OpenVAS Libraries
8.0.3
|
Go to the source code of this file.
Functions | |
tree_cell * | nasl_bn_random (lex_ctxt *) |
tree_cell * | nasl_dh_generate_key (lex_ctxt *) |
tree_cell * | nasl_bn_cmp (lex_ctxt *) |
tree_cell * | nasl_dh_compute_key (lex_ctxt *) |
tree_cell * | nasl_rsa_public_decrypt (lex_ctxt *) |
tree_cell * | nasl_bf_cbc_encrypt (lex_ctxt *) |
tree_cell * | nasl_bf_cbc_decrypt (lex_ctxt *) |
tree_cell * | nasl_dsa_do_verify (lex_ctxt *lexic) |
tree_cell * | nasl_pem_to_rsa (lex_ctxt *lexic) |
tree_cell * | nasl_pem_to_dsa (lex_ctxt *lexic) |
tree_cell * | nasl_rsa_sign (lex_ctxt *lexic) |
tree_cell * | nasl_dsa_do_sign (lex_ctxt *lexic) |
int | generate_script_signature (char *) |
int generate_script_signature | ( | char * | ) |
nasl function
bf_cbc_decrypt(key:key, iv:iv, data:data)
Decrypt the cipher text data using the blowfish algorithm in CBC mode with the key key and the initialization vector iv. The key must be 16 bytes long. The iv must be at least 8 bytes long. data must be a multiple of 8 bytes long.
The return value is an array a with a[0] being the plain text data and a[1] the new initialization vector to use for the next part of the data.
nasl function
bf_cbc_encrypt(key:key, iv:iv, data:data)
Encrypt the plain text data using the blowfish algorithm in CBC mode with the key key and the initialization vector iv. The key must be 16 bytes long. The iv must be at least 8 bytes long. data must be a multiple of 8 bytes long.
The return value is an array a with a[0] being the encrypted data and a[1] the new initialization vector to use for the next part of the data.
nasl function
bn_cmp(key1:MPI1, key2:MPI2)
Compares the MPIs key1 and key2 (given as binary strings). Returns -1 if key1 < key2, 0 if key1 == key2 and +1 if key1 > key2.
nasl function
bn_random(need:numBits)
nasl function
DH_compute_key(p:mpi_p, g:mpi_g, dh_server_pub:mpi_server_pub, pub_key:mpi_client_pub, priv_key:mpi_client_priv)
Computes the Diffie-Hellman shared secret key from the shared parameters p and g, the server's public key dh_server_pub and the client's public and private keys pub_key an priv_key. The return value is the shared secret key as an MPI.
nasl function
dh_generate_key(p:mpi_p, g:mpi_g, priv:mpi_priv)
Generates a Diffie-Hellman public key from the shared parameters p and g and the private parameter priv. The return value is the public key as an MPI.
nasl function
dsa_do_sign(p:mpi_p, g:mpi_g, q:mpi_q, pub:mpi_pub, priv:mpi_priv, data:hash)
Computes the DSA signature of the hash in data using the private DSA key given by p, g, q, pub and priv. The return value is a 40 byte string encoding the two MPIs r and s of the DSA signature. The first 20 bytes are the value of r and the last 20 bytes are the value of s.
nasl function
dsa_do_verify(p:mpi_p, g:mpi_g, q:mpi_q, pub:mpi_pub, r:mpi_r, s:mpi_s, data:hash)
Verify that the DSA signature given by r and s matches the hash given in data using the public DSA key given by p, g, q and pub. Returns 1 if the signature is valid and 0 if it's invalid.
nasl function
pem_to_dsa(priv:PEM, passphrase:PASSPHRASE)
Reads the private key from the string priv which contains a private DSA key in PEM format. Passphrase is the passphrase needed to decrypt the private key. The function returns the parameter "x" of the DSA key as an MPI.
nasl function
pem_to_rsa(priv:PEM, passphrase:PASSPHRASE)
Reads the private key from the string priv which contains a private RSA key in PEM format. Passphrase is the passphrase needed to decrypt the private key. The function returns the parameter "d" of the RSA key as an MPI.
nasl function
rsa_public_decrypt(sig:signature, e:mpi_e, n:mpi_n)
Decrypt the data in signature (usually an rsa-encrypted hash) with the public RSA key given by its parameters e and n. The return value is the decrypted data.
nasl function
rsa_sign(data:hash, priv:pem, passphrase:passphrase)
Signs the data with the private RSA key priv given in PEM format. The passphrase is the passphrase needed to decrypt the private key. Returns the signed data.
In the OpenSSL based nasl, the key was not given in PEM form and with a passphrase. Instead it was given as the RSA parameters e, n and d. libgcrypt always requires all the parameters (including p, g, and u), so this function was changed to simply accept the full private key in PEM form. The one place where it was called had that the key available in that form.