10 #ifndef EIGEN_POLYNOMIAL_UTILS_H
11 #define EIGEN_POLYNOMIAL_UTILS_H
26 template <
typename Polynomials,
typename T>
30 T val=poly[poly.size()-1];
31 for(DenseIndex i=poly.size()-2; i>=0; --i ){
32 val = val*x + poly[i]; }
44 template <
typename Polynomials,
typename T>
50 if( internal::abs2( x ) <= Real(1) ){
56 for( DenseIndex i=1; i<poly.size(); ++i ){
57 val = val*inv_x + poly[i]; }
59 return std::pow(x,(T)(poly.size()-1)) * val;
73 template <
typename Polynomial>
77 typedef typename Polynomial::Scalar Scalar;
80 assert( Scalar(0) != poly[poly.size()-1] );
81 const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
84 for( DenseIndex i=0; i<poly.size()-1; ++i ){
85 cb += internal::abs(poly[i]*inv_leading_coeff); }
95 template <
typename Polynomial>
99 typedef typename Polynomial::Scalar Scalar;
103 while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
104 if( poly.size()-1 == i ){
107 const Scalar inv_min_coeff = Scalar(1)/poly[i];
109 for( DenseIndex j=i+1; j<poly.size(); ++j ){
110 cb += internal::abs(poly[j]*inv_min_coeff); }
124 template <
typename RootVector,
typename Polynomial>
128 typedef typename Polynomial::Scalar Scalar;
130 poly.setZero( rv.size()+1 );
131 poly[0] = -rv[0]; poly[1] = Scalar(1);
132 for( DenseIndex i=1; i< rv.size(); ++i )
134 for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
135 poly[0] = -rv[i]*poly[0];
141 #endif // EIGEN_POLYNOMIAL_UTILS_H