Source code for sympy.printing.tree
def pprint_nodes(subtrees):
"""
[docs] Prettyprints systems of nodes.
Examples
========
>>> from sympy.printing.tree import pprint_nodes
>>> print pprint_nodes(["a", "b1\\nb2", "c"])
+-a
+-b1
| b2
+-c
"""
def indent(s, type=1):
x = s.split("\n")
r = "+-%s\n" % x[0]
for a in x[1:]:
if a == "":
continue
if type == 1:
r += "| %s\n" % a
else:
r += " %s\n" % a
return r
if len(subtrees) == 0:
return ""
f = ""
for a in subtrees[:-1]:
f += indent(a)
f += indent(subtrees[-1], 2)
return f
def print_node(node):
"""
[docs] Returns an information about the "node".
This includes class name, string representation and assumptions.
"""
s = "%s: %s\n" % (node.__class__.__name__, str(node))
if len(node._assumptions) > 0:
for a in node._assumptions:
s += "%s: %s\n" % (a, node._assumptions[a])
return s
def tree(node):
"""
[docs] Returns a tree representation of "node" as a string.
It uses print_node() together with pprint_nodes() on node.args recursively.
See also: print_tree()
"""
subtrees = []
for arg in node.args:
subtrees.append(tree(arg))
s = print_node(node) + pprint_nodes(subtrees)
return s
def print_tree(node):
"""
[docs] Prints a tree representation of "node".
Examples
========
>>> from sympy.printing import print_tree
>>> from sympy.abc import x
>>> print_tree(x**2) # doctest: +SKIP
Pow: x**2
+-Symbol: x
| comparable: False
+-Integer: 2
real: True
nonzero: True
comparable: True
commutative: True
infinitesimal: False
unbounded: False
noninteger: False
zero: False
complex: True
bounded: True
rational: True
integer: True
imaginary: False
finite: True
irrational: False
<BLANKLINE>
See also: tree()
"""
print tree(node)