual partitions in the simulation volume. Enter method as “molperbox” and then enter
value with the requested number of molecules per partition volume; the default, which is used if this
function is not called at all, is a target of 4 molecules per box. Or, enter method as “boxsize” and
enter value with the requested partition spacing. In this latter case, the actual partition spacing may
be larger or smaller than the requested value in order to fit an integer number of partitions into each
coordinate of the simulation volume.

The second Python option is its own class. I think this should be removed because partitions aren’t
physical objects and so don’t really make sense here.

MoleculePerBox
Python: MoleculePerBox(size: float)

This is only available in Python. Again, I think this should be removed because partitions aren’t
physical objects.

Box
Python: Box(size: float)

This is only available in Python. Again, I think this should be removed because partitions aren’t
physical objects.

4.8 Graphics

SetGraphicsParams
C/C++: enum ErrorCode smolSetGraphicsParams(simptr sim, char *method, int

timesteps, double delay)

Python: ErrorCode setGraphicsParams(str method, int timesteps, int delay)

Python: setGraphics(method: str, timestep: int, delay: int = 0)

Sets basic simulation graphics parameters. Enter method as “none” for no graphics (the default),
“opengl” for fast but minimal OpenGL graphics, “opengl good” for improved OpenGL graphics,
“opengl better” for fairly good OpenGL graphics, or as NULL to not set this parameter currently.
Enter timesteps with a positive integer to set the number of simulation time steps between graphics
renderings (1 is the default) or with a negative number to not set this parameter currently. Enter
delay as a non-negative number to set the minimum number of milliseconds that must elapse between
subsequent graphics renderings in order to improve visualization (0 is the default) or as a negative
number to not set this parameter currently.

SetTiffParams
C/C++: enum ErrorCode smolSetTiffParams(simptr sim, int timesteps, char *tiffname,

int lowcount, int highcount)

Python: ErrorCode setTiffParams(int timesteps, str tiffname, int lowcount, int

highcount)

Sets parameters for the automatic collection of TIFF format snapshots of the graphics window.
timesteps is the number of simulation timesteps that should elapse between subsequent snapshots,
tiffname is the root filename of the output TIFF files, lowcount is a number that is appended to the
filename of the first snapshot and which is then incremented for subsequent snapshots, and highcount

is the last numbered file that will be collected. Enter negative numbers for timesteps, lowcount,
and/or highcount to not set these parameters, and enter NULL for tiffname to not set the file name.

SetLightParams
C/C++: enum ErrorCode smolSetLightParams(simptr sim, int lightindex, double

*ambient, double *diffuse, double *specular, double *position)

Python: ErrorCode smolSetLightParams(int lightindex, List[float] ambient, List[float]

4.9. RUNTIME COMMANDS 27

diffuse, List[float] specular, List[float] position)

Sets the lighting parameters that are used for the rendering method “opengl better”. Enter lightindex
as -1 for the global ambient light (in which case diffuse, specular, and position should all be NULL)
or as 0 to 8 for one of the 8 light sources. For each light source, you can specify the 4-value color
vector for the light’s ambient, diffuse, and specular properties (all values should be between 0 and 1).
You can also specify the 3-dimensional position for the light. To not set a property, just enter the
respective vector as NULL.

SetBackgroundStyle
C/C++: enum ErrorCode smolSetBackgroundStyle(simptr sim, double *color)

Python: ErrorCode setBackgroundStyle(string color)

Sets the color of the graphics display background. color is a 4-value vector with red, green, blue, and
alpha values (or, in Python, a color word).

SetFrameStyle
C/C++: enum ErrorCode smolSetFrameStyle(simptr sim, double thickness, double

*color)

Python: ErrorCode setFrameStyle(float thickness, string color)

Sets the thickness and the color of the wire frame that outlines the simulation system in the graphics
window. Enter thickness as 0 for no frame, as a positive number for the number of points in thickness,
or as a negative number to not set this parameter. Enter color as a 4-value vector with the frame
color, or as NULL to not set it (or, in Python, a color word).

SetGridStyle
C/C++: enum ErrorCode smolSetGridStyle(simptr sim, double thickness, double *color)

Python: ErrorCode setGridStyle(float thickness, string color)

Sets the thickness and the color of a grid that shows where the partitions are that separate Smoldyn’s
virtual boxes. Enter thickness as 0 for no grid, as a positive number for the number of points in
thickness, or as a negative number to not set this parameter. Enter color as a 4-value vector with the
grid color, or as NULL to not set it (or, in Python, a color word).

SetTextStyle
C/C++: enum ErrorCode smolSetTextStyle(simptr sim, double *color)

Python: ErrorCode setTextStyle(string color)

Sets the color of any text that is displayed to the graphics window. color is a 4-value vector with red,
green, blue, and alpha values (or, in Python, a color word).

AddTextDisplay
C/C++: enum ErrorCode smolAddTextDisplay(simptr sim, char *item)

Python: ErrorCode addTextDisplay(string item)

Adds item to the list of things that Smoldyn should display as text to the graphics window. Currently
supported options are “time” and the names of species and, optionally, their states. For species and
states, the graphics window shows the number of molecules.

4.9 Runtime commands

SetOutputPath
C/C++: enum ErrorCode smolSetOutputPath(simptr sim, char *path)

Python: ErrorCode setOutputPath(string path)

Sets the file path for text output files to path.

AddOutputFile
C/C++: enum ErrorCode smolAddOutputFile(simptr sim, char *filename, int suffix, int

append)

Python: ErrorCode addOutputFile(string filename, int suffix, int append)

Declares the file called filename as a file for output by one or more runtime commands. Note that

28 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

spaces are not permitted in the file name. If suffix is non-negative, then the file name is suffixed by
this integer, which can be helpful for creating output file stacks. Enter append as 1 if any current file
should simply be appended, or to 0 if any current file should be overwritten.

AddOutputData
C/C++: enum ErrorCode smolAddOutputData(simptr sim, char *dataname)

Python: ErrorCode addOutputData(string dataname)

Declares the data table called dataname, enabling output into it by one or more runtime commands.
Spaces are not permitted in the data name.

OpenOutputFiles
C/C++: enum ErrorCode smolOpenOutputFiles(simptr sim, int overwrite = 0)

Opens output files for writing. Enter overwrite as 1 if any existing file should be overwritten. If
overwrite is 0 and a file with this name already exists, then Smoldyn asks the user if it should be
overwritten. If the user replies no, then this function ends with an error of ECerror.

AddCommand
C/C++: enum ErrorCode smolAddCommand(simptr sim, char type, double on, double off,

double step, double multiplier, char *commandstring)

Python: ErrorCode addCommand(string type, float on, float off, float step, float

multiplier, string commandstring)

Adds a run-time command to the simulation, including its timing instructions. This function should
generally be called after smolSetSimTimes to make sure that command times get set correctly. The
following table lists the command type options along with the other parameters that are used for each
type. Parameters that are not required are simply ignored. The commandstring is the command name
followed by any command parameters.

type meaning on off step multiplier

Continuous time queue
b before simulation - - - -
a after simulation - - - -
@ at fixed time time - - -
i fixed intervals time on time off time step -
x exponential intervals time on time off min. time step multiplier

Integer time queue
B before simulation - - - -
A after simulation - - - -
& at fixed iteration iteration - - -
I fixed iteration intervals iter. on iter. off iter. step -
E every time step - - - -
N every n’th time step - - iter. step -

AddCommandFromString
C/C++: enum ErrorCode smolAddCommandFromString(simptr sim, char *string)

Python: ErrorCode addCommandFromString(str string)

Defines a runtime command, including its execution timing parameters, from the string string. This
string should be identical to ones used in configuration files, except that they do not include the “cmd”
statement.

getOutputData
C/C++: enum ErrorCode smolGetOutputData(simptr sim,char *dataname,int *nrow,int

*ncol,char *array,int erase)

Python: vector¡vector¡double¿¿ getOutputData(str dataname, bool erase)
Returns data that have been recorded by an observation command (e.g. molcount). Send in the name
of the data in dataname and pointers to variables that will receive the data in: nrow, for the number

4.10. MOLECULES 29

of rows, ncol, for the number of columns, and array, for the data themselves. The data are copied
over in this function from the original into the array that is returned, with the result that the data in
the array can be modified as desired. The array needs to be freed by the host code. All values in this
data table are doubles, which is appropriate for some things but not so good for things like species
names and molecule states. The array represents a 2D table as a single vector so to read the item at
row i and column j, use array[i*ncol+j]. Set erase to 1 for the original data to be cleared after it
is copied over.

4.10 Molecules

AddSpecies
Python: sim.addSpecies(name: str, state: str = "soln", color: T.Color = "", difc:

float = 0.0, display size: int = 2, mol list: str = ""

Python: ErrorCode addSpecies(str species, str mollist)

C/C++: enum ErrorCode smolAddSpecies(simptr sim, char *species, char *mollist)

Adds a molecular species named species to the system. If you have already created species lists and
want all states of this species to live in a specific list, then enter it in mollist; otherwise, enter mollist
as NULL or an empty string to request default behavior.

GetSpeciesIndex
C/C++: int smolGetSpeciesIndex(simptr sim, char *species)

C/C++: int smolGetSpeciesIndexNT(simptr sim, char *species)

Python: int getSpeciesIndex(str species)

Returns the species index that corresponds to the species named species. Upon failure, this function
returns an error code cast as an integer. The “NT” version is identical, but doesn’t throw exceptions
or print errors to stderr.

GetSpeciesName
C/C++: char* smolGetSpeciesName(simptr sim, int speciesindex, char *species)

Python: str getSpeciesName(int speciesindex, str species)

Returns the species name that corresponds to the species index in speciesindex. The name is returned
both in species and directly, where the latter simplifies function use. Upon failure, this function
returns NULL.

SetSpeciesMobility
C/C++: enum ErrorCode smolSetSpeciesMobility(simptr sim, char *species, enum

MolecState state, double difc, double *drift, double *difmatrix)

Python: ErrorCode setSpeciesMobility(str species, MolecState state, float difc,

List[float] drift, List[float] difmatrix)

Python: species.difc
Sets any or all of the mobility coefficients for species species (which may be “all”) and state
state (which may be MSall). difc is the isotropic diffusion coefficient, drift is the drift vector,
and difmatrix is the square of the anisotropic diffusion matrix (see the User’s manual). To not
set coefficients, enter a negative number in difc and/or enter a NULL pointer in the other inputs,
respectively.

The last version shown can also be used to get the diffusion coefficient for a species.

AddMolList
C/C++: int smolAddMolList(simptr sim, char *mollist)

Python: int addMolList(str mollist)

Adds a new molecule list, named mollist, to the system.

GetMolListIndex
C/C++: int smolGetMolListIndex(simptr sim, char *mollist)

C/C++: int smolGetMolListIndexNT(simptr sim, char *mollist)

30 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

Python: int getMolListIndex(str mollist)

Returns the list index that corresponds to the list named mollist. The “NT” version is identical but
doesn’t throw exceptions or print errors to the stderr output.

GetMolListName
C/C++: char* smolGetMolListName(simptr sim, int mollistindex, char *mollist)

Python: str getMolListName(int mollistindex, str mollist)

Returns the molecule list name that corresponds to the molecule list with index mollistindex. The
name is returned both in mollist and directly. On error, this function NULL.

SetMolList
C/C++: enum ErrorCode smolSetMolList(simptr sim, char *species, enum MolecState

state, char *mollist)

Python: ErrorCode setMolList(str species, MolecState state, str mollist)

Python: species.mol list

Sets the molecule list for species species (which may be “all”) and state state (which may be MSall)
to molecule list mollist.

The last version can either set or retrieve the molecule list.

SetMaxMolecules
C/C++: smolSetMaxMolecules(simptr sim, int maxmolecules)

Python: setMaxMolecules(int maxmolecules)

Sets the maximum number of molecules that can simultaneously exist in a system to maxmolecules.
At present, this function needs to be called for a simulation to run, although it will become optional
once dynamic molecule memory allocation has been written.

AddSolutionMolecules
C/C++: enum ErrorCode smolAddSolutionMolecules(simptr sim, char *species, int

number, double *lowposition, double *highposition)

Python: ErrorCode addSolutionMolecules(str species, int number, List[float]

lowposition, List[float] highposition)

Python: species.addToSolution(mol: float, highpos: List[float] = [], lowpos:

List[float] = [])

Adds number solution state molecules of species species to the system. They are randomly distributed
within the box that has its opposite corners defined by lowposition and highposition. Any or all
of these coordinates can equal each other to place the molecules along a plane or at a point. Enter
lowposition and/or highposition as NULL to indicate that the respective corner is equal to that
corner of the entire system volume.

AddCompartmentMolecules
C/C++: enum ErrorCode smolAddCompartmentMolecules(simptr sim, char *species, int

number, char *compartment)

Python: ErrorCode addCompartmentMolecules(str species, int number, str compartment)

Adds number solution state molecules of species species to the compartment compartment. Molecules
are randomly distributed within the compartment.

AddSurfaceMolecules
C/C++: enum ErrorCode smolAddSurfaceMolecules(simptr sim, int speciesindex, enum

MolecState state, int number, int surface, enum PanelShape panelshape, int panel,

double *position)

Python: ErrorCode addSurfaceMolecules(int speciesindex, MolecState state, int number,

int surface, PanelShape panelshape, int panel, List[float] position)

Adds number molecules of species species and state state to surface(s) in the system. It is permissible
for surface to be “all”, panelshape to be PSall, and/or panel to be “all”. If you want molecules at
a specific position, then you need to enter a specific surface, panel shape, and panel, and then enter
the position in position.

4.11. SURFACES 31

GetMoleculeCount
C/C++: int smolGetMoleculeCount(simptr sim, char *species, enum MolecState state)

Python: int getMoleculeCount(str species, MolecState state)

Returns the total number of molecules in the system that have species species (“all” is permitted)
and state state (MSall is permitted). Any error is returned as the error code cast as an integer.

SetMoleculeColor
C/C++: enum ErrorCode smolSetMoleculeStyle(simptr sim, const char *species, enum

MolecState state, double *color)

SetMoleculeSize
C/C++: enum ErrorCode smolSetMoleculeStyle(simptr sim, const char *species, enum

MolecState state, double size)

SetMoleculeStyle
C/C++: enum ErrorCode smolSetMoleculeStyle(simptr sim, const char *species, enum

MolecState state, double size, double *color)

Python: ErrorCode setMoleculeStyle(str species, MolecState state, float size,

List[float] color)

Python: species.setStyle
Python: species.color
Python: species.size
Sets the graphical display parameters for molecules of species species (“all” is permitted) and state
state (MSall is permitted). Enter size with the drawing size (in pixels if graphics method is “opengl”
and in simulation system length units for better drawing methods) or with a negative number to not
set the size. Enter color with the 3-value color vector or with NULL to not set the color (or, in Python,
a color word).

4.11 Surfaces

Boundaries
Python: Boundaries(low: List[float], high: List[float], types: List[str] =

field(default factory=lambda: ["r"]), dim: field(init=False) = 0)

Python: setBounds()
This functionality is only available in Python. There is a class called Boundaries and a function called
setBounds. They do basically the same thing.

SetBoundaryType
C/C++: enum ErrorCode smolSetBoundaryType(simptr sim, int dimension, int highside,

char type)

Python: ErrorCode setBoundaryType(int dimension, int highside, str type)

Sets the molecule interaction properties for a system boundary that bounds the dimension axis. Enter
dimension as -1 to indicate all dimensions. Set highside to 0 for the lower boundary, to 1 for the upper
boundary, and to -1 for both boundaries. The boundary type is entered in type as ‘r’ for reflecting, ‘p’
for periodic, ‘a’ for absorbing, or ‘t’ for transmitting. Note that Smoldyn only observes these properties
if no surfaces are declared; otherwise all boundaries are transmitting regardless of what’s entered here.

AddSurface
C/C++: int smolAddSurface(simptr sim, char *surface)

Python: int addSurface(str surface)

Adds a surface called surface to the system.

GetSurfaceIndex
C/C++: int smolGetSurfaceIndex(simptr sim, char *surface)

32 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

C/C++: int smolGetSurfaceIndexNT(simptr sim, char *surface)

Python: int getSurfaceIndex(str surface)

Returns the surface index that corresponds to the surface named surface. The index is non-negative.
On failure, this returns an error code cast as an integer. The “NT” version is identical but errors aren’t
printed to the stderr output and don’t throw exceptions.

GetSurfaceName
C/C++: char* smolGetSurfaceName(simptr sim, int surfaceindex, char *surface)

Python: str getSurfaceName(int surfaceindex, str surface)

Returns the surface name for surface number surfaceindex both directly and in the surface string.
On failure, this returns NULL.

SetSurfaceAction
C/C++: enum ErrorCode smolSetSurfaceAction(simptr sim, char *surface, enum

PanelFace face, char *species, enum MolecState state, enum SrfAction action, char

*newspecies)

Python: ErrorCode setSurfaceAction(str surface, PanelFace face, str species,

MolecState state, SrfAction action)

Python: surface.addAction(face, species: Union[Species, str], action: str,

new spec=None)

Sets the action that should happen when a molecule of species species (may be “all”) and state
state (may be MSall) diffuses into face face (may be PFboth) of surface surface. The action is set
to action. Enter newspecies to the name of a new species if the molecule should change species, or
as either NULL or an empty string if it should not change species.

SetSurfaceRate
C/C++: enum ErrorCode smolSetSurfaceRate(simptr sim, char *surface, char *species,

enum MolecState state, enum MolecState state1, enum MolecState state2, double rate,

char *newspecies, int isinternal)

Python: ErrorCode setSurfaceRate(str surface, str species, MolecState state,

MolecState state1, MolecState state2, float rate, str newspecies, int isinternal)

Sets the surface interaction rate(s) for surface surface (may be “all”) and species species (may
be “all”) and state state. The transition being considered is from state1 to state2 (this function
uses the tri-state format for describing surface interactions, shown below). The interaction rate is
set to rate, which is interpreted as a probability value for internal use if isinternal is 1 and as
a physical interaction coefficient if isinternal is 0. If the molecule ends up interacting with the
surface, it changes to new species newspecies. Enter newspecies as either NULL or an empty string
to indicate that molecules should not change species upon interactions. The molecule states are most
easily understood with the following table. If the action listed in the table is in italics, then the
corresponding combination of states is not a permitted input.

interaction class tristate format action
state state1 state2

soln soln soln reflect
” ” bsoln transmit

collision from ” ” bound adsorb
solution state ” bsoln soln transmit

” ” bsoln reflect
” ” bound adsorb
” bound soln desorb

action from ” ” bsoln desorb
bound state ” ” bound no change

” ” bound’ flip
bound soln soln reflect

” ” bsoln transmit

4.11. SURFACES 33

” ” bound hop
collision from ” ” bound’ hop
bound state ” bsoln soln transmit

” ” bsoln reflect
” ” bound hop
” ” bound’ hop
” bound soln desorb

action from ” ” bsoln desorb
bound state ” ” bound no change

” ” bound’ flip
impossible ” bound’ any nonsense

AddPanel
C/C++: int smolAddPanel(simptr sim, char *surface, enum PanelShape panelshape, char

*panel, char *axisstring, double *params)

Python: int addPanel(str surface, PanelShape panelshape, str panel, str axisstring,

List[float] params)

Adds or modifies a panel of shape panelshape of surface surface. axisstring lists any text
parameters for the panel, which in practice is only a single word that gives the orientation of a
rectangle panel (e.g. “+0” or “-y”). params lists the numerical parameters for the panel location, size,
and drawing characteristics. These are exactly the same parameters that are listed for the “panel”
statement in Smoldyn configuration files, with the sole exception that the first rectangle “parameter”
is actually a string that is entered in axisstring. panelname is an optional parameter for naming the
panel; if it is included and is not an empty string, the panel is named panelname. If this panel name
was already used by a panel of the same shape, then this function overwrites that panel’s data with the
new data. If the name was already used by a panel with a different shape, then this creates an error,
and if the name was not used before, then a new panel is created. To use default panel naming, send
in panelname as either NULL or as an empty string. In the latter case, panelname is returned with the
newly assigned default name.

In Python, each panel shape is a separate class. These classes are:

• Rectangle: corner: List[float], dimensions: List[float], axis: str, name=””

• Triangle: vertices: List[List[float]] = [[]], name=””

• Sphere: center: List[float], radius: float, slices: int, stacks: int, name=””

• Hemisphere: center: List[float], radius: float, vector: List[float], slices: int, stacks: int, name: str
= ””

• Cylinder: start: List[float], end: List[float], radius: float, slices: int, stacks: int, name=””

• Disk: center: List[float], radius: float, vector: List[float], name=””

GetPanelIndex
C/C++: int smolGetPanelIndex(simptr sim, char *surface, enum PanelShape

*panelshapeptr, char *panel)

C/C++: int smolGetPanelIndexNT(simptr sim, char *surface, enum PanelShape

*panelshapeptr, char *panel)

Python: int getPanelIndex(str surface, PanelShape *panelshapeptr, str panel)

Returns the panel index for the panel called panel on surface surface. If panelshapeptr is not NULL,
this also returns the panel shape in panelshapeptr. On failure, this returns the error code cast as an
integer. The “NT” version is identical but errors aren’t printed to the stderr output and don’t cause
exceptions to be thrown.

GetPanelName
C/C++: char* smolGetPanelName(simptr sim, char *surface, enum PanelShape

panelshape, int panelindex, char *panel)

34 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

Python: str getPanelName(str surface, PanelShape panelshape, int panelindex, str

panel)

Returns the name of the panel that is in surface surface, has shape panelshape, and has index
panelindex, both directly and in the string panel. On failure, this returns NULL.

SetPanelJump
C/C++: enum ErrorCode smolSetPanelJump(simptr sim, const char *surface, const char

*panel1, enum PanelFace face1, const char *panel2, enum PanelFace face2, int

isbidirectional)

Python: ErrorCode setPanelJump(str surface, str panel1, PanelFace face1, str panel2,

PanelFace face2, int isbidirectional)

Sets a jumping link between face face1 of panel panel1 and face face2 of panel panel2 of surface
surface. The link goes from panel1 to panel2 if bidirectional is entered as 0 and goes in both
directions if bidirectional is entered as 1. None of the surface, panel, or face entries is allowed to
be “all”. This does not set the actions of any species to “jump”, which has to be done using the
smolSetSurfaceAction function.

AddSurfaceUnboundedEmitter
C/C++: enum ErrorCode smolAddSurfaceUnboundedEmitter(simptr sim, const char

*surface, enum PanelFace face, const char *species, double emitamount, double

*emitposition)

Python: ErrorCode addSurfaceUnboundedEmitter(str surface, PanelFace face, str

species, float emitamount, List[float] emitposition)

Adds information about a point molecular source so that face face of surface surface can have its
absorption properties calculated so that the molecular concentrations will become the same as they
would be if the surface weren’t there at all. The point molecular source emits molecules of species
species, with a rate of emitamount and is at location emitposition. The emission rate does not
need to be in absolute units, but only has to be correct relative to other unbounded emitters. None of
the inputs to this function are allowed to be “all”.

SetSurfaceSimParams
C/C++: enum ErrorCode smolSetSurfaceSimParams(simptr sim, const char *parameter,

double value)

Python: ErrorCode setSurfaceSimParams(str parameter, float value)

Sets the surface simulation parameter named with parameter to value value. The possible parameters
are “epsilon”, “margin”, and “neighbordist”. In all cases, the defaults are nearly always good, although
this function allows them to be modified if desired. Epsilon is the maximum distance away from a
surface that Smoldyn is allowed to place a surface-bound molecule. Margin is the distance inside from
the edge of a surface panel that Smoldyn will place surface-bound molecules that hop onto this panel.
Neighbor distance is the maximum distance over which surface-bound molecules are allowed to hop to
transition from one panel to a neighboring panel.

AddPanelNeighbor
C/C++: enum ErrorCode smolAddPanelNeighbor(simptr sim, const char *surface1, const

char *panel1, const char *surface2, const char *panel2, int reciprocal)

Python: ErrorCode addPanelNeighbor(str surface1, str panel1, str surface2, str

panel2, int reciprocal)

Adds panel panel2 of surface surface2 as a neighbor of panel panel1 or surface surface1, meaning
that surface-bound molecules will be allowed to diffuse from panel1 to panel2. These are not allowed
to be the same panel. Also, “all” values are not permitted. Otherwise, essentially any possible entries
are legitimate. If surface-bound molecules should also be allowed to diffuse from panel2 to panel1,
enter reciprocal as 1; if not, enter reciprocal as 0.

SetSurfaceStyle
C/C++: enum ErrorCode smolSetSurfaceStyle(simptr sim, const char *surface, enum

PanelFace face, enum DrawMode mode, double thickness, double *color, int

4.12. COMPARTMENTS 35

stipplefactor, int stipplepattern, double shininess)

Python: ErrorCode setSurfaceStyle(str surface, PanelFace face, DrawMode mode, float

thickness, List[float] color, int stipplefactor, int stipplepattern, float

shininess)

Python: surface.setStyle(face, drawmode: str, color: T.Color = "", thickness: float

= 1, stipplefactor: int = -1, stipplepattern: int = -1, shininess: int = -1,)

Sets the graphics output style for face face of surface surface. mode is the drawing mode; enter it as
DMnone to not set this parameter and otherwise enter it as DMno to not draw the surface, DMvert for
vertices, DMedge for edges, or DMface for faces. The thickness parameter gives the point size or line
width for drawing vertices or edges, or can be entered as a negative number to not set this parameter.
color is the 4-value color vector for the surface, or can be entered as NULL to not set this parameter (or,
in Python, a color word). stipplefactor is the repeat distance for the entire edge stippling pattern,
or can be entered as a negative number to not set it. stipplepattern is the edge stippling pattern,
which needs to be between 0 and 0xFFFF, or can be entered as -1 to not set this parameter. And
shininess is the surface shininess, for use with lighting in the “opengl better” graphics display option,
or can be entered as -1 to not set this parameter. The parameters thickness, stipplefactor, and
stipplepattern only apply to edge style drawing modes and ignore any input in the face entry. The
shininess parameter only applies to the face style drawing modes.

4.12 Compartments

AddCompartment
C/C++: int smolAddCompartment(simptr sim, char *compartment)

Python: int addCompartment(str compartment)

Adds a compartment called compartment to the system.

GetCompartmentIndex
C/C++: int smolGetCompartmentIndex(simptr sim, char *compartment)

C/C++: int smolGetCompartmentIndexNT(simptr sim, char *compartment)

Python: int getCompartmentIndex(str compartment)

Returns the index of the compartment named compartment. On failure, this returns an error code cast
as an integer. The “NT” version is identical but errors aren’t printed to the stderr output or cause
exceptions to be thrown.

GetCompartmentName
C/C++: char* smolGetCompartmentName(simptr sim, int compartmentindex, char

*compartment)

Python: str getCompartmentName(int compartmentindex, str compartment)

Returns the name of the compartment that has index compartmentindex both directly and in the
string compartment. Returns NULL if an error arises.

AddCompartmentSurface
C/C++: enum ErrorCode smolAddCompartmentSurface(simptr sim, char *compartment, char

*surface)

Python: ErrorCode addCompartmentSurface(str compartment, str surface)

Adds surface surface as one of the bounding surfaces of compartment compartment.

AddCompartmentPoint
C/C++: enum ErrorCode smolAddCompartmentPoint(simptr sim, char *compartment, double

*point)

Python: ErrorCode addCompartmentPoint(str compartment, List[float] point)

Adds point as one of the interior-defining points of compartment compartment.

AddCompartmentLogic
C/C++: enum ErrorCode smolAddCompartmentLogic(simptr sim, char *compartment, enum

36 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

CmptLogic logic, char *compartment2)

Python: ErrorCode addCompartmentLogic(str compartment, CmptLogic logic, str

compartment2)

Modifies the current definition of compartment compartment using a logical rule specified in logic

and the definition of compartment2.

4.13 Reactions

AddReaction
C/C++: enum ErrorCode smolAddReaction(simptr sim, const char *reaction, const char

*reactant1, enum MolecState rstate1, const char *reactant2, enum MolecState rstate2,

int nproduct, const char **productspecies, enum MolecState *productstates, double

rate)

Python: ErrorCode addReaction(str reaction, str reactant1, MolecState rstate1, str

reactant2, MolecState rstate2, int nproduct, List[str] productspecies,

List[MolecState] productstates, float rate)

Python: Reaction(subs: List[Species], prds: List[Species], kf, kb=0.0)

Adds reaction named reaction to the system. This reaction can have up to two reactants, whose
species are listed in reactant1 and reactant2 and whose states are listed in rstate1 and rstate2.
If the reaction has fewer than two reactants, set either or both of reactant1 and reactant2 to either
NULL or an empty string. State the number of reaction products in nproduct, list their species in
productspecies, and list their states in productstates. To set the reaction rate, enter it in rate;
otherwise, enter rate as a negative number.

GetReactionIndex C/C++: int smolGetReactionIndex(simptr sim, int *orderptr, char

*reaction)

C/C++: int smolGetReactionIndexNT(simptr sim, int *orderptr, char *reaction)

Python: int getReactionIndex(List[int] orderptr, str reaction)

Returns the index and order for the reaction that is named reaction. If the order is known, send in
orderptr pointing to this value. If it is not known, send in orderptr equal to either NULL or pointing
to a negative number; in this case, it will be returned pointing to the reaction order, if the reaction
was found. On failure, this returns the error code, cast as an integer. The “NT” version is identical
but errors don’t get displayed to the stderr output or cause exceptions to be thrown.

GetReactionName
C/C++: char* smolGetReactionName(simptr sim, int order, int reactionindex, char

*reaction)

Python: str getReactionName(int order, int reactionindex, str reaction)

Returns the name of the reaction that has reaction order order and index reactionindex in the string
reaction. Also returns the result directly. Returns NULL if an error arises.

SetReactionRate
C/C++: enum ErrorCode smolSetReactionRate(simptr sim, int order, char *reaction,

double rate, int isinternal)

Python: ErrorCode setReactionRate(int order, str reaction, float rate, int

isinternal)

Set the reaction rate to rate. If this value is to be interpreted as an internal reaction rate parameter,
meaning the production rate for zeroth order reactions, the reaction probability for first order reactions,
or the binding radius for second order reactions, then set isinternal to 1. Rather than calling this
function at all, it’s usually easier to use the rate parameter of the smolAddReaction function, although
that doesn’t cope with internal rate values.

SetReactionRegion
C/C++: enum ErrorCode smolSetReactionRegion(simptr sim, const char *reaction, const

char *compartment, const char *surface)

4.14. PORTS 37

Python: ErrorCode setReactionRegion(str reaction, str compartment, str surface)

Limits the spatial region where a reaction can take place to the compartment compartment and/or
the surface surface. To not set one of these limits, enter compartment and/or surface as NULL. To
remove a previously set limit, enter compartment and/or surface as the empty string, “”.

SetReactionIntersurface
C/C++: enum ErrorCode smolSetReactionIntersurface(simptr sim, const char *reaction,

int *rulelist)

Set the intersurface reaction rules for the bimolecular reaction called reaction. Intersurface reactions
are reactions between two surface-bound molecules that are on two different surfaces. If rulelist is
NULL, then this returns the reaction to the default state, which is that intersurface reactions are not
allowed for this reaction. Otherwise, rulelist should have one entry for each product. If the entry
is 1, then that product is placed on the surface with the first reactant; if it is 2, then that product
is placed on the surface with the second reactant. If a reaction has no products, then create a single
element in rulelist equal to 0 to indicate that intersurface reactions are permitted.

SetReactionProducts
C/C++: enum ErrorCode smolSetReactionProducts(simptr sim, const char *reaction,

enum RevParam method, double parameter, const char *product, double *position)

Python: ErrorCode setReactionProducts(str reaction, RevParam method, float parameter,

str product, List[float] position)

Sets the reaction product parameters for reaction reaction. At a minimum, the method reversible
parameter is required. Most of these methods require a single parameter, entered in parameter. A
few methods also require a product, in product and the relative position of this product in position.

method parameter product position

RPnone - - -
RPirrev - - -
RPconfspread - - -
RPbounce σu - -
RPpgem φ - -
RPpgemmax φmax - -
RPpgemmaxw φmax - -
RPratio σu/σb - -
RPunbindrad σu - -
RPpgem2 φ - -
RPpgemmax2 φmax - -
RPratio2 σu/σb - -
RPoffset - product number relative position
RPfixed - product number relative position

If method is RPbounce, then a negative number for the parameter indicates default bounce behavior,
which is that molecules are separated by an amount that is equal to their previous overlap.

4.14 Ports

AddPort
C/C++: enum ErrorCode smolAddPort(simptr sim, const char *port, const char

*surface, enum PanelFace face)

Python: ErrorCode addPort(str port, str surface, PanelFace face)

Python: Port(name: str, surface: Union[Surface, str], panel: str)

Adds a port to the simulation. The port will be named port and will port at the face face of surface
surface.

38 CHAPTER 4. C/C++ AND LOW-LEVEL PYTHON API

GetPortIndex
C/C++: int smolGetPortIndex(simptr sim, const char *port)

C/C++: int smolGetPortIndexNT(simptr sim, const char *port)

Python: int getPortIndex(str port)

Returns the index of the port named port. The “NT” version is identical but errors don’t get displayed
to the stderr output or cause exceptions to be thrown.

GetPortName
C/C++: char* smolGetPortName(simptr sim, int portindex, char *port)

Python: str getPortName(int portindex, str port)

Returns the name of the port with index portindex, both directly and in port.

AddPortMolecules
C/C++: enum ErrorCode smolAddPortMolecules(simptr sim, const char *port, int

nmolec, const char *species, double **positions)

Python: ErrorCode addPortMolecules(str port, int nmolec, str species, List[float]

positions)

Adds nmolec molecules to Smoldyn’s import buffer of port port. These molecules will all have species
species and state MSsoln. Enter positions as NULL to have the molecules positioned randomly over
the porting surface and as an nmolec length list of position vectors to have them located at those
specific initial positions. These initial positions should be close to the porting surface, and on the
Smoldyn system side of it.

GetPortMolecules
C/C++: int smolGetPortMolecules(simptr sim, const char *port, const char *species,

enum MolecState state, int remove)

Python: int getPortMolecules(str port, str species, MolecState state, int remove)

Returns the number of molecules that are in Smoldyn’s export buffer of port port. Enter species

with the species of the molecules that should be retrieved, or “all” for all species. Enter state with
the states of the molecules that should be retrieved, or MSall for all states. Enter remove with 1 to
remove molecules from the export buffer after they are retrieved or with 0 to leave them in the buffer.
If an error arises, this returns the error code cast as an integer.

4.15 Lattices

AddLattice
C/C++: enum ErrorCode smolAddLattice(simptr sim,const char *lattice,const double

*min,const double *max,const double *dx,const char *btype)

Python: ErrorCode AddLattice(str lattice,List[float] min,List[float] max,List[float]

dx,str btype)

Adds a lattice to the simulation for hybrid operation. The lattice is named lattice and extends from
min to max, with lattice spacing dx. The boundary types are given with btype, which is a string of
either ‘r’ characters for reflective boundary or ‘p’ characters for periodic boundary, with one character
for each dimension and the dimensions listed in order (e.g. “rrp” is reflective on the x and y axes and
periodic on the z axis).

GetLatticeIndex
C/C++: int smolGetLatticeIndex(simptr sim,const char *lattice)

C/C++: int smolGetLatticeIndexNT(simptr sim,const char *lattice)

Python: int GetLatticeIndex(str lattice)

Returns the index of the lattice named lattice. The “NT” version is identical but errors don’t get
displayed to the stderr output or cause exceptions to be thrown.

GetLatticeName
C/C++: char *smolGetLatticeName(simptr sim,int latticeindex,char *lattice)

4.15. LATTICES 39

Python: str getLatticeName(int latticeindex, str lattice)

Returns the name of the lattice with index latticeindex, both directly and in lattice.

AddLatticeMolecules
C/C++: enum ErrorCode smolAddLatticeMolecules(simptr sim,const char *lattice, const

char *species,int number,double *lowposition,double *highposition)

Python: ErrorCode AddLatticeMolecules(str lattice, str species, int number,

List[float] lowposition, List[float] highposition)

Adds number molecules of species species to the lattice named lattice, randomly positioned over the
volume extending from lowposition to highposition. These molecules will all have state MSsoln.

AddLatticePort
C/C++: enum ErrorCode smolAddLatticePort(simptr sim, const char *lattice, const

char *port)

Python: ErrorCode AddLatticePort(str lattice, str port)

Connects port port with lattice lattice, so that molecules can transition across this port between
the particle-based simulation region and the lattice-based simulation region.

AddLatticeSpecies
C/C++: enum ErrorCode smolAddLatticeSpecies(simptr sim,const char *lattice, const

char *species)

Python: ErrorCode AddLatticeSpecies(str lattice, str species)

Not all particle-based Smoldyn species are necessarily listed in a lattice portion of space, so use this
function to add species to the lattice region of space. Clearly, the lattice is lattice and the species
being added is species.

AddLatticeReaction
C/C++: enum ErrorCode smolAddLatticeReaction(simptr sim,const char *lattice, const

char *reaction, const int move)

Python: ErrorCode AddLatticeReaction(str lattice, str reaction, int move)

Not all particle-based Smoldyn reactions are necessarily listed in a lattice portion of space, so use this
function to add reactions to the lattice region of space. Clearly, the lattice is lattice and the reaction
being added is reaction.

