11 #include "factory/factory.h" 29 #if defined(DO_LINLINE) && defined(P_NUMBERS_H) && !defined(LDEBUG) 30 #define LINLINE static FORCE_INLINE 77 const char *
nlRead (
const char *
s, number *a,
const coeffs r);
93 #define nlTest(a, r) nlDBTest(a,__FILE__,__LINE__, r) 96 #define nlTest(a, r) do {} while (0) 103 #define MAX_NUM_SIZE 60 104 #define POW_2_28 (1L<<60) 105 #define POW_2_28_32 (1L<<28) 108 #define MAX_NUM_SIZE 28 109 #define POW_2_28 (1L<<28) 110 #define POW_2_28_32 (1L<<28) 126 LONG ui=mpz_get_si(
x->z);
127 if ((((ui<<3)>>3)==ui)
128 && (mpz_cmp_si(
x->z,(
long)ui)==0))
141 #ifndef BYTES_PER_MP_LIMB 142 #define BYTES_PER_MP_LIMB sizeof(mp_limb_t) 152 #define mpz_isNeg(A) ((A)->_mp_size<0) 153 #define mpz_limb_size(A) ((A)->_mp_size) 154 #define mpz_limb_d(A) ((A)->_mp_d) 171 #if (__GNU_MP_VERSION*10+__GNU_MP_VERSION_MINOR < 31) 207 mpz_init_set(
z->z,(mpz_ptr) from);
231 mpz_init_set_ui(
z->z,(
unsigned long) from);
244 Print(
"!!longrat: NULL in %s:%d\n",
f,
l);
248 if ((((
long)a)&3L)==3L)
250 Print(
" !!longrat:ptr(3) in %s:%d\n",
f,
l);
253 if ((((
long)a)&3L)==1L)
255 if (((((
LONG)(
long)a)<<1)>>1)!=((
LONG)(
long)a))
257 Print(
" !!longrat:arith:%lx in %s:%d\n",(
long)a,
f,
l);
267 if (a->debug!=123456)
269 Print(
"!!longrat:debug:%d in %s:%d\n",a->debug,
f,
l);
273 if ((a->s<0)||(a->s>4))
275 Print(
"!!longrat:s=%d in %s:%d\n",a->s,
f,
l);
283 if (a->z[0]._mp_alloc==0)
284 Print(
"!!longrat:z->alloc=0 in %s:%d\n",
f,
l);
288 if ((a->n[0]._mp_d[0]==0)&&(a->n[0]._mp_alloc<=1))
290 Print(
"!!longrat: n==0 in %s:%d\n",
f,
l);
298 if (a->z[0]._mp_alloc==0)
299 Print(
"!!longrat:n->alloc=0 in %s:%d\n",
f,
l);
300 if ((
mpz_size1(a->n) ==1) && (mpz_cmp_si(a->n,1L)==0))
302 Print(
"!!longrat:integer as rational in %s:%d\n",
f,
l);
303 mpz_clear(a->n); a->s=3;
308 Print(
"!!longrat:div. by negative in %s:%d\n",
f,
l);
322 if ((((ui<<3)>>3)==ui)
323 && (mpz_cmp_si(a->z,(
long)ui)==0))
325 Print(
"!!longrat:im int %d in %s:%d\n",ui,
f,
l);
347 long lz=mpz_get_si(
n->z);
348 if (mpz_cmp_si(
n->z,lz)==0)
term=lz;
351 mpz_init_set( dummy,
n->z );
360 mpz_init_set(
num,
n->z );
361 mpz_init_set(
den,
n->n );
383 if (
f.den().isOne() )
411 mpz_init_set_ui(h1,1);
412 while((FLT_RADIX*
f) < DBL_MAX &&
i<DBL_MANT_DIG)
415 mpz_mul_ui(h1,h1,FLT_RADIX);
420 memcpy(&(re->n),&h1,
sizeof(h1));
422 if(f_sign==-1) re=
nlNeg(re,dst);
439 size = (*f)[0]._mp_size;
457 e=(*f)[0]._mp_exp-
size;
464 void* (*allocfunc) (size_t);
465 mp_get_memory_functions (&allocfunc,
NULL,
NULL);
468 al = dest->_mp_size =
size;
470 dd = (mp_ptr)allocfunc(
sizeof(mp_limb_t)*al);
473 nn = (mp_ptr)allocfunc(
sizeof(mp_limb_t)*bl);
477 ndest->_mp_alloc = ndest->_mp_size = bl;
482 al = dest->_mp_size =
size+e;
484 dd = (mp_ptr)allocfunc(
sizeof(mp_limb_t)*al);
486 for (
i=0;
i<e;
i++) dd[
i] = 0;
491 dest->_mp_alloc = al;
576 int s=a->z[0]._mp_alloc;
585 int d=a->n[0]._mp_alloc;
610 long ul=mpz_get_si(
i->z);
611 if (mpz_cmp_si(
i->z,ul)!=0)
return 0;
617 mpz_tdiv_q(tmp,
i->z,
i->n);
622 if (mpz_cmp_si(tmp,ul)!=0) ul=0;
641 mpz_tdiv_q(tmp->z,
i->z,
i->n);
671 mpz_init_set_ui(
n->z,1L);
676 mpz_init_set_si(
n->z,-1L);
687 mpz_init_set(
n->n,a->z);
693 mpz_init_set(
n->z,a->n);
699 if (mpz_cmp_ui(
n->n,1L)==0)
712 mpz_init_set_si(
n->z,-1L);
716 mpz_init_set_ui(
n->z,1L);
771 mpz_divexact(u->z,a->z,
b->z);
816 if (rr<0) rr+=
ABS(bb);
846 mpz_init_set(u->z,a->z);
851 else mpz_sub(u->z,u->z,rr->z);
852 mpz_divexact(u->z,u->z,
b->z);
899 mpz_init_set_si(aa, ai);
906 mpz_mod(u->z, aa,
b->z);
924 mpz_mod(u->z, a->z,
b->z);
946 return (mpz_divisible_ui_p(a->z,
SR_TO_INT(
b))!=0);
949 return mpz_divisible_p(a->z,
b->z) != 0;
971 long ch = r->cfInt(c, r);
982 mpz_init_set_ui(dummy, ch);
985 info.exp = (
unsigned long) 1;
1016 if (
j==1L)
return a;
1031 mpz_init_set_si(u->z,(
long)
i);
1032 mpz_init_set_si(u->n,(
long)
j);
1055 if (mpz_cmp(u->z,
b->z)==0)
1061 mpz_init_set(u->n,
b->z);
1070 mpz_init_set(u->n,a->n);
1090 mpz_init_set(u->n,
b->z);
1091 if (a->s<2) mpz_mul(u->n,u->n,a->n);
1092 if (
b->s<2) mpz_mul(u->z,u->z,
b->n);
1100 if (mpz_cmp_si(u->n,1L)==0)
1134 mpz_pow_ui((*u)->z,
x->z,(
unsigned long)
exp);
1137 if (mpz_cmp_si(
x->n,1L)==0)
1145 mpz_pow_ui((*u)->n,
x->n,(
unsigned long)
exp);
1221 if((
i==0L)||(
j==0L))
1244 unsigned long t=mpz_gcd_ui(
NULL,
b->z,(
long)aa);
1254 unsigned long t=mpz_gcd_ui(
NULL,a->z,(
long)bb);
1334 if (mpz_cmp(
x->z,
x->n)==0)
1357 if (mpz_cmp_si(
x->n,1L)==0)
1367 mpz_gcd(
gcd,
x->z,
x->n);
1369 if (mpz_cmp_si(
gcd,1L)!=0)
1371 mpz_divexact(
x->z,
x->z,
gcd);
1372 mpz_divexact(
x->n,
x->n,
gcd);
1373 if (mpz_cmp_si(
x->n,1L)==0)
1411 mpz_gcd(
gcd,a->z,
b->n);
1412 if (mpz_cmp_si(
gcd,1L)!=0)
1416 mpz_divexact(bt,
b->n,
gcd);
1420 mpz_mul(
result->z,bt,a->z);
1452 const unsigned long PP =
p;
1455 number
z =
n_Init( static_cast<long>(mpz_fdiv_ui(q->z, PP)), Zp );
1461 number
n =
n_Init( static_cast<long>(mpz_fdiv_ui(q->n, PP)), Zp );
1490 WarnS(
"Omitted denominator during coefficient mapping !");
1516 mpz_init_set(u->z,
n->n);
1543 mpz_init_set(u->z,
n->z);
1566 if (a->s!=0)
return FALSE;
1567 number
n=
b;
b=a; a=
n;
1581 bo=(mpz_cmp(bb,
b->z)==0);
1586 if (((a->s==1) && (
b->s==3))
1587 || ((
b->s==1) && (a->s==3)))
1595 mpz_init_set(aa,a->z);
1596 mpz_init_set(bb,
b->z);
1597 if (a->s<2) mpz_mul(bb,bb,a->n);
1598 if (
b->s<2) mpz_mul(aa,aa,
b->n);
1599 bo=(mpz_cmp(aa,bb)==0);
1618 mpz_init_set(
b->n,a->n);
1620 mpz_init_set(
b->z,a->z);
1642 memset(*a,0,
sizeof(**a));
1661 #define GCD_NORM_COND(OLD,NEW) (mpz_size1(NEW->z)>mpz_size1(OLD->z)) 1667 mpz_gcd(
gcd,
x->z,
x->n);
1669 if (mpz_cmp_si(
gcd,1L)!=0)
1671 mpz_divexact(
x->z,
x->z,
gcd);
1672 mpz_divexact(
x->n,
x->n,
gcd);
1673 if (mpz_cmp_si(
x->n,1L)==0)
1706 mpz_add(u->z,
b->z,
x);
1714 if (mpz_cmp(u->z,
b->n)==0)
1720 mpz_init_set(u->n,
b->n);
1752 mpz_mul(
x,
b->z,a->n);
1753 mpz_mul(u->z,a->z,
b->n);
1754 mpz_add(u->z,u->z,
x);
1764 mpz_mul(u->n,a->n,
b->n);
1765 if (mpz_cmp(u->z,u->n)==0)
1778 mpz_mul(u->z,
b->z,a->n);
1779 mpz_add(u->z,u->z,a->z);
1786 if (mpz_cmp(u->z,a->n)==0)
1792 mpz_init_set(u->n,a->n);
1807 mpz_mul(u->z,a->z,
b->n);
1808 mpz_add(u->z,u->z,
b->z);
1815 if (mpz_cmp(u->z,
b->n)==0)
1821 mpz_init_set(u->n,
b->n);
1828 mpz_add(u->z,a->z,
b->z);
1853 mpz_add(a->z,a->z,
x);
1887 mpz_add(u->z,
b->z,
x);
1890 mpz_init_set(u->n,
b->n);
1926 mpz_mul(
x,
b->z,a->n);
1927 mpz_mul(
y,a->z,
b->n);
1931 mpz_mul(a->n,a->n,
b->n);
1941 mpz_mul(
x,
b->z,a->n);
1942 mpz_add(a->z,a->z,
x);
1961 mpz_mul(
x,a->z,
b->n);
1962 mpz_add(a->z,
b->z,
x);
1964 mpz_init_set(a->n,
b->n);
1972 mpz_add(a->z,a->z,
b->z);
2001 mpz_sub(u->z,
x,
b->z);
2009 if (mpz_cmp(u->z,
b->n)==0)
2015 mpz_init_set(u->n,
b->n);
2048 mpz_sub(u->z,a->z,
x);
2056 if (mpz_cmp(u->z,a->n)==0)
2062 mpz_init_set(u->n,a->n);
2099 mpz_mul(
x,
b->z,a->n);
2100 mpz_mul(
y,a->z,
b->n);
2111 mpz_mul(u->n,a->n,
b->n);
2112 if (mpz_cmp(u->z,u->n)==0)
2127 mpz_mul(
x,
b->z,a->n);
2128 mpz_sub(u->z,a->z,
x);
2136 if (mpz_cmp(u->z,a->n)==0)
2142 mpz_init_set(u->n,a->n);
2159 mpz_mul(
x,a->z,
b->n);
2160 mpz_sub(u->z,
x,
b->z);
2168 if (mpz_cmp(u->z,
b->n)==0)
2174 mpz_init_set(u->n,
b->n);
2181 mpz_sub(u->z,a->z,
b->z);
2225 if (u->s==1) u->s=0;
2228 mpz_mul_ui(u->z,
b->z,(
unsigned long)
SR_TO_INT(a));
2240 mpz_mul_ui(u->z,
b->z,(
unsigned long)-
SR_TO_INT(a));
2246 if (mpz_cmp(u->z,
b->n)==0)
2252 mpz_init_set(u->n,
b->n);
2262 mpz_mul(u->z,a->z,
b->z);
2272 if (mpz_cmp(u->z,
b->n)==0)
2278 mpz_init_set(u->n,
b->n);
2286 if (mpz_cmp(u->z,a->n)==0)
2292 mpz_init_set(u->n,a->n);
2298 mpz_mul(u->n,a->n,
b->n);
2299 if (mpz_cmp(u->z,u->n)==0)
2368 mpz_init_set_si(
z->z,
i);
2382 mpz_init_set_si(
z->z,(
long)
i);
2383 mpz_init_set_si(
z->n,(
long)
j);
2395 mpz_init_set(
z->z,
i);
2396 mpz_init_set(
z->n,
j);
2422 #if defined(DO_LINLINE) || !defined(P_NUMBERS_H) 2441 #if MAX_NUM_SIZE == 60 2446 if ( ((((
long)ii)==
i) && ((ii << 3) >> 3) == ii ))
n=
INT_TO_SR(ii);
2470 if (mpz_cmp_si(a->z,0L)==0)
2472 printf(
"gmp-0 in nlIsZero\n");
2538 if ( ((r << 1) >> 1) == r )
2539 return (number)(long)r;
2557 if ( ((r << 1) >> 1) == r )
2580 number u=((number) ((r>>1)+
SR_INT));
2604 if ( ((r << 1) >> 1) == r )
2606 return (number)(long)r;
2628 mpz_mul(aa->z,a->z,
b->z);
2633 mpz_init_set(a->n,
b->n);
2641 mpz_mul(a->n,a->n,
b->n);
2647 #endif // DO_LINLINE 2656 else mpz_init_set(
m, (mpz_ptr)
n->z);
2667 mpz_init_set(
z->z,
m);
2693 mpz_init_set(aa, a->z);
2701 mpz_init_set(bb,
b->z);
2703 mpz_t erg; mpz_t bs; mpz_t bt;
2708 mpz_gcdext(erg, bs, bt, aa, bb);
2710 mpz_div(aa, aa, erg);
2753 rr = mpz_divmod_ui(qq, rrr, a->z, (
unsigned long)
ABS(
SR_TO_INT(
b)));
2767 mpz_divmod(qq, rr, a->z,
b->z);
2787 mpz_gcd(a->z,a->z,
b->z);
2804 else mpz_sub(a->z,a->z,rr->z);
2805 mpz_divexact(a->z,a->z,
b->z);
2812 mpz_t
A,
B,C,
D,
E,
N,P,tmp;
2814 else mpz_init_set(P,nP->z);
2815 const mp_bitcnt_t bits=2*(
mpz_size1(P)+1)*GMP_LIMB_BITS;
2818 else mpz_set(
N,nN->z);
2821 mpz_init2(
A,bits); mpz_set_ui(
A,0L);
2822 mpz_init2(
B,bits); mpz_set_ui(
B,1L);
2823 mpz_init2(C,bits); mpz_set_ui(C,0L);
2825 mpz_init2(
E,bits); mpz_set(
E,P);
2826 mpz_init2(tmp,bits);
2831 mpz_add(tmp,tmp,tmp);
2832 if (mpz_cmp(tmp,P)<0)
2841 if (mpz_cmp_ui(tmp,1)==0)
2848 mpz_init_set(
z->z,
N);
2849 mpz_init_set(
z->n,
B);
2862 mpz_divmod(tmp,
D,
E,
N);
2885 mpz_init((*s)->z); (*s)->s=3;
2887 mpz_init((*t)->z); (*t)->s=3;
2889 mpz_init(
g->z);
g->s=3;
2897 aa=(mpz_ptr)
omAlloc(
sizeof(mpz_t));
2906 bb=(mpz_ptr)
omAlloc(
sizeof(mpz_t));
2913 mpz_gcdext(
g->z,(*s)->z,(*t)->z,aa,bb);
2946 for(
i=rl-1;
i>=0;
i--)
2948 X[
i]=CF->convSingNFactoryN(
x[
i],
FALSE,CF);
2949 Q[
i]=CF->convSingNFactoryN(q[
i],
FALSE,CF);
2956 number
n=CF->convFactoryNSingN(xnew,CF);
2959 number
p=CF->convFactoryNSingN(qnew,CF);
2962 else p2=CF->cfDiv(
p,CF->cfInit(2, CF),CF);
2963 if (CF->cfGreater(
n,p2,CF))
2965 number n2=CF->cfSub(
n,
p,CF);
2966 CF->cfDelete(&
n,CF);
2969 CF->cfDelete(&p2,CF);
2970 CF->cfDelete(&
p,CF);
2972 CF->cfNormalize(
n,CF);
2976 number nlChineseRemainder(number *
x, number *q,
int rl,
const coeffs C)
2987 numberCollectionEnumerator.
Reset();
2989 if( !numberCollectionEnumerator.
MoveNext() )
3004 int normalcount = 0;
3007 number&
n = numberCollectionEnumerator.
Current();
3019 }
while (numberCollectionEnumerator.
MoveNext() );
3026 numberCollectionEnumerator.
Reset();
3028 while (numberCollectionEnumerator.
MoveNext() )
3030 number&
n = numberCollectionEnumerator.
Current();
3032 if( (--normalcount) <= 0)
3046 numberCollectionEnumerator.
Reset();
3048 while (numberCollectionEnumerator.
MoveNext() )
3050 number& nn = numberCollectionEnumerator.
Current();
3063 numberCollectionEnumerator.
Reset();
3065 while (numberCollectionEnumerator.
MoveNext() )
3067 number&
n = numberCollectionEnumerator.
Current();
3078 numberCollectionEnumerator.
Reset();
3080 if( !numberCollectionEnumerator.
MoveNext() )
3103 number& cand1 = numberCollectionEnumerator.
Current();
3113 mpz_init_set(
cand->z, cand1->n);
3118 mpz_lcm(
cand->z,
cand->z, cand1->n);
3123 while (numberCollectionEnumerator.
MoveNext() );
3138 numberCollectionEnumerator.
Reset();
3139 while (numberCollectionEnumerator.
MoveNext() )
3141 number&
n = numberCollectionEnumerator.
Current();
3153 numberCollectionEnumerator.
Reset();
3160 while (numberCollectionEnumerator.
MoveNext() )
3162 number &
n = numberCollectionEnumerator.
Current();
3170 if (r->cfDiv==
nlDiv)
return (
char*)
"QQ";
3171 else return (
char*)
"ZZ";
3185 #if SIZEOF_LONG == 4 3192 fprintf(d->
f_write,
"4 %d ",nnn);
3197 mpz_init_set_si(tmp,nn);
3249 #if SIZEOF_LONG == 8 3278 #if SIZEOF_LONG == 8 3284 default:
Werror(
"error in reading number: invalid subtype %d",sub_type);
3348 r->cfSubringGcd =
nlGcd;
3371 r->cfInpNeg =
nlNeg;
3415 r->has_simple_Alloc=
FALSE;
3416 r->has_simple_Inverse=
FALSE;
3423 number nlMod(number a, number
b)
3445 mpz_mod(r->z,al->z,bl->z);
3450 LONG ui=(int)mpz_get_si(&r->z);
3451 if ((((ui<<3)>>3)==ui)
3452 && (mpz_cmp_si(
x->z,(
long)ui)==0))
3462 #endif // not P_NUMBERS_H 3463 #endif // LONGRAT_CC
LINLINE number nlSub(number la, number li, const coeffs r)
static void nlClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs cf)
const CanonicalForm int s
const CanonicalForm int const CFList const Variable & y
void mpz_mul_si(mpz_ptr r, mpz_srcptr s, long int si)
#define omCheckAddrSize(addr, size)
BOOLEAN nlCoeffIsEqual(const coeffs r, n_coeffType n, void *p)
only used if HAVE_RINGS is defined
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
static int int_extgcd(int a, int b, int *u, int *x, int *v, int *y)
char * nlCoeffName(const coeffs r)
gmp_float exp(const gmp_float &a)
long npInt(number &n, const coeffs r)
static number nlConvFactoryNSingN(const CanonicalForm f, const coeffs r)
BOOLEAN nlGreaterZero(number za, const coeffs r)
number nlModP(number q, const coeffs, const coeffs Zp)
static void nlMPZ(mpz_t m, number &n, const coeffs r)
number _nlMult_aNoImm_OR_bNoImm(number a, number b)
number nlShort1(number x)
number nlNormalizeHelper(number a, number b, const coeffs r)
number ndCopyMap(number a, const coeffs aRing, const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_long_R(const coeffs r)
LINLINE void nlInpAdd(number &a, number b, const coeffs r)
number nlGetDenom(number &n, const coeffs r)
void nlWrite(number a, const coeffs r)
int nlSize(number a, const coeffs)
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
static FORCE_INLINE BOOLEAN nCoeff_is_R(const coeffs r)
#define omCheckIf(cond, test)
#define omFreeSize(addr, size)
LINLINE number nlAdd(number la, number li, const coeffs r)
void nlInpGcd(number &a, number b, const coeffs r)
BOOLEAN nlIsMOne(number a, const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_2toM(const coeffs r)
(), see rinteger.h, new impl.
void nlCoeffWrite(const coeffs r, BOOLEAN details)
number nlIntDiv(number a, number b, const coeffs r)
number nlGetUnit(number n, const coeffs cf)
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
number nlGcd(number a, number b, const coeffs r)
coeffs nlQuot1(number c, const coeffs r)
number nlInit2(int i, int j, const coeffs r)
create a rational i/j (implicitly) over Q NOTE: make sure to use correct Q in debug mode
const char * nlRead(const char *s, number *a, const coeffs r)
void WerrorS(const char *s)
void s_readmpz_base(s_buff F, mpz_ptr a, int base)
CanonicalForm make_cf(const mpz_ptr n)
number nlIntMod(number a, number b, const coeffs r)
number nlInit2gmp(mpz_t i, mpz_t j, const coeffs r)
create a rational i/j (implicitly) over Q NOTE: make sure to use correct Q in debug mode
BOOLEAN nlInitChar(coeffs r, void *p)
void nlWriteFd(number n, const ssiInfo *d, const coeffs)
BOOLEAN nlGreater(number a, number b, const coeffs r)
LINLINE number nl_Copy(number a, const coeffs r)
static number nlInitMPZ(mpz_t m, const coeffs)
real floating point (GMP) numbers
number nlMapZ(number from, const coeffs src, const coeffs dst)
LINLINE BOOLEAN nlIsOne(number a, const coeffs r)
virtual void Reset()=0
Sets the enumerator to its initial position: -1, which is before the first element in the collection.
single prescision (6,6) real numbers
static number nlLcm(number a, number b, const coeffs r)
static number nlMapP(number from, const coeffs src, const coeffs dst)
LINLINE number nlNeg(number za, const coeffs r)
number nlXExtGcd(number a, number b, number *s, number *t, number *u, number *v, const coeffs r)
Coefficient rings, fields and other domains suitable for Singular polynomials.
void s_readmpz(s_buff F, mpz_t a)
const CanonicalForm CFMap CFMap & N
number nlDiv(number a, number b, const coeffs r)
number nlReadFd(const ssiInfo *d, const coeffs)
LINLINE number nlMult(number a, number b, const coeffs r)
number nlInvers(number a, const coeffs r)
number _nlCopy_NoImm(number a)
void _nlInpAdd_aNoImm_OR_bNoImm(number &a, number b)
The main handler for Singular numbers which are suitable for Singular polynomials.
Templated enumerator interface for simple iteration over a generic collection of T's.
int nlDivComp(number a, number b, const coeffs r)
LINLINE void nlInpMult(number &a, number b, const coeffs r)
const ExtensionInfo & info
< [in] sqrfree poly
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
void _nlDelete_NoImm(number *a)
virtual reference Current()=0
Gets the current element in the collection (read and write).
static number nlMapLongR(number from, const coeffs src, const coeffs dst)
static const int SW_RATIONAL
set to 1 for computations over Q
const char *const nDivBy0
LINLINE BOOLEAN nlEqual(number a, number b, const coeffs r)
void nlPower(number x, int exp, number *lu, const coeffs r)
void PrintS(const char *s)
number nlQuotRem(number a, number b, number *r, const coeffs R)
void nlInpIntDiv(number &a, number b, const coeffs r)
number nlExtGcd(number a, number b, number *s, number *t, const coeffs)
LINLINE BOOLEAN nlIsZero(number za, const coeffs r)
(mpz_ptr), see rmodulon,h
void nlGMP(number &i, mpz_t n, const coeffs r)
static void nlNormalize_Gcd(number &x)
BOOLEAN _nlEqual_aNoImm_OR_bNoImm(number a, number b)
number nlShort3_noinline(number x)
static void nlClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs cf)
static CanonicalForm nlConvSingNFactoryN(number n, const BOOLEAN setChar, const coeffs)
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
number nlBigInt(number &n)
void chineseRemainderCached(CFArray &a, CFArray &n, CanonicalForm &xnew, CanonicalForm &prod, CFArray &inv)
void gmp_numerator(const CanonicalForm &f, mpz_ptr result)
void nlNormalize(number &x, const coeffs r)
void chineseRemainder(const CanonicalForm &x1, const CanonicalForm &q1, const CanonicalForm &x2, const CanonicalForm &q2, CanonicalForm &xnew, CanonicalForm &qnew)
void chineseRemainder ( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2,...
number nlChineseRemainderSym(number *x, number *q, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs CF)
const Variable & v
< [in] a sqrfree bivariate poly
number _nlNeg_NoImm(number a)
static number nlShort3(number x)
static number nlRandom(siRandProc p, number v2, number, const coeffs cf)
REvaluation E(1, terms.length(), IntRandom(25))
LINLINE void nlDelete(number *a, const coeffs r)
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
BOOLEAN nlDivBy(number a, number b, const coeffs)
virtual bool MoveNext()=0
Advances the enumerator to the next element of the collection. returns true if the enumerator was suc...
BOOLEAN nlIsUnit(number a, const coeffs)
long nlInt(number &n, const coeffs r)
number _nlMult_aImm_bImm_rNoImm(number a, number b)
nMapFunc nlSetMap(const coeffs src, const coeffs dst)
number _nlAdd_aNoImm_OR_bNoImm(number a, number b)
#define GCD_NORM_COND(OLD, NEW)
long s_readlong(s_buff F)
number nlExactDiv(number a, number b, const coeffs r)
number _nlSub_aNoImm_OR_bNoImm(number a, number b)
number nlMapGMP(number from, const coeffs src, const coeffs dst)
BOOLEAN nlDBTest(number a, const char *f, const int l)
LINLINE number nlInit(long i, const coeffs r)
static char * nlCoeffString(const coeffs r)
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
number nlMapMachineInt(number from, const coeffs, const coeffs)
SI_FLOAT nrFloat(number n)
Converts a n_R number into a float. Needed by Maps.
number nlCopyMap(number a, const coeffs, const coeffs)
static number nlMapR(number from, const coeffs src, const coeffs dst)
number nlGetNumerator(number &n, const coeffs r)
LINLINE number nlCopy(number a, const coeffs r)
void Werror(const char *fmt,...)
const CanonicalForm const CanonicalForm const CanonicalForm const CanonicalForm & cand
number nlFarey(number nN, number nP, const coeffs CF)
void gmp_denominator(const CanonicalForm &f, mpz_ptr result)
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL