R: A Language and Environment for
Statistical Computing

Reference Index

The R Core Team

Version 2.15.1 (2012-06-22)

Copyright (©) 1999-2010 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see

http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-07-0

Contents

1 The basepackage 1
base-package 1
Device ..o e e 1
Machine e e e 2
Platform . . L oL e e 4
abbreviate L. e e e e 5
AZTEP .« v o o e e e e e e e e e e e e e e e 7
all . . e 9
alllequal 10
alllnames L e e 11
ANY . . o v e e e e e e e e e e e e e e e e e e e 12
APETINL . . v v v v o v e e e e e e e e e e e e e e e e e e 13
append e e e 14
apply . . e 15
ATES o v e e e e e e e e e e e e e e e 17
Arithmetic e 18
AITAY © o v v v v e 20
asdataframe L e e e 21
as.Date L e e e 23
AS.eNVIFONMENt o ot e e e e e e e e 26
as.function L e 27
as.POSIX* . . . e 28
ASIS . e e e 30
ASSIGN . . . L e 31
assignOPs L e e e 32
attach L e e 34
AT . . . L e e e e e e e e 35
attributes L . L e e e 36
autoload L e 38
backsolve e e 39
basename L e e e 40
Bessel e 41
bindenv e e e 43
body . . . e e e 45
bquote e 46
browser e 47
browserText e e e 48
builtins L e e e 49
DY o e 50
C e e e e e 51
call e e e 52

CONTENTS

callCC e e 53
CallExternal e e 54
capabilities 55
CAL . . o e e e e 57
chind e e e e 58
charexpand L e 61
character e e 62
charmatch 63
chartr L e 64
chol e e e 66
chol2inv 67
class . ..o 68
COl . L e e e 70
Colon e e e 71
COISUMS e e 72
commandATgs e e e e e e e e 74
COMMENE . . . v vt v v e 74
CompariSon e e e e e e e e e e e 75
COMPIEX . . . o o e e e e e 77
conditions L. e e 79
conflicts L e 82
CONNECLIONS . . .« v v v vt e 83
Constants e e e e e e e 91
contributors L. e e e e 92
Control e e e 92
CONVETLETS . . .« v v v e 94
copyright L e e 95
Crossprod 96
Cstack_info e 97
CUMSUIML . . v v v v v e 97
CUL . ot e e e e 98
cutPOSIXt e 100
data.class e e 101
dataframe 102
datamatriX e e e e e e e e e e 105
date e e e 106
Dates e e 107
DateTimeClasses o v i e e e e 108
def .o e 111
debug e e e 113
Defunct e 114
delayedAssign oL 115
deparse e e e e 116
deparseOpts L 117
Deprecated 119
det . . e e e e 119
detach e e e 120
diag e 122
diff . . e e 123
difftime 125
dim ..o e 126

CONTENTS il

docall o L 129
double 130
dput . . .o e 132
drop . . . e e e e 133
droplevels e 134
dump . ..o e 135
duplicated e e 137
dynload 139
eapply e 141
CIZEN v v e e e e e e e 142
encodeString 144
Encoding 145
ENVITONMENE v v et v et e e e e e e e e e e e e e e e 147
EnvVar 149
eval . .. 151
EXISIS . . . e e e 153
expand.grid 155
EXPIESSION .« . v v v v v o e e e e e e e e e e e e e e e e e e e 156
Extract e e e 157
Extract.data.frame 162
Extract.factor 165
Extremes e e 166
factoro 168
file.access e 171
file.choose e e e 172
fileinfo 173
filepath e 174
file.show e e e e e 175
files . . . e 176
files2 e 178
findopackage L 180
findInterval L 181
force L e e e 182
Foreign e 183
formals 186
format e e e e e 187
formatinfo 189
format.pval e 191
formatC e e e 191
formatDL 195
function L e 196
funprog L 197
BC e e e e e e 199
GCHME L e 201
GCIOTLULE o vt it e et e e e e e e e e e e e e 201
BEL o e e e e 202
getDLLRegisteredRoutines L L 204
getLoadedDLLs 205
getNativeSymbollnfo 206
GEUEXE L e e e e e e e e 208
getwd . .. e 210

v

CONTENTS

SIED o vt e e e e e e 211
grepRaw L e 216
groupGeneriCo e 218
SZCOM . o o et e e e e e e e e e 220
hexmode e e e 221
Hyperbolic e 222
ICONV . . o ot e e e e e e e e e e e e 223
icuSetCollate e 225
identical 227
identity e e e e e e e 229
ifelse e e e 229
INTEZET . . . o o o o e e e e e 230
INEraction o v i e e e e e e e e e e e e e e e 232
INEractive e e e e 233
Internal 234
InternalMethods 234
invisible 235
Is.finite L e 235
isfunction L e e e 237
isdanguage 238
1S.0DJECE . . . L e e e e 238
ISR e 239
ISTECUTSIVE . . o v v v e o e o e e e e e e e e e e e e e 240
is.singleo e e e 241
isaunsorted L. L L L L e 241
ISOdatetime e 242
1SS4 . e e e 242
ISSYmMmetric 243
JIEET . o o o e e e e e 244
kappa e 245
kronecker e e 247
HOn_info e e 248
labels e e 249
lapply . . . o e 249
Last.value e e 252
length o e 253
levels e e 254
libPaths e 256
library e 257
library.dynam e e e e 260
License e e e e e e 262
LISt . o e 262
listfiles 264
LSt2enV e e e e 266
load e e 267
locales e 268
log . . o e 270
Logic e 272
logical e e e 274
lowertri 275
IS . e e e e 275

CONTENTS v

make.unique e e e e 278
mapply e e e e 279
margin.table 280
MALOLVEC . . . v v v v e e e e e e e e e e e e e e e e e e 281
match e e e e 281
match.arg L 283
match.call 284
match.fun 285
MathFun e e e 286
matmult e e 287
MATIX . . . ot v o e e e e e e e e e e e e e e 288
maxCol e 290
0T 1 0 291
memCOMPIESS e e 292
MEmOry o o e e e 293
Memory-limits e e 294
memory.profile 295
METEE . v v v e v e 296
IMESSAZE .+ . v v v v e e e e e e e e e e e e e e e e 298
MISSING . . . o v vt e e e e e 299
mode e e e e 300
NA s 302
NAME o v e o e e e e e e e e e e e e e e e e e e e 303
NAMES . . . v v e v e e e e e e e e e e e e e e e e e 304
DATES . .« v o v v e 306
nchar L e e 307
nlevels e e 308
NOQUOLE . . . v o vttt s e e e e e e 309
070} o' [310
normalizePath 311
NotYet e e e e 312
NTOW . . o v e o e 313
ns-dblcolon e e 314
nS-hoOKS e 315
ns-load L L e 316
NS-TOPENV « . v v v v it e e e e e e e e e e e e e e e e e e 318
NULL . . . e e 318
NUMETIC . . . v v v e v e e e e e e e e e e e e e e e e e e 319
NumericConstants e e e e 321
NUMETIC_VETSION v v v v e e e e e e e e e e e e e e e e e e 322
octmode L e e e e e e 323
OMLEXIt e e 324
Ops.Date e e e 325
OPLIONS L e e e 326
order e e e 333
011 336
Paren e 337
PAISE .« o o e e e e e 338
PASte . . . e e e e 339
patheexpand e 341
pmatch. 341

vi

CONTENTS
POSEO.BIIV « . . o v v e e e 344
PIEILY . o o o e e e e e e 344
Primitive e 346
Print . . o o e e e e e 347
print.data.frame L. 348
print.defaulto 349
PrMAtrixX o o e e e e e e e e e e e e e e e 351
PrOC.HIME o oo e e 352
prod . .o e 353
prop.table e 354
pushBack 355
6 356
QR.Auxiliaries e e e 358
QUIt . o e 360
QUOLES o o e e e e e e e 361
R.Version e 362
Random 364
Random.user 368
TANEZE . . .t e e e e e e e e e e e e e e e e e e e 369
rank . ..o e e 370
TapPly . . e e e 372
TAW o o v o e e e e e e e e e e e e e e e e e e e 373
rawConnection L. e e e e e e 374
rawConversion i e e e e e e e e e e e e 375
RAUtSs e 377
readBin e e e 378
readChar e e e 380
readline e e 382
readliines e e 383
readRDS e 384
readRenviron e e e 386
real ..o L e e e 387
Recall e e 387
regfinalizer 388
TEEEX o v v v e 389
regmatches 393
TEIMOVE . v v v v v e 394
TED « v v e 396
replace L e 398
Reserved e 398
TV o o v e e e e e e e e e e e e e e e e e 399
Rhome e 399
rle . . e e e 400
Round e 401
round.POSIXt e e 403
0 404
TOWHCOINAMES e e e e e 405
TOWAMES . . o o v v v e 406
TOWSUIN & o b v v v v e 407
sample e 408
SAVE o bt e e e e e e e e 410

CONTENTS vii

SCAM & . v v v e e e e e e e e e e e e e e 414
search L L e 418
seek .. oL e 418
SO « + e e e e e e e e e e e e e e e 420
seg.Date e 422
seq. POSIXt e 423
SEQUENICE .+ v v v v v v e 424
serialize e 425
SELS . e 426
setTimellimit e 427
showConnections e 428
shQuote e 430
SIZN o . o e e e 431
Signals. L 431
SINK . . L 432
slicedndex e 434
SIOtOp . . . e 434
socketSelect L e 435
SOIVE . . . e e e 436
SOTE o v vt e e e e e e e e 437
SOUTCE & v v v v v e 439
Specialo e 442
SPIt . . e 444
Sprintf . . .o L e e 446
SQUOLE o e e 450
srefile .. L L 452
SEartup . . . o e e e e e e e 454
SLOD .« . o e 457
StOPIfNOt L e e e 458
SEIPHIME L e e 459
Strsplit L 463
SIIEOT . & v v o e e e e e e e e e e e 465
SIITIM o o e e e e e e e e e e e e 466
SLIUCLUIE . . . o o v v ot e e e e e e e e 467
SITWIAD .« v ¢ v v e e e e e e e e e e e e e e e e e e 468
SUDSEt e e 469
SUDSLItULE e 471
SUDSIT . . o o e e e e 472
] 10 0 474
SUMMATY + « v v v v v e 475
SVA . L 476
SWEED « v v e 478
SWItCh . . . e e e 479
Syntaxo e 481
SYS.ZEBNV L e e e e e 482
Sys.getpid e e e 483
Sys.glob e 483
Sys.anfo 484
Sys.docaleconv e 486
SYS.PATENL .« . v vt e 487
Sys.readlink 489

SYSSEENV .« v v vt e e e e e e e e e e e e e e e e e e 490

viii

CONTENTS

Sys.setFileTime e 491
Sys.Sleep e e e e 492
SYS.SOUICE .« o v v v v v it e et e e e e e e e e e e e e 493
Systime o oo e e 494
Sys.which e e e 495
SYSIEBIML L L e 496
systemufile 498
SYSIEMLLME oL e e e e e e e 499
SYSEMZ . . . L. e e e e e e e e e e 500
b e 501
table e e 502
tabulate e e 505
tapply . ..o 506
taskCallback e 507
taskCallbackManager 0 it e e e e e e 509
taskCallbackNames e 511
tempfile L 512
textCoNNection e e e e 513
tilde e 515
HMEZOMNES v v v o e e e e e e e e e e e e e e e e e 516
tOSIING e e 517
LFACE . . . v o o e e e e e e e e e e e e e e 518
traceback 522
trACEMEIMN v v e 523
transform L 525
Trig . . . e e e 526
Y o o e e 527
typeof . . .o 528
UNIQUE .« . v v e 529
unlink e e e e 531
unliSt e e 532
UNNAME v e e e e e e e e e e e e e e e e 533
UseMethod e 534
userhookS L e 536
utf8CoNVersion L e e 538
VECIOT . o v o v e o e e e e e e e e e e e e e e e e e e 539
VECIOrIZE o e e e e e e e 541
WAINING . . . o oo v v e e e e e e e e e e e 542
WAIMINGS « « v v v v v v e 543
weekdays 544
which 546
which.min 547
With . . e e 548
withVisible 550
WIIEE . . . o o e e e e e e e e e e 551
writeLines e 552
XUIrm . . L e e 552
zapsmallo 553
Zpackages e e e e 554

ZUtILS . . L e e e e 555

CONTENTS ix

2 The datasets package 557
datasets-package e e 557
ability.CoV e 557
airmiles e e e 558
AirPassengers L e 559
airquality L 560
anscombe L. L e e e e e e e 561
L) L 562
attitude L L e 563
AUSITES & . v v v e v e e e e e e e e e e e e e e e e e e 564
beavers L e e e e 564
Blsales e 565
BOD . . . e e 566
CATS v o v v e e e e e e e e e e e e e 567
ChickWeight 568
chickwits e e e 569
CO2 . e e 570
COZ . o e e e e e e 571
crimtab L L e e e e 572
diSCOVEIIES o o e e e e 574
DNase e e e 574
esoph . . . e 575
CUIO . & v v v e e e e e e e e e e e e e e e e e 577
eurodiSt L e e e e e 578
EuStockMarkets e e 578
faithful e 579
Formaldehyde 580
freeny L 581
HairEyeColor e e e e 582
Harman23.cor e 583
Harman74.cor e e 583
Indometh 584
Infert e e e 585
InsectSprays e e 586
IMIS . o o e e e e e e e e e e e 586
islands L L e e e 588
JohnsonJohnson 588
LakeHuron e e 589
1 589
LifeCycleSavings 590
Loblolly e 591
longley 592
IyNX . . e e e e 593
morley 593
MECATS o v v e o e e e e e e e e e e e e e e e e 594
nhtemp e e e e 595
Nile . . . e 596
NOMEIMN o o it o e e e e e e e e e e e e e e e 597
occupationalStatus L. L e 598
Orange e 598
OrchardSprays 599

PlantGrowth e 600

X CONTENTS

PIECID . o o o o o 601
presidents e e e e e 602
PIESSUIE . . . o v v v it e e e e e e e e e e e e e e e e e e 602
Puromycin. 603
QUAKES . . . o e e e e e e e e e e 604
randu ... oL e e 605
TIVEIS o v v v i v e e e e e e e e e e e e 606
TOCK . . e 606
Sleep e e 607
Stackloss 608
State L e 609
sunspot.month 610
SUNSPOLYEAT © . v v v v v v v e e e e e e e e e e e e e e e e e e e 611
SUNSPOLS & v v v v v e 611
SWISS o o v v o e e e e e e e e e e e e 612
Theoph e 613
Titanic L e 614
ToothGrowth 616
TEETING . . . v o o e e e e e e e e e e e e e e e e e 616
TEES . . v o e e e e e e e e e e e e e e e 617
UCBAAMISSIONS oo e e e e e e e e e e e 618
UKDriverDeaths 619
UKgas o o e 620
UKLungDeaths 621
USAccDeaths 621
USAITEStS o o e e e 622
USJudgeRatings 622
USPersonalExpenditure 623
USPOP « « v e e e e e e e e e e e e e e 624
VADeaths e 624
volcano e 625
warpbreaks L e e e e 626
R 0] 141 & P 627
WorldPhones 627
WWWusage o oo e 628
3 The grDevices package 631
grDevices-package 631
adjustcolor. 631
as.graphicSANNOt e e e e e 633
I 1] 1) 633
axisTicks 635
boxplot.stats e 636
CAITO . . . o ot e 638
check.options 640
chull o o 641
CIM . bt v vt et e e e e e e e e 642
col2rgb . . . L 642
colorRamp 644
colors 646
contourLines L 647
convertColor L 648

densCols e e 650

CONTENTS xi

dev . . . e 651
dev.capabilities 653
devcapture e e e e e e e 654
devflush L e 654
devinteractive L. e 655
dev.size L e 656
dev2 . . e 657
dev2bitmap e e 659
devAskNewPage 661
Devices e 661
embedFonts 662
extendrangeo 664
getGraphicsEvento 664
GEAY o v e e e e e e e e e e e e e e e e 667
gray.colors 668
hel . o L e 669
Hershey e 671
hSV . L e 674
Japanese 675
make.rgb . ..o 676
n2mfrowo 677
nelass ..o e 678
palette e e e e 679
Palettes 680
PAf . e 682
pdfoptions L. e 686
PICEX . . o o e e e e e 687
plotmatho e 688
PIE o o e e e 693
POSISCIIPL o o e e e 697
postscriptFonts 702
prettyDate L 705
PS-OPHONS o o e e 706
QUATEZ . o ot e e e e e e e e e e e e e e e e 707
quartzFonts 709
recordGraphics L 710
recordPlot 711
524 o 712
rgb2hsv . . Lo 713
savePlot L 715
trans3d 716
TypelFont e e e 717
. 1 718
XITFonts o o e 723
XAg e e e 724
XY.COOTAS .+ . v v o v e e e e e e e 726
xyTable e 727

Xyz.coordS e e 728

xii CONTENTS

4 The graphics package 731
graphics-package L 731
abline 731
AITOWS .+ o o v v v e e e e e e e e e e e e e e e e 733
assocplot . . . L 734
AXIS . . L e 736
AXIS .+ v v e e e e e e e 737
axis. POSIXct o e 739
axTicks e 741
barplot e e e e e 742
DOX . . e 746
boxplot L 747
boxplotmatriX e e e e e 750
DXp . . e 751
cdplot . . . e 753
Clip . . e e 756
COMEOUT .+ . v v v v e 757
convertXY e 759
coplot . . . e 760
CUIVE . vt v v e i e e i e e e e e e e e e e e e e e 763
dotchart 765
filled.contour L e 766
fourfoldplot 769
frame 770
grid ... e 771
hist. . . e 772
hist POSIXt e 775
identify 776
IMAZE . . . o v e e e e e e e e e e e 779
layout 781
legend 783
lines e 788
locator L e 789
matplot . . . L 790
mosaiCPlot e e e e e e 792
001, 795
PAILS . . o o e 797
panel.smooth L e 799
PAT - . o e e e e 800
PEISD - o o o e e e e e e e e e e e e 808
Pie . o e 812
Plot . e 814
plot.dataframe e 815
plotdefault 816
plotdesign. 818
plot.factor L. e e 820
plot.formula L 821
plothistogram 823
plot.table e 824
plotwindow L 825
PIOLXY « o o e 826

CONTENTS xiii

polygono 831
polypath e 833
rasterlmage L. e 835
] 836
TUZ o v o e 837
SCIEEIL « . v v v v e v e 838
SEEMENLS . . o v it e e e e e e e e e e e e 840
smoothScatter e 841
sSpineplot L e e 843
] 72 845
SEIM . . L L e e 849
stripchart L 849
strwidth . . . 0 C o 851
sunflowerplot e 853
Symbolso e 855
TBXE . ot e e e e 857
title e 859
UNIES . . . o o e e e e e e e 861
XSPHNE . . . o . e e e e e 862
5 The grid package 865
grid-package 865
absolute.Size 866
AITOW . o o o et e e e e e e e e e e e e e e e e 867
calcStringMetric 867
convertNative e 869
dataViewport L 870
drawDetails 871
editDetails e 872
gBdit. . . . e 873
getNames 874
GPAT .« . . e e e e e e e e e e 874
gPath L 876
Grid . . . e 877
Grid VIEWpOorts o e e e e e e e e 878
gridadd 881
grid.arrows L . L e e e e e e e e 882
gridbezier 884
grid.cap 886
gridcircle L. e e e 887
grid.clip e e e 888
grid.collection 889
grid.convert e 890
rid.COPY .« o o e 892
grid.CuUIVe e e 893
griddisplay.list e 895
grid DLapply e 896
griddraw L 897
gridedit 898
gridframe 899
gridfunction L 900
grid.get . . . L e e e 902

grid.grabo L e 903

X1V

CONTENTS

grid.grill L 904
grid.grob L e 905
gridlayout 906
gridines 908
grid.Jocator L e e e 910
gridds 911
grid.moOvVe.tO e e e e e e e e e e 913
gridnewpage e 914
gridnull oL 915
gridopack e e 916
gridipath L. 917
gridpplace L 919
grid.plotand.degend L. 920
eridpoints e 921
grid.polygon 922
grid.prettyo e e e e e e 923
erid prompto 924
GrIdLTaster e e e e e e e e e e e 924
gridrecord 926
gridireCt L e 927
gridorefresh L 929
gridremove 929
grid.SEgMENtS e e e 930
grid.Set . .. L e e e e 931
gridsshowlayout 932
grid.show.viewport 933
gridteXt oL e e e e 934
rid.XaxXiS 936
grid. Xspline L e e e e e e e 937
grid.yaXiS e 939
grobName 941
grobWidth L e 941
grobX ..o 942
plotViewport L 943
POP-VIEWPOIL o ot ot e e e e e e e e e e e e e e 943
PUSHLVIEBWPOIt o o o 944
Querying the Viewport Tree L 945
roundrect L. 946
showGrob L 947
ShOWVIEWDPOTIt o o e e e e e e 948
stringWidth oL 949
UNIE . . ot e e e 950
UNILC . o o o o o o 952
unitlength 0oL 953
UNIEPMIN . . . oo oo e e e e e e 953
1001 1 =) o2 954
validjust Lo 955
validDetails 955
vpPath 956
widthDetails 957
Working with Viewports 958

xDetails e e e e 960

CONTENTS XV

xsplinePoints L 961
6 The methodspackage 963
methods-package 963
BasicFunsList L e e e 964
AS o e e e e e e e e e e e 964
BasicClasses e e e e e 968
callGeneric e e e 970
callNextMethod e 971
CaNCORICE v o v v o e e e e e e e e e e e 973
chind2 L 974
Classes o e e e e e 975
classesTOAM e e 978
className e e 980
classRepresentation-class 982
Documentation 983
dotsMethods 984
environment-class L. e e 987
envRefClass-class e 988
evalSource L e e e 989
findClass e 992
findMethods 993
fixPrel.8 e 996
genericFunction-class 997
GenericFunctions e e 998
getClass L e e e 1001
getMethod e 1003
getPackageName 1005
hasATZ e e e 1006
implicitGeneric e e e e 1007
inheritedSlotNames e 1009
initialize-methods 1010
IS o o e e e e e e 1011
isSealedMethod 1016
language-class e e 1018
LinearMethodsList-class 1019
makeClassRepresentation Lol 1019
method.skeleton 1020
MethodDefinition-class e 1021
Methods e 1022
MethodsList-class e 1030
MethodWithNext-class e 1031
NEW . . i i i e e e e e e e e e e e 1032
nonStructure-class L. 1034
ObjectsWithPackage-class 1035
promptClass e e e e e 1035
promptMethods 1037
ReferenceClasses e 1038
CEPresentation e e e e 1047
S3Parto e e 1048
S4groupGenerico e 1051
SClassExtension-class e 1054

selectSuperClIasses e e e 1055

Xvi CONTENTS
SetClass e 1056
setClassUnion 1060
SEtGENETIC . . . v . v v e e e e e e 1061
setLoadActions 1066
setMethod 1069
setOIdClass e 1072
ShOW . . . e 1076
showMethods 1078
signature-class e e e e e e 1080
SlOt . . e 1080
StructureClasses e 1082
testinheritedMethods 1084
TraceClasses o v i i i e e e e e e e e e 1086
validObject e e e e e e 1087

7 The splines package 1091
splines-package 1091
asVeCtor e e e 1091
backSpline 1092
DS e 1093
interpSpline 1094
DS o o o e e e e e e e e e e e e e e e e e e 1095
periodicSpline 1096
polySpline 1097
predict.bs 1098
predict.bSpline 1099
splineDesign e 1100
splineKnots 1102
splineOrder 1102
XYVECIOT o o o e e e e e 1103

8 The stats package 1105
stats-package L L e 1105
.checkMFCIlasses e e e e 1105
act . . e 1106
acf2AR . . . e e e 1108
addl e 1109
addmargins e e e e e e 1111
AZETEZALE i e 1113
AIC . e e 1116
alias e e 1117
ANOVA . . v v v e e e e e e e e e e e e e e e e e e 1119
anova.glm e 1119
anova.lm L L L e 1121
anova.mlm. L e e e 1122
ansariteSt e e e e e e e e e e e e 1124
10 1127
approxfun L e e 1128
1 1130
arolS e e e e e 1133
AMIMA . . . o o e o e e e e e e e e e e e e e e e e e e 1135
arima.Sim ot e e e e e e e e e e e e e e e e 1139

arima0 e e e 1140

CONTENTS Xvil

ARMAacf e 1143
ARMAOMA e e e 1145
as.helust L L e e 1145
asOneSidedFormula 1146
AVE . o o e 1147
bandwidth e 1148
bartlett.test L e e e e e e 1149
Beta e e 1151
binomutest e e e e e e 1153
Binomial 1154
biplot e 1156
biplot.princomp 1157
birthday e 1158
Box.test e e 1160
C o e e 1161
o 1 o) 1162
case+variablenames e 1163
Cauchy e e 1164
chisqutest 1165
Chisquare e 1168
cmdscale L. e e 1170
coef . . e e 1172
COmPIete.CASES e e e e e 1173
confint e e 1174
constrOptim e e e 1175
CONIAST v o o e e e e e e e e e e e e e e e 1177
CONMTASES . . o o v o v e e e e e e e e e e e e e e e e e e e 1178
CONVOIVE e e e 1179
COPhENELIC o o it e e e e e e e e 1181
070) O 1182
COLIESE . . . o o o o e e e e e 1185
COV.WE . o ot e e e e e e e e e e e e 1187
CPEIAIL . . . v v v vttt e e e e e e e e e e e e 1188
CULTEE . . . o v e i e e e e e e e e e e e e e e e 1189
decompose e e e e e e e 1190
deleteresponse 1192
dendrapply 1193
dendrogram L e e e e e 1194
density 1198
deriv e e 1202
deviance e e e e e e e 1204
dfiresidual 1205
diffinv e 1206
dist. . . . e e e e 1207
Distributions 1210
dummy.coef e 1211
ecdf . .. 1212
effaovlist e 1214
effects e 1215
embed L e 1217
expand.model.frame 1217

Exponential 1218

XViii

CONTENTS

extractAIC e 1220
factanal 1221
factor.scope 1225
family e e 1226
FDist e e e e 1229
i A 1231
filter e e 1232
fishertest L e e 1233
fitted e 1236
fivenum L e e 1237
fligner.test L e e 1237
formula 1239
formulanls 1241
friedman.test 1242
ftable e 1244
ftableformula 1245
GammaDist L e 1247
GEOMELIIC o i e e e e e e e e e e 1249
getlnitial 1250
glm ..o 1251
glm.control L e e 1256
glmsummaries L. 1257
helust e e e e 1258
heatmap e e e e e 1261
HoltWinters e 1264
Hypergeometric 1267
identify.hclust Lo 1268
influence.measures 1270
INMEZTALE v o e e e e e e e e e e e e e e e e e 1273
interaction.plot 1275
IQR . . e 1277
is.empty.model L. L e 1278
ISOTEZ . . . o o o e 1278
KalmanLike e 1280
kernapply e e 1281
kernel e e 1283
kmeans e e e 1284
kruskal.test L L e e 1287
Ks.test e e e 1288
ksmooth 1291
lag . . . e 1292
lag.plot L 1293
line e 1294
Im .. e 1295
Imfit . . . e 1298
Iminfluence 1300
Im.summaries e e e e e e 1301
loadings 1303
JOSS . . . o e e e e e e 1304
loess.control e e e 1306
Logistic e 1307

logLik o L 1308

CONTENTS Xix

loglin 1310
Lognormal e 1312
LOWESS e e e e e e e 1313
Isddiag o 1314
Isprint L e 1315
Isfit . . e 1316
mad . ..o e e e e 1317
mahalanobis L 1318
make.link 1319
makepredictcall oL 1320
MANOVA .+ & v v v v v v e 1321
mantelhaen.test 1322
mauchly.test e e e e 1324
MCNEMALLESt ot i e ot e e e e e e e e e e e e e e e e 1326
median 1327
medpolish L 1328
model.extract L 1330
model.frame e e e 1331
model.matrix e e 1333
model.tables L L e e e 1334
monthplot e e e e e 1336
mMOOd.tESt e e e e e e e e e e e 1338
Multinom e 1339
NAACHON .« . v v v v e e e e e e e e e e e e e e e e e e 1340
NA.CONLIZUOUS .« . . . v v v it e it e e e e et e e e e e 1341
nafail 1342
NAPTING . . . o v o o e e e e e e e e e e e e e 1343
naresid L. e e e e e e e e e e 1343
NegBinomial e 1344
NEXIN e e e e e e e e e e e e e e 1346
NIM . . e e e e 1347
nlminb e e e e e 1349
NIS . . e e e e e e e 1352
nls.control L. 1357
NLSStASYMPLOtiC v v o v v e e e e e e e e e e e e e e e e 1358
NLSstClosestX o e e e e 1359
NLSStLfASYMPLOte o o oo e e e e 1359
NLSStRtASYmMptote ot e e e e 1360
nobs . . . L e e 1361
Normal e e e e 1362
numericDeriv oL 1363
offset e e e e e 1364
ONEWAY.LESE . . o v vt i o e 1365
OPtIM L e 1366
OPLIMIZE v ot et e e e e e 1371
orderdendrogram e e e 1373
padjust . ..o e 1374
PAIrWISe.Prop.test e e 1376
PAlTWISE.LIESt L e e e e e e e 1377
pairwise.tableo 1378
pairwise.wilcox.test L. 1379

plotact e 1380

XX

CONTENTS

plotdensity 1381
plotHoltWinters e e 1382
plotisoreg 1383
plotIm L e e e 1384
PlOLPPr .« . e 1387
plotprofilenls 1388
PIOLSPEC . . . o o o e e e e e e 1389
plotstepfun 1390
PIOtES . o e 1392
Poisson 1394
POISSOMLEES e e 1395
POly . e 1397
POWET .« o o e e e e e e e e e 1398
poweranova.est Lo 1399
POWELPIOP.ESt o o v ot e e e e 1400
POWELLIESt o L e e e e e e 1401
PPtest 1403
PPOINES . . . o o o o e e e e e e e e e e e e 1404
PP - o o e 1405
PICOIMD . . . ot ittt e e e e e e e e e e 1408
predict e e e e 1410
predict. Arima e e 1411
predict.glm 1412
predict HoltWinters e 1414
predictlmo 1415
predict.loesso 1417
predictnls e 1419
predict.smooth.spline L 1420
Preplot e e e e 1421
PriNCOMP o oo e e e e e e e e 1422
print.power.htest. L. L 1424
PUiNtES . o . o e e e e e e e e e 1425
printCoefmat 1426
profileo 1427
profilenls e 1428
PIOJ o o e 1429
PIOPAESt « . o o e e e 1431
prop.trend.test L. L e e e e e 1433
0 T 0) 1 o PP 1434
quade.test e e e e e e e e e e e e e 1435
quantile 1437
r2dtable L 1439
read.ftable 1440
recthclust L L 1442
relevel 1443
reorderdefaulto 1443
reorder.dendrogram L. oL oL e 1444
replications L e 1445
reshape e e 1447
residuals L 1449
runmed ... oL L 1450

rWishart e e e 1452

CONTENTS XxXi

scatter.smootho 1454
screeplot L L e e e 1455
SA 1456
SE.CONIIASE . . o v v v v v v e e e e e e e e e e 1456
selfStart L 1458
setNames 1460
Shapiro.test e e e e e 1461
SignRank 1462
simulate e 1463
SmMooth oL e 1465
smooth.spline L e 1467
smoothEnds 1470
sortedXyData e 1471
SPEC.AT « v v o v e e e e e e e e e e e e e e e e e e e 1472
SPEC.PEIAML .+ o ¢ o v e e e e e e e e e e e e e e e 1473
SPEC.LAPET .« . v i e e e e e e e e e e e e e e e e e e 1475
SPECLIUIM . . o o v o oo it e e e e e e e e e e e e e e 1476
splinefun e 1478
SSasymp e e 1480
SSasympOff L 1481
SSasympOrig e e e 1482
SSDIEXP . .« . o e 1483
SSD . 1484
SSfol . e 1485
SSEpl . 1486
SSEOMPertz e e 1487
SSlogis e 1488
SSmicmeno e 1489
SSweibull L 1490
Start e 1491
StAt.ANOVA Lo e e e e e 1492
stats-deprecated L. L e e e e 1493
SIED . . . e 1493
stepfun.o 1495
StL 1497
stimethods L 1499
StructTS . . . e 1500
SUMMATY.A0V .« o v v v e v e 1502
summary.glmo e e e e 1504
summary.Im e e e 1506
SUMMATY.MANOVA . . . o v v e e et e e e e e e et e e e e e e e e 1507
summary.nls e 1509
SUMMATY.PINCOMP .+ .« o v v v v v e e e e e e e e e e e e e e e e e e e 1510
SUPSIMU v v vttt e e e e e e e e e e e e e e 1511
SYMOUIML . .« ¢ o v v vt e et e et e e e e e e e e e e e e e e e e 1512
LIBSE . . o e e e 1515
TDist . . . e 1517
termplot e 1519
TBIMIS o e e e e e e e 1521
terms.formula 1521
terms.object e e 1522

HINE . . . o e e e e e e e e 1524

XXii

9 The stats4 package
stats4-package

10 The tcltk package

tsplot
tS.UNION
tsdiag
BSP « o
tsSmooth
Tukey
TukeyHSD
Uniform
UNITOOL . .« v v v v v e e e
update
update.formula
vartest
VarimaxXo e e e e e e
VCOV o v v e e e e e e e e e e
Weibull
weighted.mean
weighted.residuals
weights L.
wilcox.test L. Lo
Wilcoxon

coef-methods

confint-methods
logLik-methods
mle,
mle-class

plot-methods

profile-methods
profile.mle-class

show-methods

summary-methods
summary.mle-class
update-methods

vcov-methods

tcltk-package

Tcllnterface
tclServiceMode

TkCommands

tkpager L.

tkProgressBar

tkStartGUIL
TkWidgetcmds
TkWidgets

tk_choose.dir

CONTENTS

CONTENTS Xxiil

tk_choose.files e 1583
tk_messageBoX e e 1584
tk_select.list 1585
11 The tools package 1587
tools-package e e e 1587
add_datalist e 1587
bibstyle e 1588
buildVignettes 1589
charsets 1590
checkFF e 1591
checkMDSsums e 1592
checkRd 1593
checkRdaFiles e 1595
checkTnF e 1596
checkVignettes 1596
codoC . . . e 1598
compactPDF 1599
delimMatch e 1601
dependsOnPkgs L 1602
encoded_text_to_latex e 1602
fileutils 1604
getDepList. e e e 1605
HTMLheader e 1607
HTMLIinks e 1608
installFoundDepends 1608
mdSsum e e e e e e 1609
package.dependencies Lo 1610
package_dependencieso e e 1610
parselateXo e e e e e e e 1611
parse_Rd . . . oL 1612
pskill . . e 1614
PSIECE .« . o oo e 1615
QC . e 1616
RAZHTML 1617
Rd2txt_options 1619
RAiff e 1621
Rdindex e e 1622
RdTextFilter 1622
Rdutils 1623
read.00Index 1624
readNEWS 1625
showNonASCII e 1626
startDynamicHelp 1627
SweaveTeXFilter e 1628
testlnstalledPackage 1629
texi2dvi ... L 1630
toHTML e 1631
tools-deprecated L. 1632
toRd . . . e 1632
undoc ... L e 1633
vignetteDepends L e 1634

write_ PACKAGES 1635

XXiV CONTENTS

XEOUEXE . . . o o o e e e 1636
12 The utils package 1639
utils-package 1639
adisto e 1639
alarm ... e 1641
APTOPOS + + o v e 1642
ATEEEXEC .+« o v v v v e e e e e e e e e e e e e e e e e e e 1643
aspell . . . L e 1645
aspell-utils 1646
available.packages 1647
BATCH e 1649
bibentry e 1650
browseEnv 1653
browseURL e 1654
browseVignettes e 1656
bug.report e e e e e e e 1657
CAPLUTE.OULPUL o v v v o e 1659
chooseBioCmirror. L. e 1660
chooseCRANMIrror e 1660
CItAtION e e 1661
CItEntry L 1663
close.socket 1663
combn e 1664
compareVersion 1665
COMPILE e 1666
contriburl 1667
countfields L 1667
CrEALE.POSE « . v v v v e o e 1668
data e 1670
dataentry L 1671
debugger 1673
demo 1675
download.file 1677
download.packages e 1679
edit . . . 1680
edit.dataframe 1681
example 1683
file.edit 1685
file_test e 1686
findLineNum 1687
X . e 1688
flush.console 1689
format L 1690
getAnywhere L 1691
getFromNamespace e e e e e e 1692
getS3method L 1693
glob2rx . ..o 1694
globalVariables 1695
head L 1696
help . . . e 1698
helprequest e e e 1701

help.search e 1702

CONTENTS XXV

help.start 1704
INSTALL e 1705
install.packages 1707
installed.packages e 1711
LINK . . e 1712
localeToCharset i e e e e e e e 1713
ISt . 1714
MaINtaAINer ot o e e e e e e e e e e e e e e e e e 1715
make.packages.html oL 1716
make.socket 1717
MEMOTY.S1Z€ . . « . v v v v e et et e e e e e e e e e e e e e e e e 1718
001S) 1L 1719
methods L. 1720
mirrorAdmino e e e e e e 1721
modifyList. 1722
NEWS . o v vttt e e e e e e e e e e e e e e e e 1722
NSl . . e e 1724
ODJECL.SIZE o o i e e e e e e e e 1725
package.skeleton 1726
packageDescription 1727
packageStatus L e e e e e 1729
PABE e 1730
PEISON .« o o vttt e e e e e e 1731
PkgUtils o e 1734
PIOMPL . . . L o o e e e e e e e 1735
promptData 1736
promptPackage 1737
QUESHON e e e 1738
e8] 1010741 P 1740
readDIF e 1745
read.fortran L e e e 1747
read fWf . . L L L 1748
read.socket L. L e e 1750
read.table L L 1751
TECOVET « v v v v v e e e et e e e e e e e e e e e e 1755
relist e e e e e 1757
REMOVE e 1759
remove.packages L L 1760
TEMOVESOUICE . . . v v v v v v e e e e e e e e e e e e e e e e e e 1760
RHOME e 1761
TOMAN . o o v v v v e 1761
Rprof . . . e 1762
Rprofmem e 1763
Rscript o o e 1764
RShowDoc e 1765
RSiteSearch 1766
TEAZS . o o o e e e e e e e e e e e e e e e e e e 1768
Rtangle e 1769
RweaveLatex e 1771
savehistory 1774
select.list L 1776

sessionlnfo L 1777

XXV1i

Index

CONTENTS

SetRepositories 1778
SHLIB e 1779
sourceutilso 1780
StACK . . . L e e 1782
] 3 1783
summaryRprof 1786
SWEAVE . . . o o o e e e 1787
SweaveSyntConv oL e e e e e e 1789
1 1790
toLateX e e e e 1792
txtProgressBar. oL 1793
EYPE.CONVEIT v v v it it et e e e e e e e e 1794
LU0 2 P 1795
UNZIP .+ v o vt e e e e e e e e e e e e e e e e e e e 1797
update.packages L. 1798
url.show L L 1800
URLencode 1801
utils-deprecated L e e e 1802
VIEW . . . e 1802
VIgNette L e 1803
write.table L. L 1805
ZID o o e e e 1807
1809

Chapter 1

The basepackage

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use library(help="base")

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the active
device (see dev.cur) is stored in .Device . Both are symbols and so appear in the base namespace.

Value

.Device is a length-one character vector.

.Devices is a pairlist of length-one character vectors. The first entry is always "null device"
and there are as many entries as the maximal number of graphics devices which have been simul-
taneously active. If a device has been removed, its entry will be "™ until the device number is
reused.

.Machine

.Machine

Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations of
R use 32-bit integers and almost all use IEC 60559 floating-point (double precision) arithmetic, all
but the last two values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur. On a
typical R platform the smallest positive double is about 5e-324.

Value

A list with components

double.eps

double.neg.eps

double.xmin

double.xmax

double.base

double.digits
double.rounding

the smallest positive floating-point number X such that 1 + X != 1. It equals
double.base ” ulp.digits if either double.base is 2 or double.rounding
is 0; otherwise, it is (double.base " double.ulp.digits) / 2 . Normally
2.220446e-16

a small positive floating-point number X such that 1 - x != 1.
It equals double.base ~ double.neg.ulp.digits if
double.base is 2 or double.rounding is 0; otherwise, it is
(double.base " double.neg.ulp.digits) / 2 . Normally 1.110223e-16
As double.neg.ulp.digits is bounded below by -(double.digits + 3) ,
double.neg.eps may not be the smallest number that can alter 1 by subtraction.

the smallest non-zero normalized floating-point number, a power of the radix,
i.e., double.base " double.min.exp . Normally 2.225074e-308

the largest normalized floating-point number. Typically, it is equal to
(1 - double.neg.eps) * double.base ~ double.max.exp , but on
some machines it is only the second or third largest such number, being too small
by 1 or 2 units in the last digit of the significand. Normally 1.797693e+308
Note that larger unnormalized numbers can occur.

the radix for the floating-point representation: normally 2.

the number of base digits in the floating-point significand: normally 53.

the rounding action, one of

0 if floating-point addition chops;

1 if floating-point addition rounds, but not in the IEEE style;

2 if floating-point addition rounds in the IEEE style;

3 if floating-point addition chops, and there is partial underflow;

.Machine 3

4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;

5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow.

Normally 5.

double.guard the number of guard digits for multiplication with truncating arithmetic. It is
1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and O otherwise.
double.ulp.digits
the largest negative integer i such that 1 + double.base " i = 1, except
that it is bounded below by -(double.digits + 3) . Normally -52.
double.neg.ulp.digits
the largest negative integer i such that 1 - double.base " i I= 1 , except
that it is bounded below by -(double.digits + 3) . Normally -53.
double.exponent
the number of bits (decimal places if double.base is 10) reserved for the repre-
sentation of the exponent (including the bias or sign) of a floating-point number.
Normally 11

double.min.exp the largest in magnitude negative integer i such that double.base ” i is posi-
tive and normalized. Normally -1022.

double.max.exp the smallest positive power of double.base that overflows. Normally 1024

integer.max the largest integer which can be represented. Always 2147483647
sizeof.long the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not
Windows).

sizeof.longlong
the number of bytes in a C long long type. Will be zero if there is no such type,
otherwise usually 8.

sizeof.longdouble
the number of bytes in a C long double type. Will be zero if there is no such
type, otherwise possibly 12 (most 32-bit builds) or 16 (most 64-bit builds).

sizeof.pointer the number of bytes in a C SEXRype. Will be 4 on 32-bit builds and 8 on 64-bit
builds of R.
Note

sizeof.longdouble only tells you the amount of storage allocated for a long double (which are

used internally by R for accumulators in e.g. sum and can be read by readBin). Often what is

stored is the 80-bit extended double type of IEC 60559, padded to the double alignment used on the

platform — this seems to be the case for the common R platforms using ix86 and x86_64 chips.
References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters. Trans-

actions on Mathematical Software, 14, 4, 303-311.

See Also

.Platform for details of the platform.

Examples

.Machine

.Platform

or for a neat printout
noquote(unlist(format(.Machine)))

.Platform

Platform Specific Variables

Description

.Platform is a list with some details of the platform under which R was built. This provides means
to write OS-portable R code.

Usage

.Platform

Value

A list with at least the following components:

OS.type

file.sep

dynlib.ext

GUI

endian

pkgType

path.sep

r_arch

character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

character string, giving the file separator used on your platform: "/" on both
Unix-alikes and on Windows (but not on the once port to Classic Mac OS).

character string, giving the file name extension of dynamically loadable
libraries, e.g., ".dII" on Windows and ".s0" or ".slI" on Unix-alikes. (Note
for Mac OS X users: these are shared objects as loaded by dyn.load and not
dylibs: see dyn.load .)

character string, giving the type of GUI in use, or "unknown"if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘-g’
command-line flag ("X11", "Tk"), "AQUA'(running under R.app on Mac OS
X), "Rgui” and "RTerm"(Windows) and perhaps others under alternative front-
ends or embedded R.

character string, "big" or "little” , giving the endianness of the processor in
use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

character string, the preferred setting for options("pkgType") . Values
"source" , "mac.binary.leopard" and "win.binary" are currently in use.

character string, giving the path separator, used on your platform, e.g.,
on Unix-alikes and ";" on Windows. Used to separate paths in environment
variables such as PATHnd TEXINPUTS

character string, possibly
used in this build of R.

. The name of an architecture-specific directory

abbreviate 5

AQUA
.Platform$GUI is set to "AQUAlnder the Mac OS X GUI, R.app. This has a number of conse-
quences:
* the DISPLA¥nvironment variable is set to ":0" if unset.
* appends ‘/usr/local/bin ’ to the PATHnvironment variable.
* the default graphics device is set to quartz .

* selects native (rather than Tk) widgets for the graphics = TRUBptions of menwand
select.list

* HTML help is displayed in the internal browser.

* The spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

See Also

R.version and Sys.info give more details about the OS. In particular, R.version$platform is
the canonical name of the platform under which R was compiled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

Examples

Note: this can be done in a system-independent way
by file.info()$isdir
if(.Platform$0S.type == "unix") {
system.test <- function(...) { system(paste("test", ...)) == 0 }
dir.exists <- function(dir)
sapply(dir, function(d) system.test("-d", d))

dir.exists(c(R.home(), "ftmp", "~", "INO"))# > T T T F
}
abbreviate Abbreviate Strings
Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict=TRUE.

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept”, "both.sides"))

6 abbreviate

Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character .
minlength the minimum length of the abbreviations.
use.classes logical (currently ignored by R).
dot logical: should a dot (".") be appended?
strict logical: should minlength be observed strictly? Note that setting strict=TRUE
may return non-unique strings.
method a string specifying the method used with default "left.kept” , see ‘Details’
below.
Details

The algorithm (method = "left.kept") used is similar to that of S. For a single string it works as
follows. First all spaces at the beginning of the string are stripped. Then (if necessary) any other
spaces are stripped. Next, lower case vowels are removed (starting at the right) followed by lower
case consonants. Finally if the abbreviation is still longer than minlength upper case letters are
stripped.

Characters are always stripped from the end of the word first. If an element of names.argcontains
more than one word (words are separated by space) then at least one letter from each word will be
retained.

Missing (NA values are unaltered.

If use.classes is FALSHhen the only distinction is to be between letters and space. This has NOT
been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates in
the original names.arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic internal
abbreviate() algorithm is applied to the characterwise reversed strings; if there are still dupli-
cated abbreviations and if strict=FALSE as by default, minlength is incremented by one and new
abbreviations are found for those elements only. This process is repeated until all unique elements
of names.arghave unique abbreviations.

The character version of names.argis attached to the returned value as a names argument: no other
attributes are retained.

Warning

This is really only suitable for English, and does not work correctly with non-ASCII characters in
multibyte locales. It will warn if used with non-ASCII characters.

See Also

substr .

agrep 7

Examples

X <- c("abcd", "efgh", "abce")
abbreviate(x, 2)
abbreviate(x, 2, strict=TRUE)# >> 1st and 3rd are == "ab"

(st.abb <- abbreviate(state.name, 2))
table(nchar(st.abb))# out of 50, 3 need 4 letters :
as <- abbreviate(state.name, 3, strict=TRUE)
as[which(as == "Mss")]

method="both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate(state.name, 2, method="both")
table(nchar(st.ab2))

Compare the two methods:

chbind(st.abb, st.ab2)

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within each element of the string
X (the second argument) using the generalized Levenshtein edit distance (the minimal possibly
weighted number of insertions, deletions and substitutions needed to transform one string into an-
other).

Usage

agrep(pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, value = FALSE, fixed = TRUE,
useBytes = FALSE)

Arguments
pattern anon-empty character string or a character string containing a regular expression
(for fixed = FALSH to be matched. Coerced by as.character to a string if
possible.
X character vector where matches are sought. Coerced by as.character to a

character vector if possible.

max.distance Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length times the maximal transformation cost (will be
replaced by the smallest integer not less than the corresponding fraction), or a
list with possible components

cost: maximum number/fraction of match cost (generalized Levenshtein dis-
tance)

all : maximal number/fraction of all transformations (insertions, deletions and
substitutions)

insertions : maximum number/fraction of insertions
deletions : maximum number/fraction of deletions
substitutions : maximum number/fraction of substitutions

costs

ignore.case

value

fixed

useBytes

Details

agrep

If cost is not given, all defaults to 10%, and the other transformation number
bounds default to all . The component names can be abbreviated.

bl

a numeric vector or list with names partially matching ‘insertions °,
‘deletions ’ and ‘substitutions ’ giving the respective costs for computing
the generalized Levenshtein distance, or NULL(default) indicating using unit
cost for all three possible transformations. Coerced to integer via as.integer
if possible.

if FALSEthe pattern matching is case sensitive and if TRUEcase is ignored
during matching.

if FALSEa vector containing the (integer) indices of the matches determined is
returned and if TRUE vector containing the matching elements themselves is
returned.

logical. If TRUdefault), the pattern is matched literally (as is). Otherwise, it is
matched as a regular expression.

logical. in a multibyte locale, should the comparison be character-by-character
(the default) or byte-by-byte.

The Levenshtein edit distance is used as measure of approximateness: it is the (possibly cost-
weighted) total number of insertions, deletions and substitutions required to transform one string

into another.

As from R 2.10.0 this uses tre by Ville Laurikari (http://http://laurikari.net/tre/), which
supports MBCS character matching much better than the previous version.

The main effect of useBytesis to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales. It inhibits the conversion of inputs with marked encodings, and is forced if any
input is found which is marked as "bytes" .

Value

Either a vector giving the indices of the elements that yielded a match, or, if value is TRUEhe
matched elements (after coercion, preserving names but no other attributes).

Note

Since someone who read the description carelessly even filed a bug report on it, do note that this
matches substrings of each element of X (just as grep does) and not whole elements. See adist in
package utils, which optionally returns the offsets of the matched substrings.

Author(s)

Original version by David Meyer. Current version by Brian Ripley and Kurt Hornik.

See Also

grep

http://http://laurikari.net/tre/

all 9

Examples

agrep("lasy"”, "1 lazy 2")

agrep("lasy”, c(" 1 lazy 2", "1 lasy 2"), max = list(sub = 0))
agrep("laysy”, c("1 lazy", "1", "1 LAZY"), max = 2)

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE)
agrep("laysy”, c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage
all(..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NAvalues are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summargroup generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let X denote the concatenation of all the logical vectors in ... (after coercion), after removing NA
if requested by na.rm = TRUE

The value returned is TRUE all of the values in x are TRUincluding if there are no values), and
FALSES at least one of the values in X is FALSEOtherwise the value is NA(which can only occur if
na.rm = FALSEnd ... contains no FALSKalues and at least one NAvalue).

S4 methods

This is part of the S4 Summargroup generic. Methods for it must use the signature X, ..., na.rm
Note

That all(logical(0)) is true is a useful convention: it ensures that

all(all(x), allty)) == all(x,y)

even if X has length zero.

10 all.equal

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ of all , and stopifnot(*) which is an all(*) ‘insurance’.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal(x,y) is a utility to compare R objects X and Y testing ‘near equality’. If they are
different, comparison is still made to some extent, and a report of the differences is returned. Don’t
use all.equal directly in if expressions—either use iSTRUE(all.equal(....)) or identical
if appropriate.

Usage
all.equal(target, current, ...)
S3 method for class 'numeric'
all.equal(target, current,

tolerance = .Machine$double.eps » 0.5,
scale = NULL, check.attributes = TRUE, ...)

attr.all.equal(target, current,
check.attributes = TRUE, check.names = TRUE, ...)

Arguments
target R object.
current other R object, to be compared with target .
Further arguments for different methods, notably the following two, for numer-
ical comparison:
tolerance numeric > 0. Differences smaller than tolerance are not considered.
scale numeric scalar > 0 (or NULL See ‘Details’.

check.attributes
logical indicating if the attributes(.) of target and current should be
compared as well.

check.names logical indicating if the names(.) of target and current should be compared
as well (and separately from the attributes).

all.names

Details

11

all.equal is a generic function, dispatching methods on the target argument. To see the available
methods, use methods("all.equal™) , but note that the default method also does some dispatching,

e.g. using the raw method for logical targets.

Numerical comparisons for scale = NULL(the default) are done by first computing the mean abso-
lute difference of the two numerical vectors. If this is smaller than tolerance or not finite, absolute

differences are used, otherwise relative differences scaled by the mean absolute difference.

If scale is positive, absolute comparisons are made after scaling (dividing) by scale .

For complex target , the modulus (Modl of the difference is used: all.equal.numeric is called so

arguments tolerance and scale are available.

attr.all.equal is used for comparing attributes , returning NULlor a character vector.

Value

Either TRUENUL Lfor attr.all.,equal) or a vector of mode "character" describing the differ-

ences between target and current .

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical ,isTRUE== and all for exact equality testing.

Examples

all.equal(pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10)

stopifnot(
all.equal(tan(d45), rep(1,10))) # TRUE, but
all (tan(d45) == rep(1,10)) # FALSE, since not exactly

all.equal(tan(d45), rep(1,10), tol=0) # to see difference

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE, max.names = -1L, unique = FALSE)

all.vars(expr, functions = FALSE, max.names = -1L, unique = TRUE)

12 any

Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the
result.
max.names the maximum number of names to be returned. -1 indicates no limit (other than
vector size limits).
unique a logical value which indicates whether duplicate names should be removed
from the value.
Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

See Also

substitute to replace symbols with values in an expression.

Examples

all.names(expression(sin(x+y)))
all.names(quote(sin(x+y))) # or a call
all.vars(expression(sin(x+y)))

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage
any(..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NAvalues are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summargroup generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

aperm 13

Value

The value is a logical vector of length one.

Let X denote the concatenation of all the logical vectors in ... (after coercion), after removing NA
if requested by na.rm = TRUE

The value returned is TRUE at least one of the values in X is TRUEand FALSEH(S all of the values
in X are FALSKincluding if there are no values). Otherwise the value is NA(which can only occur if
na.rm = FALSEnd ... contains no TRUEalues and at least one NAvalue).

S4 methods

This is part of the S4 Summargroup generic. Methods for it must use the signature X, ..., na.rm

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

all , the ‘complement’ of any.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2,1)))
if(any(x < 0)) cat("x contains negative values\n")

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, ...)

Default S3 method:
aperm(a, perm = NULL, resize
S3 method for class 'table’
aperm(a, perm = NULL, resize

TRUE, ...)

TRUE, keep.class = TRUE, ...)

Arguments

a the array to be transposed.

perm the subscript permutation vector, usually a permutation of the integers 1:n,
where n is the number of dimensions of a&. When a has named dimnames, it
can be a character vector of length n giving a permutation of those names. The
default (used whenever permhas zero length) is to reverse the order of the di-
mensions.

resize a flag indicating whether the vector should be resized as well as having its ele-

ments reordered (default TRUE

14 append

keep.class logical indicating if the result should be of the same class as a.

potential further arguments of methods.

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm If resize
is TRURhe array is reshaped as well as having its elements permuted, the dimnamesre also per-
muted; if resize = FALSHhen the returned object has the same dimensions as a, and the dimnames
are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, <J.C.Rougier@durham.ac.ukxid the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
X <- array(1:24, 2:4)
xt <- aperm(x, c(2,1,3))
stopifnot(t(xt[,,2]) == x[,,2],
t(xt[,,3]) == x[..3],
t(xt[,,4]) == x[..4])

UCB <- aperm(UCBAdmissions, c(2,1,3))
UCBI[1,,]
summary(UCB)# UCB is still a continency table

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after = length(x))

apply 15

Arguments

X the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in X with the elements of values appended after the specified element
of X.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

append(1:5, 0:1, after=3)

apply Apply Functions Over Array Margins

Description
Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix.

Usage
apply(X, MARGIN, FUN, ..))

Arguments

X an array, including a matrix.

MARGIN a vector giving the subscripts which the function will be applied over. E.g.,
for a matrix 1 indicates rows, 2 indicates columns, ¢(1, 2) indicates rows and
columns. Where Xhas named dimnames, it can be a character vector selecting
dimension names.

FUN the function to be applied: see ‘Details’. In the case of functions like +, %*%
etc., the function name must be backquoted or quoted.
optional arguments to FUN

Details

If Xis not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as.matrix if it is two-dimensional (e.g., a data frame) or via
as.array .

FUNs found by a call to match.fun and typically is either a function or a symbol (e.g. a backquoted
name) or a character string specifying a function to be searched for from the environment of the call

to apply.

16 apply

Value

If each call to FUNreturns a vector of length n, then apply returns an array of dimension
c(n, dim(X)[MARGIN]) if n > 1 If n equals 1, apply returns a vector if MARGIhhs length 1
and an array of dimension dim(X)[MARGINDtherwise. If n is O, the result has length O but not
necessarily the ‘correct’” dimension.

If the calls to FUNreturn vectors of different lengths, apply returns a list of length
prod(dim(X)[MARGIN])with dim set to MARGIf this has length greater than one.

In all cases the result is coerced by as.vector to one of the basic vector types before the dimensions
are set, so that (for example) factor results will be coerced to a character array.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply and there, simplify2array ; tapply , and convenience functions sweepand aggregate.

Examples

Compute row and column sums for a matrix:

X <- chind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(X)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, c1, c2) c(mean(x[cl]), mean(x[c2]))
apply(x,1, cave, cl1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)

ma

apply(ma, 1, table) #--> a list of length 2

apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call
z <- array(1:24, dim=2:4)

zseq <- apply(z, 1:2, function(x) seq_len(max(x)))
zseq ## a 2 x 3 matrix

typeof(zseq) ## list

dim(zseq) ## 2 3

zseq[1,]

apply(z, 3, function(x) seq_len(max(x)))

a list without a dim attribute

args 17

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage
args(name)
Arguments
name a function (a closure or a primitive). If names a character string then the func-
tion with that name is found and used.
Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.

Value

For a closure, a closure with identical formal argument list but an empty (NULLbody.

For a primitive, a closure with the documented usage and NULIbody. Note that some primitives do
not make use of named arguments and match by position rather than name.

NULLn case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help.

Examples

args(c)
args(graphics::plot.default)

18 Arithmetic

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on numeric or complex vectors (or objects which can be
coerced to them).

Usage

X +y
X-y
X*y
xly
XNy
X %% y
X %/% vy

Arguments

X, Y numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.

Details

The binary arithmetic operators are generic functions: methods can be written for them individually
or via the Opsgroup generic function. (See Opsfor how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSHaving value zero and TRUE
having value one.

1 ~yandy ” Oare 1, always. X ™ y should also give the proper limit result when either argument
is infinite (i.e., +- Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For real arguments, %%an be subject to catastrophic loss of accuracy if X is much larger than y, and
a warning is given if this is detected.

%%nd X %/% Ycan be used for non-integer y, e.g. 1 %/% 0.2but the results are subject to
representation error and so may be platform-dependent. Because the IEC 60059 representation of
0.2 is a binary fraction slightly larger than 0.2, the answer to 1 %/% 0.Zhould be 4 but most
platforms give 5.

Users are sometimes surprised by the value returned, for example why (-8)"(1/3) is NaNFor
double inputs, R makes use of IEC 60559 arithmetic on all platforms, together with the C system
function ‘pow for the ” operator. The relevant standards define the result in many corner cases. In
particular, the result in the example above is mandated by the C99 standard. On many Unix-alike
systems the command man powives details of the values in a large number of corner cases.

Arithmetic on type double in R is supposed to be done in ‘round to nearest, ties to even’ mode, but
this does depend on the compiler and FPU being set up correctly.

Arithmetic 19

Value

These operators return vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled only
fractionally). The operators are + for addition, - for subtraction, * for multiplication, / for division
and " for exponentiation.

%% indicates X mod y and %/% indicates integer division. It is guaranteed that
X=XX%% Yy)+y*(X%%y)up to rounding error) unless y == O where the
result of %% NA_integer_or NaNdepending on the typeof of the arguments).

If either argument is complex the result will be complex, otherwise if one or both arguments are
numeric, the result will be numeric. If both arguments are of type integer, the type of the result of /
and " is numeric and for the other operators it is integer (with overflow, which occurs at (23! — 1),
returned as NA_integer_ with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are
taken from the longer argument, the first if they are of the same length. Names will be copied from
the first if it is the same length as the answer, otherwise from the second if that is. For time series,
these operations are allowed only if the series are compatible, when the class and tsp attribute of
whichever is a time series (the same, if both are) are used. For arrays (and an array result) the
dimensions and dimnames are taken from first argument if it is an array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for them
individually as well as for the group generic (or the Opsgroup generic), with arguments c(el, e2) .

Implementation limits

R is dependent on OS services (and they on FPUs) for floating-point arithmetic. On all current R
platforms IEC 60559 (also known as IEEE 754) arithmetic is used, but some things in those stan-
dards are optional. In particular, the support for denormal numbers (those outside the range given
by .Machine) may differ between platforms and even between calculations on a single platform.

Another potential issue is signed zeroes: on IEC 60659 platforms there are two zeroes with internal
representations differing by sign. Where possible R treats them as the same, but for example direct
output from C code often does not do so and may output ‘-0.0 ’ (and on Windows whether it does
so or not depends on the version of Windows). One place in R where the difference might be seen
is in division by zero: 1/X is Inf or -Inf depending on the sign of zero X.

Note

** is translated in the parser to #, but this was undocumented for many years. It appears as an index

entry in Becker er al (1988), pointing to the help for Deprecatedbut is not actually mentioned on
that page. Even though it had been deprecated in S for 20 years, it was still accepted in R in 2008.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).

Postscript version available at http://www.validlab.com/goldberg/paper.ps Extended PDF
version at http://www.validlab.com/goldberg/paper.pdf

http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf

20

See Also

array

sgrt for miscellaneous and Special for special mathematical functions.

Syntax for operator precedence.

%*%or matrix multiplication.

Examples

X <- -1:12
X+ 1
2*x+ 3

X %% 2 #-- is periodic

X %/% 5

array

Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)

as.array(x,
is.array(x)

Arguments

data
dim

dimnames

Details

)

a vector (including a list or expression vector) giving data to fill the array.
Other objects are coerced by as.vector .

the dim attribute for the array to be created, that is a vector of length one or more
giving the maximal indices in each dimension.

either NULLlor the names for the dimensions. This is a list with one component
for each dimension, either NULlor a character vector of the length given by dim
for that dimension. The list can be named, and the list names will be used as
names for the dimensions. If the list is shorter than the number of dimensions,
it is extended by NULKL to the length required

an R object.

additional arguments to be passed to or from methods.

An array in R can have one, two or more dimensions. It is simply a vector which is stored with addi-
tional attributes giving the dimensions (attribute "dim") and optionally names for those dimensions
(attribute "dimnames.

A two-dimensional array is the same thing as a matrix .

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

as.data.frame 21

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

The "dimnames"attribute is optional: if present it is a list with one component for each dimension,
either NULLor a character vector of the length given by the element of the "dim" attribute for that
dimension.

is.array is a primitive function.

Value

array returns an array with the extents specified in dim and naming information in dimnamesThe
values in data are taken to be those in the array with the leftmost subscript moving fastest. If there
are too few elements in data to fill the array, then the elements in data are recycled. If data has
length zero, NAof an appropriate type is used for atomic vectors (O for raw vectors) and NULfor
lists.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnamesf X has names The sole purpose of this is to make it
possible to access the dim[names]attribute at a later time.

is.array returns TRUBr FALSHepending on whether its argument is an array (i.e., has a dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm matrix , dim, dimnames

Examples

dim(as.array(letters))

array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"
(1] [.2] [.3] [4]

#[1,] 1 3 2 1

#[2,] 2 1 3 2

as.data.frame Coerce to a Data Frame

Description

Functions to check if an object is a data frame, or coerce it if possible.

22

as.data.frame

Usage

as.data.frame(x, row.names = NULL, optional = FALSE, ..))

S3 method for class 'character'
as.data.frame(x, ...,
stringsAsFactors = default.stringsAsFactors())

S3 method for class 'matrix’
as.data.frame(x, row.names = NULL, optional = FALSE, ...,
stringsAsFactors = default.stringsAsFactors())

is.data.frame(x)

Arguments
X any R object.
row.names NUL&r a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUEsetting row names and converting column names (to syntactic

names: see make.namexsis optional.

additional arguments to be passed to or from methods.

stringsAsFactors
logical: should the character vector be converted to a factor?

Details

as.data.frame is a generic function with many methods, and users and packages can supply fur-
ther methods.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each
column of a matrix is converted separately. This can be overridden if the object has a class which
has a method for as.data.frame : two examples are matrices of class "model.matrix" (which
are included as a single column) and list objects of class "POSIXIt" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by | .

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names are
changed if that argument is supplied.

If row.names = NULtow names are constructed from the names or dimnames of X, otherwise are
the integer sequence starting at one. Few of the methods check for duplicated row names. Names
are removed from vector columns unless | .

Value

as.data.frame returns a data frame, normally with all row names " if optional = TRUE

is.data.frame returns TRUH its argument is a data frame (that is, has "data.frame" amongst its
classes) and FALSbtherwise.

as.Date 23

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, as.data.frame.table for the table method (which has additional arguments if
called directly).

as.Date Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

Usage

as.Date(x, ...)

S3 method for class 'character'
as.Date(x, format = "™, ..)

S3 method for class 'numeric’
as.Date(x, origin, ...)

S3 method for class 'POSIXct'
as.Date(x, tz = "UTC", ..)

S3 method for class 'Date’
format(x, ...)

S3 method for class 'Date’
as.character(x, ...)

Arguments
X An object to be converted.
format A character string. If not specified, it will try "%Y-%m-%dien "%Y/%m/%ah
the first non-NAelement, and give an error if neither works.
origin a Date object, or something which can be coerced by as.Date(origin, ...)
to such an object.
tz a timezone name.

Further arguments to be passed from or to other methods, including format for
as.character and as.Date methods.

24 as.Date

Details

The usual vector re-cycling rules are applied to X and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NAand objects of classes "POSIXIt"
and "POSIXct". (The last is converted to days by ignoring the time after midnight in the represen-
tation of the time in specified timezone, default UTC.) Also objects of class "date" (from package
date) and "dates" (from package chron). Character strings are processed as far as necessary for
the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is sup-
plied.

The format and as.character methods ignore any fractional part of the date.

Value

The format and as.character methods return a character vector representing the date. NAdates
are returned as NA_character .

The as.Date methods return an object of class "Date" .

Conversion from other Systems

Most systems record dates internally as the number of days since some origin, but this is fraught
with problems, including

* Is the origin day O or day 1? As the ‘Examples’ show, Excel manages to use both choices for
its two date systems.

* If the origin is far enough back, the designers may show their ignorance of calendar systems.
For example, Excel’s designer thought 1900 was a leap year (claiming to copy the error from
earlier DOS spreadsheets), and Matlab’s designer chose the non-existent date of ‘January
0, 0000’ (there is no such day), not specifying the calendar. (There is such a year in the
‘Gregorian’ calendar as used in ISO 8601:2004, but that does say that it is only to be used for
years before 1582 with the agreement of the parties in information exchange.)

The only safe procedure is to check the other systems values for known dates: reports on the Internet
(including R-help) are more often wrong than right.

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NAUnfortunately some common implementations (such as ‘glibc) are unreliable and guess at the
intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

as.Date 25

References

International Organization for Standardization (2004, 1988, 1997, ...) ISO 8601. Data ele-
ments and interchange formats — Information interchange — Representation of dates and times.
For links to versions available on-line see (at the time of writing) http://www.gsl.net/glsmd/
isopdf.htm ; for information on the current official version, see http://www.iso.org/iso/en/
prods-services/popstds/datesandtime.html

See Also

Date for details of the date class; locales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats. Windows
users will find no help page for strptime : code based on ‘glibc ’ is used (with corrections), so all
the format specifiers described here are supported, but with no alternative number representation
nor era available in any locale.

Examples

locale-specific version of the date
format(Sys.Date(), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
Ict <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")

x <- ¢("1jan1960", "2jan1960", "31mar1960", "30jul1960")

z <- as.Date(x, "%d%hb%Y")

Sys.setlocale("LC_TIME", Ict)

z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date(dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date(32768, origin="1900-01-01")

Excel is said to use 1900-01-01 as day 1 (Windows default) or

1904-01-01 as day 0 (Mac default), but this is complicated by Excel
treating 1900 as a leap year.

So for dates (post-1901) from Windows Excel

as.Date(35981, origin="1899-12-30") # 1998-07-05

and Mac Excel

as.Date(34519, origin="1904-01-01") # 1998-07-05

(these values come from http://support.microsoft.com/kb/214330)

Experiment shows that Matlab's origin is 719529 days before ours,

so Matlab day 734373 can be imported as

as.Date(734373, origin = "1970-01-01") - 719529

(value from http://www.mathworks.com/help/techdoc/matlab_prog/bspgcx2-1.html)

Timezone effect

z <- 1SOdate(2010, 04, 13, c(0,12)) # midnight and midday UTC
as.Date(z) # in UTC

these timezone names are common

as.Date(z, tz ="Nz")

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

26 as.environment

as.Date(z, tz ="HST") # Hawaii

as.environment Coerce to an Environment Object

Description
A generic function coercing an R object to an environment. A number or a character string is
converted to the corresponding environment on the search path.

Usage

as.environment(x)

Arguments
X an R object to convert. If it is already an environment, just return it. If it is a

number, return the environment corresponding to that position on the search list.
If it is a character string, match the string to the names on the search list.
If it is a list, the equivalent of list2env(x, parent=emptyenv()) is re-
turned.
If is.object(x) is true and it has a class for which an as.environment
method is found, that is used.

Value

The corresponding environment object.

Note

This is a primitive function.

Author(s)
John Chambers

See Also

environment for creation and manipulation, search; list2env .

Examples

as.environment(1) ## the global environment

identical(globalenv(), as.environment(1)) ## is TRUE

try(## <<- stats need not be attached
as.environment("package:stats"))

ee <- as.environment(list(a = "A", b = pi, ch = letters[1:8]))

Is(ee) # names of objects in ee

utils::ls.str(ee)

as.function 27

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default ~ works on a list X, which should contain the concatenation of a formal argu-
ment list and an expression or an object of mode "call" which will become the function body. The
function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:
as.function(x, envir = parent.frame(), ...)

Arguments
X object to convert, a list for the default method.
additional arguments, depending on object
envir environment in which the function should be defined
Value

The desired function.

Note

For ancient historical reasons, envir = NULLuses the global environment rather than the base
environment. Please use envir = globalenv() instead if this is what you want, as the special
handling of NULlmay change in a future release.

Author(s)

Peter Dalgaard

See Also

function ; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a=,b=2,a+b))
as.function(alist(a=,b=2,a+b))(3)

28 as.POSIX*
as.POSIX* Date-time Conversion Functions
Description
Functions to manipulate objects of classes "POSIXIt" and "POSIXct" representing calendar dates
and times.
Usage
as.POSIXct(x, tz = ™, ..)
as.POSIXIt(x, tz = ™, ...)
S3 method for class ‘character'
as.POSIXIt(x, tz = "™, format, ...)
S3 method for class 'numeric’
as.POSIXIt(x, tz = "™, origin, ...
S3 method for class 'POSIXIt'
as.double(x, ...)
Arguments
X An object to be converted.
tz A timezone specification to be used for the conversion, if one is required.
System-specific (see time zones), but ™ is the current timezone, and "GMT"
is UTC (Universal Time, Coordinated).
further arguments to be passed to or from other methods.
format character string giving a date-time format as used by strptime .
origin a date-time object, or something which can be coerced by
as.POSIXct(tz="GMT") to such an object.
Details

The as.POSIX*functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert a wide variety of objects, in-
cluding objects of the other class and of classes "Date", "date" (from package date), "chron"
and "dates" (from package chron) to these classes. Dates without times are treated as being at
midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03" option-
ally followed by white space and a time in the format "14:52" or "14:52:03" . (Formats such as
"01/02/03" are ambiguous but can be converted via a format specification by strptime .) Frac-
tional seconds are allowed. Alternatively, format can be specified for character vectors or factors:
if it is not specified and no standard format works for all non-NAinputs an error is thrown.

If format is specified, remember that some of the format specifications are locale-specific, and you
may need to set the LC_TIMEategory appropriately via Sys.setlocale . This most often affects
the use of %b%Bmonth names) and Yo AM/PM).

Logical NA can be converted to either of the classes, but no other logical vectors can be.

as.POSIX* 29

The as.double method converts "POSIXIt" objects to "POSIXct".
If you are given a numeric time as the number of seconds since an epoch, see the examples.

Character input is first converted to class "POSIXIt" by strptime : numeric input is first converted
to "POSIXct". Any conversion that needs to go between the two date-time classes requires a time-
zone: conversion from "POSIXIt" to "POSIXct" will validate times in the selected timezone. One
issue is what happens at transitions to and from DST, for example in the UK

as.POSIXct(strptime('2011-03-27 01:30:00', '%Y-%m-%d %H:%M:%S"))
as.POSIXct(strptime('2010-10-31 01:30:00', '%Y-%m-%d %H:%M:%S"))

are respectively invalid (the clocks went forward at 1:00 GMT to 2:00 BST) and ambiguous (the
clocks went back at 2:00 BST to 1:00 GMT). What happens in such cases is OS-specific: one should
expect the first to be NAbut the second could be interpreted as either BST or GMT (and common
OSes give both possible values). Note too (see strfitime), OS facilities may not format invalid
times correctly.

Value

as.POSIXct and as.POSIXIt return an object of the appropriate class. If tz was specified,
as.POSIXIt will give an appropriate "tzone" attribute. Date-times known to be invalid will be
returned as NA

Note

Some of the concepts used have to be extended backwards in time (the usage is proleptic). For
example, the origin of time for the "POSIXct" class, ‘1970-01-01 00:00.00 UTC’, is before UTC
was defined. More importantly, conversion is done assuming the Gregorian calendar which was
introduced in 1582 and not used universally until the 20th century. One of the re-interpretations
assumed by ISO 8601:2004 is that there was a year zero, even though current year numbering (and
zero) is a much later concept (525 AD for year numbers from 1 AD).

If you want to extract specific aspects of a time (such as the day of the week) just convert it to class
"POSIXIt" and extract the relevant component(s) of the list, or if you want a character representa-
tion (such as a named day of the week) use the format method.

If a timezone is needed and that specified is invalid on your system, what happens is system-specific
but attempts to set it will probably be ignored.

See Also

DateTimeClasses for details of the classes; strptime for conversion to and from character repre-
sentations.

Sys.timezone for details of the (system-specific) naming of time zones.

locales for locale-specific aspects.

Examples
(z <- Sys.time()) # the current datetime, as class "POSIXct"
unclass(z) # a large integer
floor(unclass(z)/86400) # the number of days since 1970-01-01 (UTC)

(z <- as.POSIXIt(Sys.time())) # the current datetime, as class "POSIXIt"
unlist(unclass(z)) # a list shown as a named vector

30

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT

(the origin used by SAS)
z <- 1472562988
ways to convert this

as.POSIXct(z, origin="1960-01-01") # local
as.POSIXct(z, origin="1960-01-01", tz="GMT") # in UTC
as.POSIXct(z, origin=ISOdatetime(1960,1,1,0,0,0)) # local
ISOdatetime(1960,1,1,0,0,0) + z # local

SPSS dates (R-help 2006-02-16)
z <- ¢(10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct(z, origin="1582-10-14", tz="GMT"))

as.POSIXIt(Sys.time(), "GMT") # the current time in UTC

Not run: ## These may not be correct names on your system
as.POSIXIt(Sys.time(), "America/New_York") # in New York
as.POSIXIt(Sys.time(), "ESTS5EDT") # alternative.
as.POSIXIt(Sys.time(), "EST") # somewhere in Eastern Canada
as.POSIXIt(Sys.time(), "HST") # in Hawaii
as.POSIXIt(Sys.time(), "Australia/Darwin")

End(Not run)

Asls

Asls Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

1(X)

Arguments

X an object

Details

Function | has two main uses.

* In function data.frame . Protecting an object by enclosing it in I() in a call to data.frame
inhibits the conversion of character vectors to factors and the dropping of names, and ensures
that matrices are inserted as single columns. | can also be used to protect objects which are to

be added to a data frame, or converted to a data frame via as.data.frame .

It achieves this by prepending the class "AsIS" to the object’s classes. Class "Asls" has a few

of its own methods, including for [, as.data.frame , print and format.

* In function formula. There it is used to inhibit the interpretation of operators such as "+",

interpreted as a symbol by terms.formula .

, "* and "™ as formula operators, so they are used as arithmetical operators. This is

assign 31

Value

A copy of the object with class "AslIs" prepended to the class(es).

References
Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame , formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)

Arguments
X a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.
value a value to be assigned to X.
pos where to do the assignment. By default, assigns into the current environment.
See ‘Details’ for other possibilities.
envir the environment to use. See ‘Details’.
inherits should the enclosing frames of the environment be inspected?
immediate an ignored compatibility feature.
Details

There are no restrictions on hameit can be a non-syntactic name (see make.names

The posargument can specify the environment in which to assign the object in any of several ways:
as an integer (the position in the search list); as the character string name of an element in the search
list; or as an environment (including using Sys.frame to access the currently active function calls).
The envir argument is an alternative way to specify an environment, but is primarily there for back
compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with .

32 assignOps

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUEenclosing environments of the supplied environment are searched until the
variable X is encountered. The value is then assigned in the environment in which the variable is
encountered (provided that the binding is not locked: see lockBinding : if it is, an error is signaled).
If the symbol is not encountered then assignment takes place in the user’s workspace (the global
environment).

If inherits is FALSEassignment takes place in the initial frame of envir , unless an existing
binding is locked or there is no existing binding and the environment is locked.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<-, get, exists , environment.

Examples

for(i in 1:6) { #-- Create objects 'r.1', .2, ... 'r.6' --
nam <- paste("r",i, sep=".")

assign(nam, 1:i)

}

Is(pattern = "*r..$")

##-- Global assignment within a function:

myf <- function(x) {

innerf <- function(x) assign("Global.res", x"2, envir = .GlobalEnv)
innerf(x+1)

}

myf(3)

Global.res # 16

a<- 14

assign("a[1]", 2)

a[l] == 2 #FALSE
get("a[l]") == 2 #TRUE

assignOps Assignment Operators

Description

Assign a value to a name.

assignOps 33

Usage
X <- value
X <<- value
value -> x
value ->> x
x = value
Arguments
X a variable name (possibly quoted).
value a value to be assigned to X.
Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <- and = assign into the environment in which they are evaluated. The operator
<- can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<- and ->> are normally only used in functions, and cause a search to made through
parent environments for an existing definition of the variable being assigned. If such a variable is
found (and its binding is not locked) then its value is redefined, otherwise assignment takes place in
the global environment. Note that their semantics differ from that in the S language, but are useful
in conjunction with the scoping rules of R. See ‘The R Language Definition’ manual for further
details and examples.

In all the assignment operator expressions, X can be a name or an expression defining a part of an
object to be replaced (e.g., Z[[1]]). A syntactic name does not need to be quoted, though it can be
(preferably by backticks).

The leftwards forms of assignment <- = <<- group right to left, the other from left to right.

Value

value. Thusone canusea <- b <- ¢ <- 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chamber, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

assign, for “subassignment” such as X[i] <- v , [<-; environment.

34 attach

attach Attach Set of R Objects to Search Path

Description
The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.
Usage

attach(what, pos = 2, name = deparse(substitute(what)),
warn.conflicts = TRUE)

Arguments
what ‘database’. This can be a data.frame or a list or a R data file created with
save or NULlor an environment. See also ‘Details’.
pos integer specifying position in search() where to attach.
name name to use for the attached database.

warn.conflicts logical. If TRUEwarnings are printed about conflicts from attaching the
database, unless that database contains an object .conflicts.OK . A conflict
is a function masking a function, or a non-function masking a non-function.

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g. in the example
below, height rather than women$height

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously attached packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos = 1

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason attach can lead to confusion.

One useful ‘trick’ is to use what = NULLKor equivalently a length-zero list) to create a new envi-
ronment on the search path into which objects can be assigned by assign or load or sys.source .

Names starting "package:" are reserved for library and should not be used by end users. At-
tached files are by default given the name file: what. The nameargument given for the attached
environment will be used by search and can be used as the argument to as.environment.

There are hooks to attach user-defined table objects of class "UserDefinedDatabase", supported
by the Omegahat package RObjectTables. See http://www.omegahat.org/RObjectTables/ .

Value

The environment is returned invisibly with a "name"attribute.

http://www.omegahat.org/RObjectTables/

attr 35

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library , detach, search, objects , environment, with .

Examples

require(utils)

summary(women$height) # refers to variable 'height' in the data frame
attach(women)
summary(height) # The same variable now available by name
height <- height*2.54 # Don't do this. It creates a new variable

in the user's workspace
find("height")

summary(height) # The new variable in the workspace
rm(height)
summary(height) # The original variable.

height <<- height*25.4 # Change the copy in the attached environment
find("height")

summary(height) # The changed copy

detach("women")

summary(womens$height) # unchanged

Not run: ## create an environment on the search path and populate it
sys.source("myfuns.R", envir=attach(NULL, name="myfuns"))

End(Not run)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- value

Arguments
X an object whose attributes are to be accessed.
which a non-empty character string specifying which attribute is to be accessed.
exact logical: should which be matched exactly?

value an object, the new value of the attribute, or NULLlto remove the attribute.

36 attributes

Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match to which amongst the attributes of X, then
(unless exact = TRUEa unique partial match. (Setting options(warnPartialMatchAttr=TRUE)
causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, commentdim, dimnamesnamesrow.namesand tsp)
are treated specially and have restrictions on the values which can be set. (Note that this is not true
of levels which should be set for factors via the levels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

Both are primitive functions.

Value

For the extractor, the value of the attribute matched, or NULLf no exact match is found and no or
more than one partial match is found.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
X <- 1:10
attr(x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes(obj)
attributes(obj) <- value
mostattributes(obj) <- value

attributes 37

Arguments

obj an object

value an appropriate named list of attributes, or NULL
Details

Unlike attr it is possible to set attributes on a NULlobject: it will first be coerced to an empty list.

Note that some attributes (namely class, commentdim, dimnamesnamesrow.namesand tsp)
are treated specially and have restrictions on the values which can be set. (Note that this is not true
of levels which should be set for factors via the levels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vector. They
must have unique names (and NAis taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remaining
attributes in the order given: this ensures that setting a dim attribute always precedes the dimnames
attribute.

The mostattributes assignment takes special care for the dim, namesand dimnamesttributes,
and assigns them only when known to be valid whereas an attributes assignment would give an
error if any are not. It is principally intended for arrays, and should be used with care on classed
objects. For example, it does not check that row.namesare assigned correctly for data frames.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement form of attributes).

Both assignment and replacement forms of attributes are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr .

Examples

X <- chind(a=1:3, pi=pi) # simple matrix w/ dimnames
attributes(x)

strip an object's attributes:
attributes(x) <- NULL
X # now just a vector of length 6

mostattributes(x) <- list(tmycomment = "really special", dim = 3:2,
dimnames = list(LETTERS[1:3], letters[1:5]), nhames = paste(1:6))
x # dim(), but not {dim}names

38 autoload

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluate autoloader and stores it with name namen .AutoloadEnv
environment. When R attempts to evaluate nameautoloader is run, the package is loaded and
namads re-evaluated in the new package’s environment. The result is that R behaves as if file was
loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload(name, package, reset = FALSE, ...)
autoloader(name, package, ...

.AutoloadEnv

.Autoloaded
Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use by autoloader .
other arguments to library
Value

This function is invoked for its side-effect. It has no return value.

See Also
delayedAssign, library

Examples

require(stats)
autoload("interpSpline”, "splines")
search()

Is("Autoloads")

.Autoloaded

X <- sort(stats::rnorm(12))

y <- x"2

is <- interpSpline(x,y)
search() ## now has splines
detach("package:splines")
search()

is2 <- interpSpline(x,y+x)
search() ## and again
detach("package:splines")

backsolve 39

backsolve Solve an Upper or Lower Triangular System

Description
Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower

(‘left’, ‘L) triangular.

X <- backsolve (R, b) solves Rx = b, and
x <- forwardsolve(L, b) solves Lx = b, respectively.

Usage

backsolve(r, x, k=ncol(r), upper.tri=TRUE, transpose=FALSE)
forwardsolve(l, x, k=ncol(l), upper.tri=FALSE, transpose=FALSE)

Arguments
r,l an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.
X a matrix whose columns give the right-hand sides for the equations.
k The number of columns of I and rows of X to use.
upper.tri logical; if TRUEdefault), the upper triangular part of r is used. Otherwise, the
lower one.
transpose logical; if TRUBolve v’ x y = x for y, i.e., t(r) %*% y == x
Value

The solution of the triangular system. The result will be a vector if X is a vector and a matrix if X is
a matrix.

Note that forwardsolve(L, b) is just a wrapper for backsolve(L, b, upper.tri=FALSE) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

chol, gr, solve.

40 basename

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),
c(0,1,1),
¢(0,0,2))
(y <- backsolve(r, x <- ¢(8,4,2))) #-13 1
r%*% y # == x = (8,4,2)
backsolve(r, x, transpose = TRUE) # 8 -12 -5

basename Manipulate File Paths

Description

basenameemoves all of the path up to and including the last path separator (if any).

dirnamereturns the part of the path up to but excluding the last path separator, or "." if there is no
path separator.
Usage
basename(path)
dirname(path)
Arguments

path character vector, containing path names.

Details

For dirname tilde expansion of the path is done.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

If an element of path is NAso is the result.

Behaviour on Windows

On Windows this will accept either \ or/ as the path separator, but dirname will return a path using
/ (except if on a network share, when the leading \\ will be preserved). Expect these only to be
able to handle complete paths, and not for example just a share or a drive.

UTF-8-encoded dirnames not valid in the current locale can be used.

Note

These are not wrappers for the POSIX system functions of the same names: in particular they do
not have the special handling of the path "/* and of returning "." for empty strings in basename

Bessel 41

See Also
file.path , path.expand.

Examples

basename(file.path("™,"p1","p2","p3", c("filel", "file2")))
dirname(file.path(","p1","p2","p3","filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J,, and Y,,, and Modified
Bessel functions (of first and third kind), I,, and K.

Usage

bessell(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)

Arguments
X numeric, > 0.
nu numeric; The order (maybe fractional!) of the corresponding Bessel function.

expon.scaled logical; if TRUEKhe results are exponentially scaled in order to avoid overflow
(1) or underflow (K,), respectively.
Details

If expon.scaled = TRUE "I, (x), or e* K, (x) are returned.
For v < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably

suboptimal), except for besselK which is symmetric in nu.
Value
Numeric vector of the same length of X with the (scaled, if expon.scaled=TRUEvalues of the
corresponding Bessel function.
Author(s)
Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler <maechler@stat.math.ethz.ch>.
Source

The C code is a translation of Fortran routines from http://www.netlib.org/specfun/ribesl ,
‘.Irjbesl ’, etc.

http://www.netlib.org/specfun/ribesl

42 Bessel

References

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. Dover, New York;
Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, such as gammd’(z), and beta, B(x).

Examples

require(graphics)
nus <- ¢(0:5, 10, 20)

X <- seq(0, 4, length.out = 501)
plot(x, x, ylim = c(0, 6), ylab = ", type = "n",
main = "Bessel Functions 1_nu(x)")
for(nu in nus) lines(x, bessell(x, nu=nu), col = nu+2)
legend(0, 6, legend = paste("nu=", nus), col = nus+2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <- c(-.8, .8)
plot(x, x, ylim = yl, ylab = ™, type = "n",
main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x, besselJ(x, nu=nu), col = nu+2)
legend(32,-.18, legend = paste("nu=", nus), col = nus+2, lwd = 1)

Negative nu's :

XX <- 2.7

nu <- seq(-10, 9, length.out = 2001)
op <- par(lab = c(16, 5, 7))

matplot(nu, t(outer(xx, nu, bessell)), type = "I", ylim = c(-50, 200),
main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,
", as ", f(nu))),

xlab = expression(nu))
abline(v=0, col = "light gray", Ity = 3)

par(op)

x0 <- 27(-20:10)
plot(x0, x0"-8, log="xy", ylab="",type="n",
main = "Bessel Functions J _nu(x) near O\n log - log scale")
for(nu in sort(c(nus, nus+.5)))
lines(x0, besseld(x0, nu=nu), col = nu+2)
legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),
col = nus + 2, lwd = 1)
plot(x0, x07-8, log="xy", ylab="", type="n",
main = "Bessel Functions K_nu(x) near O\n log - log scale")
for(nu in sort(c(nus, nus+.5)))
lines(x0, besselK(x0, nu=nu), col = nu+2)
legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),
col = nus + 2, lwd = 1)

X <- x[x > 0]
plot(x, x, ylim=c(le-18, 1ell), log = "y", ylab = "™, type = "n",
main = "Bessel Functions K_nu(x)")

bindenv 43

for(nu in nus) lines(x, besselK(x, nu=nu), col = nu+2)
legend(0, le-5, legend=paste("nu=", nus), col = nus+2, lwd = 1)

yl <- c(-1.6, .6)
plot(x, X, ylim = yl, ylab = ", type = "n",
main = "Bessel Functions Y_nu(x)")
for(nu in nus){
XX <- X[X > .6*nu]
lines(xx, besselY(xx, nu=nu), col = nu+2)

}

legend(25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

negative nu in bessel_Y -- was bogus for a long time
curve(besselY(x, -0.1), 0, 10, ylim = ¢(-3,1), ylab = ")
for(nu in c(seq(-0.2, -2, by = -0.1)))
curve(besselY(x, nu), add = TRUE)
titte(expression(besselY(x, nu) * " " *
{nu == list(-0.1, -0.2, ..., -2)}))

bindenv Binding and Environment Adjustments

Description

These functions represent an experimental interface for adjustments to environments and bindings
within environments. They allow for locking environments as well as individual bindings, and for
linking a variable to a function.

Usage

lockEnvironment(env, bindings = FALSE)
environmentisLocked(env)
lockBinding(sym, env)
unlockBinding(sym, env)
bindinglsLocked(sym, env)
makeActiveBinding(sym, fun, env)
bindinglsActive(sym, env)

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string
fun a function taking zero or one arguments
Details

The function lockEnvironment locks its environment argument, which must be a normal environ-
ment (not base). (Locking the base environment and namespace may be supported later.) Locking
the environment prevents adding or removing variable bindings from the environment. Changing
the value of a variable is still possible unless the binding has been locked. The namespace environ-
ments of packages with namespaces are locked when loaded.

44 bindenv

lockBinding locks individual bindings in the specified environment. The value of a locked binding
cannot be changed. Locked bindings may be removed from an environment unless the environment
is locked.

makeActiveBinding installs fun so that getting the value of Symcalls fun with no arguments, and
assigning to Symcalls fun with one argument, the value to be assigned. This allows the implemen-
tation of things like C variables linked to R variables and variables linked to databases. It may also
be useful for making thread-safe versions of some system globals.

Value

The *isLocked functions return a length-one logical vector. The remaining functions return NULL
invisibly.

Author(s)

Luke Tierney

Examples

locking environments

e <- new.env()

assign("x", 1, envir = e)

get("x", envir = e)
lockEnvironment(e)

get("x", envir = e)

assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings

e <- new.env()

assign("x", 1, envir = e)

get("x", envir = e)

lockBinding("x", e)

try(assign("x", 2, envir = e)) # error
unlockBinding("x", e)

assign("x", 2, envir = e)

get("x", envir = e)

active bindings
f <- local({
X <-1
function(v) {
if (missing(v))
cat("get\n")

else {
cat("set\n")
X <<- Vv

}

X

}
)
makeActiveBinding(“fred", f, .GlobalEnv)
bindinglsActive("fred", .GlobalEnv)
fred
fred <- 2
fred

body 45

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun, envir = environment(fun)) <- value

Arguments
fun a function object, or see ‘Details’.
envir environment in which the function should be defined.
value an object, usually a language object: see section ‘Value’.
Details

For the first form, fun can be a character string naming the function to be manipulated, which is
searched for from the parent frame. If it is not specified, the function calling bodyis used.

The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’
section for how to create such a call.

Value

body returns the body of the function specified. This is normally a language object, most often a
call to {, but it can also be an object (e.g. pi) to be the return value of the function.

The replacement form sets the body of a function to the object on the right hand side, and (poten-
tially) resets the environment of the function. If value is of class "expression” the first element
is used as the body: any additional elements are ignored, with a warning.

See Also

alist , args, function .

Examples

body(body)

f <- function(x) x"5

body(f) <- quote(5™x)

or equivalently body(f) <- expression(5™x)
f(3) # = 125

body(f)

creating a multi-expression body

e <- expression(y <- x"2, return(y)) # or a list
body(f) <- as.call(c(as.name("{"), €))

f

f(8)

46 bquote

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro. bgquote quotes its argument except that terms wrapped
in.() are evaluated in the specified whereenvironment.

Usage

bquote(expr, where = parent.frame())

Arguments
expr A language object.
where An environment.
Value

A language object.

See Also

guote, substitute

Examples
require(graphics)
a<-2

bquote(a == a)
quote(a == a)

bquote(a == .(a))
substitute(a == A, list(A = a))

plot(1:10, a*(1:10), main = bquote(a == .(a)))
to set a function default arg

default <- 1
bquote(function(x, y = .(default)) x+y)

browser 47

browser Environment Browser

Description
Interrupt the execution of an expression and allow the inspection of the environment where browser
was called from.

Usage
browser(text="", condition=NULL, expr=TRUE, skipCalls=0L)

Arguments
text a text string that can be retrieved once the browser is invoked.
condition a condition that can be retrieved once the browser is invoked.
expr An expression, which if it evaluates to TRUEhe debugger will invoked, other-
wise control is returned directly.
skipCalls how many previous calls to skip when reporting the calling context.
Details

A call to browser can be included in the body of a function. When reached, this causes a pause in
the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g. external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in
a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition .

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the
evaluator described below if expr evaluates to TRUHnN most cases it is going to be more efficient to
use an if statement in the calling program, but in some cases using this argument will be simpler.

The skipCalls argument should be used when the browser() call is nested within another debug-
ging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions, followed by a newline. The
commands are

C (or just an empty line, by default) exit the browser and continue execution at the next statement.
cont synonym for C.

n enter the step-through debugger if the function is interpreted. This changes the meaning of C: see
the documentation for debug For byte compiled functions n is equivalent to C.

where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for an empty line).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and

48 browserText

Is() lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

The number of lines printed for the deparsed call can be limited by setting
options(deparse.max.lines)

Setting option "browserNLdisabled" to TRUHisables the use of an empty line as a synonym for
c. If this is done, the user will be re-prompted for input until a valid command or an expression is
entered.

This is a primitive function but does argument matching in the standard way.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also
debug and traceback for the stack on error. browserText for how to retrieve the text and condi-
tion.
browserText Functions to Retrieve Values Supplied by Calls to the Browser
Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.

Usage

browserText(n=1)
browserCondition(n=1)
browserSetDebug(n=1)

Arguments

n The number of contexts to skip over, it must be non-negative.

Details

Each call to browser can supply either a text string or a condition. The functions browserText and
browserCondition provide ways to retrieve those values. Since there can be multiple browser con-
texts active at any time we also support retrieving values from the different contexts. The innermost
(most recently initiated) browser context is numbered 1: other contexts are numbered sequentially.

browserSetDebugrovides a mechanism for initiating the browser in one of the calling functions.
See sys.frame for a more complete discussion of the calling stack. To use browserSetDebug
you select some calling function, determine how far back it is in the call stack and call
browserSetDebugwith n set to that value. Then, by typing C at the browser prompt you will
cause evaluation to continue, and provided there are no intervening calls to browser or other inter-
rupts, control will halt again once evaluation has returned to the closure specified. This is similar to
the up functionality in gdb or the "step out" functionality in other debuggers.

builtins 49

Value

browserText returns the text, while browserCondition returns the condition from the specified
browser context.

browserSetDebugeturns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

Author(s)

R. Gentleman

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage
builtins(internal = FALSE)

Arguments
internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.
Details

builtins() returns an unsorted list of the objects in the symbol table, that is all the objects in the
base environment. These are the built-in objects plus any that have been added subsequently when
the base package was loaded. It is less confusing to use Is(baseenv(), all=TRUE) .

builtins(TRUE) returns an unsorted list of the names of internal functions, that is those which can
be accessed as .Internal(foo(args ...)) for foo in the list.

Value

A character vector.

50 by

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage
by(data, INDICES, FUN, ..., simplify = TRUE)

Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow(data) .
FUN a function to be applied to data frame subsets of data.
further arguments to FUN
simplify logical: see tapply .
Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUNs applied to each subset in turn.

Object data will be coerced to a data frame by the default method, but if this results in a 1-column
data frame, the objects passed to FUNre dropped to a subsets of that column.

Value

An object of class "by" , giving the results for each subset. This is always a list if simplify is false,
otherwise a list or array (see tapply).

See Also

tapply , simplify2array . ave also applies a function block-wise.

Examples

require(stats)
by(warpbreaks|, 1:2], warpbreaks|,"tension"], summary)
by(warpbreaks[, 1], warpbreaks[, -1], summary)
by(warpbreaks, warpbreaks][,"tension"],

function(x) Im(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- with(warpbreaks,
by(warpbreaks, tension,
function(x) Im(breaks ~ wool, data = x)))

sapply(tmp, coef)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage
c(..., recursive=FALSE)

Arguments
objects to be concatenated.
recursive logical. If recursive = TRUE the function recursively descends through lists
(and pairlists) combining all their elements into a vector.
Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression. Pairlists are treated as lists,
but non-vector components (such names and calls) are treated as one-element lists which cannot be
unlisted even if recursive = TRUE

c is sometimes used for its side effect of removing attributes except names, for example to turn
an array into a vector. as.vector is a more intuitive way to do this, but also drops names. Note
too that methods other than the default are not required to do this (and they will almost certainly
preserve a class attribute).

This is a primitive function.

Value

NULlor an expression or a vector of an appropriate mode. (With no arguments the value is NULD

S4 methods

This function is S4 generic, but with argument list (X, ..., recursive = FALSE)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

52

Examples

c(1,7:9)
c(1:5, 10.5, "next")

uses with a single argument to drop attributes

X <- 1:4

names(x) <- letters[1:4]

X

c(x) # has names
as.vector(x) # no names
dim(x) <- c(2,2)

X

c(x)

as.vector(x)

append to a list:

Il <- list(A = 1, c="C")

do *not* use

c(ll, d = 1:3) # which is ==
but rather

c(ll, as.list(c(d=1:3))

c(ll, d = list(1:3))# c() combining two lists

c(list(A=c(B=1)), recursive=TRUE)

c(options(), recursive=TRUE)

c(list(A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call

call

Function Calls

Description

Create or test for objects of mode "call”

Usage

call(name, ...
is.call(x)
as.call(x)

Arguments

name a non-empty character string naming the function to be called.

arguments to be part of the call.

X an arbitrary R object.

Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of the
named function applied to the given arguments (namenust be a quoted string which gives the name

of a function to be called). Note that although the call is unevaluated, the arguments ...

evaluated.

are

callCC 53

call isaprimitive, so the first argument is taken as nameand the remaining arguments as arguments
for the constructed call: if the first argument is named the name must partially match name

is.call is used to determine whether X is a call (i.e., of mode "call").

Objects of mode "list" can be coerced to mode "call" . The first element of the list becomes the
function part of the call, so should be a function or the name of one (as a symbol; a quoted string
will not do).

All three are primitive functions. call is ‘special’: it only evaluates its first argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of functions;
further is.language , expression, function .

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
cl <- call("round", 10.5)

is.call(cl)y¥ TRUE

cl

such a call can also be evaluated.

eval(ch)# [1] 10

A <- 105

call("round”, A) # round(10.5)

call("round”, quote(A)) # round(A)

f <- "round"

call(f, quote(A)) # round(A)

if we want to supply a function we need to use as.call or similar
f <- round

Not run: call(f, quote(A)) # error: first arg must be character
(g <- as.call(list(f, quote(A))))

eval(g)

alternatively but less transparently

g <- list(f, quote(A))

mode(g) <- "call"

g

eval(g)

see also the examples in the help for do.call

callCC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

54 CallExternal

Usage
callCC(fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to callCC
immediately returns, with the value supplied to the exit function as the value returned by callCC.

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC(function(k) 1)
callCC(function(k) k(1))
callCC(function(k) {k(1); 2})
callCC(function(k) repeat k(1))

CallExternal Modern Interfaces to C/C++ code

Description

Functions to pass R objects to compiled C/C++ code that has been loaded into R.

Usage

.Call.NAME, ..., PACKAGE)
.External(.NAME, ..., PACKAGE)

Arguments

.NAME a character string giving the name of a C function, or an object of class
"NativeSymbolinfo" , "RegisteredNativeSymbol" or "NativeSymbol" re-
ferring to such a name.

arguments to be passed to the compiled code. Up to 65 for .Call .

PACKAGE if supplied, confine the search for the .NAMEo the DLL given by this argument
(plus the conventional extension, ‘.s0’, “.dll ’,...).
This argument follows ... and so its name cannot be abbreviated.

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

capabilities 55

Details

The functions are used to call compiled code which makes use of internal R objects, passing the
arguments to the code as a sequence of R objects. They assume C calling conventions, so can
usually also be used of C++ code.

For details about how to write code to use with these functions see the chapter on “System and
foreign language interfaces” in the “Writing R Extensions” manual. They differ in the way the
arguments are passed to the C code: .External allows for a variable number of arguments.

These functions are primitive, and .NAMEs always matched to the first argument supplied (which if
named must partially match .NAME For clarity, avoid using names in the arguments passed to ...
that match or partially match .NAME

Value

An R object constructed in the compiled code.

Header files for external code

Writing code for use with these functions will need to use internal R structures defined in
‘Rinternals.h ’ and/or the macros in ‘Rdefines.h .

Note

If one of these functions is to be used frequently, do specify PACKAG# confine the search to a
single DLL) or pass .NAMEs one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "baget symbols linked into R. Do not use this in your own code: such
symbols are not part of the API and may be changed without warning.
References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call .)

See Also

dyn.load, .C, .Fortran .

The ‘Writing R Extensions’ manual.

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage
capabilities(what = NULL)

56

Arguments

what

Value

capabilities

character vector or NULLspecifying required components. NULLmplies that all
are required.

A named logical vector. Current components are

ireg is the jpeg function operational?

png is the pngfunction operational?

tiff is the tiff function operational?

tcltk is the teltk package operational? Note that to make use of Tk you will almost
always need to check that "X11" is also available.

X11 Are the X11graphics device and the X11-based data editor available? This loads
the X11 module if not already loaded, and checks that the default display can be
contacted unless a X11device has already been used.

aqua Are the R.app GUI components and the quartz function operational?
Only on some Mac OS X builds. Note that this is distinct from
Platform$GUI == "AQUA"which is true when using the Mac R.appGUI con-
sole.

http/ftp Are url and the internal method for download.file available?

sockets Are make.socketand related functions available?

libxml is there support for integrating libxml with the R event loop?

fifo are FIFO connections supported?

cledit is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘--no-readline ’ was not used when R was
invoked.

iconv is internationalization conversion via iconv supported? Always true as from R
2.10.0.

NLS is there Natural Language Support (for message translations)?

profmem is there support for memory profiling? See tracemem

cairo is there support the svg, cairo_pdf and cairo_ps devices, and for
type = "cairo" inthe X11 bmpjpeg, png and tiff devices?

Note to Mac OS X users

Capabilities "jpeg" , "png" and "tiff" refer to the X11-based versions of these devices. If
capabilities("aqua") is true, then these devices with type="quartz" will be available, and
out-of-the-box will be the default type. Thus for example the tiff device will be available if
capabilities("aqua”) || capabilities("tiff") if the defaults are unchanged.

See Also

.Platform

cat 57

Examples

capabilities()

if(lcapabilities("http/ftp"))
warning(“internal download.file() is not available")

See also the examples for 'connections'.

cat Concatenate and Print

Description

Outputs the objects, concatenating the representations. cat performs much less conversion than
print .

Usage
cat(... , file =™ sep =" ", fill = FALSE, labels = NULL,
append = FALSE)
Arguments
R objects (see ‘Details’ for the types of objects allowed).
file A connection, or a character string naming the file to print to. If " (the default),
cat prints to the standard output connection, the console unless redirected by
sink . If it is "jcmd", the output is piped to the command given by ‘cmd, by
opening a pipe connection.
sep a character vector of strings to append after each element.
fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSHdefault), only newlines created explicitly by “"\n" ’ are
printed. Otherwise, the output is broken into lines with print width equal to the
option width if fill is TRUEor the value of fill if this is numeric. Non-
positive fill values are ignored, with a warning.
labels character vector of labels for the lines printed. Ignored if fill is FALSE
append logical. Only used if the argument file is the name of file (and not a connection
or"lcmd"). If TRUIutput will be appended to file ; otherwise, it will overwrite
the contents of file
Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep=string(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested by “"\n" ’ or if generated by filling (if argument
fill is TRURr numeric.)

If file is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt" mode and then closed again.

58 cbind

Currently only atomic vectors and names are handled, together with NULLand other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print.default
which escapes non-printable characters and backslash — use encodeString if you want to output
encoded strings using cat). Other types of R object should be converted (e.g. by as.character or
format) before being passed to cat .

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen" are rele-
vant. However, it uses the minimum field width necessary for each element, rather than the same
field width for all elements.

Value

None (invisible NULL

Note

If any element of Sep contains a newline character, it is treated as a vector of terminators rather than
separators, an element being output after every vector element and a newline after the last. Entries
are recycled as needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print , format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(1, lambda=10)
print an informative message
cat("iteration = ", iter <- iter + 1, "\n")

'fill' and label lines:
cat(paste(letters, 100* 1:26), fill = TRUE,
labels = paste("{",1:10,"}:",sep=""))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine by columns or rows,
respectively. These are generic functions with methods for other R classes.

Usage

chind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

cbind 59

Arguments
vectors or matrices. These can be given as named arguments. Other R objects
will be coerced as appropriate: see sections ‘Details’ and ‘Value’. (For the
"data.frame” method of cbind these can be further arguments to data.frame
such as stringsAsFactors .)

deparse.level integer controlling the construction of labels in the case of non-matrix-like

arguments (for the default method):
deparse.level = 0 constructs no labels; the default,
deparse.level = 1 or 2 constructs labels from the argument names,
see the “Value’ section below.

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors, the
number of columns (rows) in the result is equal to the length of the longest vector. Values in shorter
arguments are recycled to achieve this length (with a warning if they are recycled only fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NUL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Value

For the default method, a matrix combining the ... arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULLthe value is NULD

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < real < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames(rownameyof the argu-
ments if these are matrix-like. Otherwise from the names of the arguments or where those are not
supplied and deparse.level > 0 , by deparsing the expressions given, for deparse.level = 1
only if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for a
matrix, or names for a vector of length the number of columns of the result.

60 cbind

Data frame methods

The cbind data frame method is just a wrapper for data.frame(..., check.names = FALSE) .
This means that it will split matrix columns in data frame arguments, and convert character columns
to factors unless stringsAsFactors = FALSEis specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the levelsets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

Dispatch

The method dispatching is not done via UseMethod() but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default

The dispatch algorithm is described in the source file (‘.../src/main/bind.c ’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an applicable method.

3. If we find an applicable method we make sure that it is identical to any method determined for
prior arguments. If it is identical, we proceed, otherwise we immediately drop through to the
default code.

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

C to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as a data
frame.

Examples

m <- cbind(1, 1:7) # the '1' (= shorter vector) is recycled
m

m <- chind(m, 8:14)[, c(1, 3, 2)] # insert a column

m

cbind(1:7, diag(3))# vector is subset -> warning

cbind(0, rbind(1, 1:3))

cbind(I=0, X=rbind(a=1, b=1:3)) # use some names
xx <- data.frame(l=rep(0,2))

cbind(xx, X=rbind(a=1, b=1:3)) # named differently

cbind(0, matrix(1, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind(0, matrix(1, nrow=2, ncol=0))}#-> 2 x 1

char.expand 61

deparse.level

dd <- 10

rbind(1:4, c=2, "a++"
rbind(1:4, c=2, "a++"
rbind(1:4, c=2, "a++"

10, dd, deparse.level=0)# middle 2 rownames
10, dd, deparse.level=1)# 3 rownames (default)
10, dd, deparse.level=2)# 4 rownames

char.expand Expand a String with Respect to a Target Table

Description
Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value
A length-one character vector, one of the elements of target (unless nomatchis changed to be a
non-error, when it can be a zero-length character string).

See Also

charmatchand pmatchfor performing partial string matching.

Examples

locPars <- c("mean", "median”, "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character

character Character Vectors

Description

Create or test for objects of type "character

Usage

character(length = 0)
as.character(x, ...)
is.character(x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

as.character and is.character are generic: you can write methods to handle specific classes of
objects, see InternalMethods. Further, for as.character the default method calls as.vector , so
dispatch is first on methods for as.character and then for methods for as.vector .

as.character represents real and complex numbers to 15 significant digits (technically the com-
piler’s setting of the ISO C constant DBL_DIGwhich will be 15 on machines supporting IEC60559
arithmetic according to the C99 standard). This ensures that all the digits in the result will be reli-
able (and not the result of representation error), but does mean that conversion to character and back
to numeric may change the number. If you want to convert numbers to character with the maximum
possible precision, use format.

Value

character creates a character vector of the specified length. The elements of the vector are all
equal to ™"

as.character attempts to coerce its argument to character type; like as.vector it strips attributes
including names. For lists it deparses the elements individually, except that it extracts the first
element of length-one character vectors.

is.character returns TRUbr FALSHKlepending on whether its argument is of character type or
not.

Note

as.character breaks lines in language objects at 500 characters, and inserts newlines. Prior to
2.15.0 lines were truncated (at about 70 characters before 1.3.1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

charmatch 63

See Also

paste, substr and strsplit for character concatenation and splitting, chartr for character trans-
lation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and substi-
tutions. Note that help.search(keyword = "character") gives even more links.

deparse, which is normally preferable to as.character for language objects.

Examples

foom <-y ~a+b+c
as.character(form) ## length 3
deparse(form) ## like the input

a0 <- 11/999 # has a repeating decimal representation
(al <- as.character(a0))

format(a0, digits=16) # shows one more digit

a2 <- as.numeric(al)

a2 - a0 # normally around -le-17
as.character(a2) # normally different from al

print(c(a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmatchseeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA_integer)

Arguments
X the values to be matched: converted to a character vector by as.character .
table the values to be matched against: converted to a character vector.
nomatch the (integer) value to be returned at non-matching positions.

Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then O is returned
and if no match is found then nomatchis returned.

NAwvalues are treated as the string constant "NA".

Value

An integer vector of the same length as X, giving the indices of the elements in table which
matched, or nomatch

64 chartr

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch match

grep or regexpr for more general (regexp) matching of strings.

Examples

charmatch("™, ™) # returns 1
charmatch("m", c("mean", "median"”, "mode")) # returns 0
charmatch("med", c("mean”, "median"”, "mode")) # returns 2

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr(old, new, x)
tolower(x)

toupper(x)

casefold(x, upper = FALSE)

Arguments
X a character vector, or an object that can be coerced to character by
as.character .
old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.
new a character string specifying the translations. If a character vector of length 2 or
more is supplied, the first element is used with a warning.
upper logical: translate to upper or lower case?.
Details

chartr translates each character in X that is specified in old to the corresponding character specified
in new Ranges are supported in the specifications, but character classes and repeated characters are
not. If old contains more characters than new, an error is signaled; if it contains fewer characters,
the extra characters at the end of neware ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper for tolower and toupper provided for compatibility with S-PLUS.

chartr 65

Value

A character vector of the same length and with the same attributes as X (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see Encoding
if the corresponding input had a declared encoding and the current locale is either Latin-1 or UTF-
8. The result will be in the current locale’s encoding unless the corresponding input was in UTF-8,
when it will be in UTF-8 when the system has Unicode wide characters.

See Also

sub and gsubfor other substitutions in strings.

Examples

X <- "MiXeD cAsk 123"
chartr("iXs", "why", x)
chartr("a-cX", "D-Fw", X)
tolower(x)

toupper(x)

"Mixed Case" Capitalizing - toupper(every first letter of a word) :

.simpleCap <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2),
sep="", collapse=" ")
}
.simpleCap("the quick red fox jumps over the lazy brown dog")
-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function(s, strict = FALSE) {
cap <- function(s) paste(toupper(substring(s,1,1)),
{s <- substring(s,2); if(strict) tolower(s) else s},
sep = ", collapse =" ")
sapply(strsplit(s, split = " "), cap, USE.NAMES = lis.null(names(s)))
}
capwords(c("using AIC for model selection"))
-> [1] "Using AIC For Model Selection"
capwords(c("using AIC", "for MODEL selection”), strict=TRUE)
-> [1] "Using Aic" "For Model Selection”

H# FAVAYAN FAYAYAYAYA

#H ‘bad’ ‘good’

-- Very simple insecure crypto --
rot <- function(ch, k = 13) {

p0 <- function(...) paste(c(...), collapse="")

A <- c(letters, LETTERS, " ™)

| <- seq_len(k); chartr(pO(A), pO(c(A[-1], A[l])), ch)
}

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now “decrypt" :
rot(crypw, 54 - 13)# -> the original:
stopifnot(identical(pw, rot(crypw, 54 - 13)))

66 chol
chol The Choleski Decomposition
Description
Compute the Choleski factorization of a real symmetric positive-definite square matrix.
Usage
chol(x, ...)
Default S3 method:
chol(x, pivot = FALSE, LINPACK = pivot, ...)
Arguments
X an object for which a method exists. The default method applies to real sym-
metric, positive-definite matrices.
arguments to be based to or from methods.
pivot Should pivoting be used?
LINPACK logical. Should LINPACK be used in the non-pivoting case (for compatibility
with R < 1.7.0)?
Details

chol is generic: the description here applies to the default method.

This is an interface to the LAPACK routine DPOTRF and the LINPACK routines DPOFA and
DCHDC.

Note that only the upper triangular part of X is used, so that R’ R = x when X is symmetric.

If pivot = FALSEand X is not non-negative definite an error occurs. If X is positive semi-definite
(i.e., some zero eigenvalues) an error will also occur, as a numerical tolerance is used.

If pivot = TRUE then the Choleski decomposition of a positive semi-definite X can be com-
puted. The rank of X is returned as attr(Q, "rank™ , subject to numerical errors. The
pivot is returned as attr(Q, "pivot") . It is no longer the case that t(Q) %*% Qequals
X. However, setting pivot <- attr(Q, "pivot") and 00 <- order(pivot) , it is true that
t(Q[, oo]) %*% Q[, 00] equals X, or, alternatively, t(Q) %*% @quals X[pivot, pivot] . See
the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that R'R = x
(see example).

If pivoting is used, then two additional attributes "pivot” and "rank” are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUEand X is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUEwhen X is non-negative definite by con-
struction.

chol2inv 67

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper trian-
gular left sides.

gr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <- chol(m))

tcm) %*% cm #-- ='m'
crossprod(cm) #-- ='m'

now for something positive semi-definite
X <- matrix(c(1:5, (1:5)"2), 5, 2)

X <- chind(x, x[, 1] + 3*x[, 2])

m <- crossprod(x)

gr(m)$rank # is 2, as it should be

chol() may fail, depending on numerical rounding:
chol() unlike gr() does not use a tolerance.
try(chol(m))

(Q <- chol(m, pivot = TRUE)) # NB wrong rank here - see Warning section.
we can use this by

pivot <- attr(Q, "pivot”)

crossprod(Q[, order(pivot)]) # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3),2,2))
try(chol(m)) # fails

try(chol(m, LINPACK=TRUE)) # fails
(Q <- chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m

chol2inv Inverse from Choleski (or QR) Decomposition

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently,
compute (X’X)~! from the (R part) of the QR decomposition of X.

http://www.netlib.org/lapack/lug/lapack_lug.html

68 class

Usage
chol2inv(x, size = NCOL(x), LINPACK = FALSE)

Arguments
X a matrix. The first Size columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of X containing the Choleski decomposition.
LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?
Details

This is an interface to the LAPACK routine DPOTRI and the LINPACK routine DPODI.

Value

The inverse of the matrix whose Choleski decomposition was given.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
at http://www.netlib.org/lapack/lug/lapack_lug.html

See Also

chol, solve.

Examples

cma <- chol(ma <- chind(1, 1:3, c(1,3,7)))
ma %*% chol2inv(cma)

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class(x)

class(x) <- value

unclass(x)

inherits(x, what, which = FALSE)

oldClass(x)
oldClass(x) <- value

http://www.netlib.org/lapack/lug/lapack_lug.html

class 69

Arguments
X a R object
what, value a character vector naming classes. value can also be NULL
which logical affecting return value: see ‘Details’.

Details

Here, we describe the so called “S3” classes (and methods). For “S4” classes (and methods), see
‘Formal classes’ below.

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. If the object does not have a class attribute, it has an implicit class,
"matrix" , "array” or the result of mode(x) (except that integer vectors have implicit class
“integer"). (Functions oldClass and oldClass<- get and set the attribute, which can also be
done directly.)

When a generic function fun is applied to an object with class attribute c("first", "second") ,
the system searches for a function called fun.first and, if it finds it, applies it to the object. If no
such function is found, a function called fun.second is tried. If no class name produces a suitable
function, the function fun.default is used (if it exists). If there is no class attribute, the implicit
class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning a zero-length vector or NULLremoves
the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the what
argument. If which is TRUHEhen an integer vector of the same length as what is returned. Each
element indicates the position in the class(x) matched by the element of what, zero indicates no
match. If which is FALSEhen TRUEs returned by inherits if any of the names in what match
with any class .

All but inherits are primitive functions.

Formal classes

An additional mechanism of formal classes, nicknamed “S4”, is available in packages methods
which is attached by default. For objects which have a formal class, its name is returned by class
as a character vector of length one and method dispatch can happen on several arguments, instead
of only the first. However, S3 method selection attempts to treat objects from an S4 class as if they
had the appropriate S3 class attribute, as does inherits . Therefore, S3 methods can be defined for
S4 classes. See the ‘Classes’ and ‘Methods’ help pages for details.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as(object, value) is the way to coerce an object to a particular class.

The analogue of inherits for formal classes is is . The two functions behave consistently with one
exception: S4 classes can have conditional inheritance, with an explicit test. In this case, is will
test the condition, but inherits ignores all conditional superclasses.

70 col

Note

Functions oldClass and oldClass<- behave in the same way as functions of those names in S-
PLUS 5/6, but in R UseMethodispatches on the class as returned by class (with some interpolated
classes: see the link) rather than oldClass. However, group generics dispatch on the oldClass for
efficiency, and internal generics only dispatch on objects for which is.object is true.

See Also

UseMethogdNextMethod ‘group generic’, ‘internal generic’

Examples

X <- 10

class(x) # "numeric"

oldClass(x) # NULL

inherits(x, "a") #FALSE

class(x) <- c("a", "b")

inherits(x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

col Column Indexes

Description
Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of
column labels.

Usage
col(x, as.factor = FALSE)

Arguments
X a matrix-like object, that is one with a two-dimensional dim.
as.factor a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.
Value

An integer (or factor) matrix with the same dimensions as X and whose ij -th element is equal to
(or the j -th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rowto get rows.

Colon 71

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)
ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix
X <- matrix(0, nrow = 5, ncol = 5)
X[row(x) == col(X)] <- 1

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
ab

Arguments

from starting value of sequence.
to (maximal) end value of the sequence.

a, b factor s of the same length.

Details

The binary operator : has two meanings: for factors a:b is equivalent to interaction(a, b) (but
the levels are ordered and labelled differently).

For other arguments from:to is equivalent to seq(from, to) , and generates a sequence from from
to to in steps of 1 or -1. Value to will be included if it differs from from by an integer up to a
numeric fuzz of about 1e-7. Non-numeric arguments are coerced internally (hence without dis-
patching methods) to numeric—complex values will have their imaginary parts discarded with a
warning.

Value

For numeric arguments, a numeric vector. This will be of type integer if from is integer-valued and
the result is representable in the R integer type, otherwise of type "double" (aka mode "numeric’).

For factors, an unordered factor with levels labelled as la:lb and ordered lexicographically (that
is, Ib varies fastest).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

72 colSums

See Also

seq (a generalization of from:to).
As an alternative to using : for factors, interaction

For : used in the formal representation of an interaction, see formula.

Examples

1:4
pi:6 # real
6:pi # integer

fl <- gl(2,3); f1
f2 <- glI(3,2); f2
f1:f2 # a factor, the "cross" fl1 x f2

colSums Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays.

Usage

colSums (x, na.rm = FALSE, dims = 1)
rowSums (X, na.rm = FALSE, dims = 1)
colMeans(x, na.rm = FALSE, dims = 1)
rowMeans(x, na.rm = FALSE, dims = 1)

.colSums(X, m, n, na.rm = FALSE)

.rowSums(X, m, n, na.rm = FALSE)
.colMeans(X, m, n, na.rm = FALSE)
-rowMeans(X, m, n, na.rm = FALSE)

Arguments

X an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame.

na.rm logical. Should missing values (including NaNbe omitted from the calculations?

dims integer: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over.
For row*, the sum or mean is over dimensions dims+1, ... ; for col* itis over
dimensions 1:dims.

X a numeric matrix.

m, n the dimensions of X.

colSums 73

Details

These functions are equivalent to use of apply with FUN = mea FUN = sumith appropriate
margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties of
NaMnd NAIf na.rm = FALSEnd either NaNor NAappears in a sum, the result will be one of
NaNor NA but which might be platform-dependent.

Notice that omission of missing values is done on a per-column or per-row basis, so column means
may not be over the same set of rows, and vice versa. To use only complete rows or columns, first
select them with na.omit or complete.cases (possibly on the transpose of X).

The versions with an initial dot in the name are ‘bare-bones’ versions for use in programming: they
apply only to numeric matrices and do not name the result.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. For the
first four functions the dimnamesgor namedor a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with
na.rm = TRUEthat component of the output is set to O (*Sum$ or NaN*Means, consistent with
sumand mean

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:

X <- chind(x1 = 3, x2 = c(4:1, 2:5))

rowSums(x); colSums(x)

dimnames(X)[[1]] <- letters[1:8]

rowSums(x); colSums(x); rowMeans(x); colMeans(x)

X[] <- as.integer(x)

rowSums(x); colSums(x)

X[] <-x<3

rowSums(x); colSums(x)

X <- chind(x1 = 3, x2 = c(4:1, 2:5))

X[3,] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array

dim(UCBAdmissions)

rowSums(UCBAdmissions); rowSums(UCBAdmissions, dims = 2)
colSums(UCBAdmissions); colSums(UCBAdmissions, dims = 2)

complex case

X <- chind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

X[3,] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

74 comment

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage
commandArgs(trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘--args ’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘--args ’ command-
line flag to R, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after ‘--args ’.

See Also
Startup BATCH

Examples

commandArgs()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste(commandArgs(), collapse=" "))

comment Query or Set a "comment"Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data.frame s or model fits.

Contrary to other attributes , the commenis not printed (by print or print.default).

Assigning NULlor a zero-length character vector removes the comment.

Comparison 75

Usage

comment(x)
comment(x) <- value

Arguments

X any R object

value a character vector, or NULL
See Also

attributes and attr for other attributes.

Examples

X <- matrix(1:12, 3,4)
comment(x) <- ¢("This is my very important data from experiment #0234",

"Jun 5, 1998")
X
comment(x)
Comparison Relational Operators
Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

X<y

X
X
X >=
X
X

Arguments

X,y atomic vectors, symbols, calls, or other objects for which methods have been
written.

Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Op9 group generic function. (See Opsfor how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see locales . The collating sequence of locales such as ‘en_USis
normally different from ‘C (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between Sand T, and collation
is not necessarily character-by-character — in Danish aasorts as a single letter, after z. In Welsh ng

76

Comparison

may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect the
locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode point order
for a UTF-8 locale (and may not sort in the same order for the same language in different character
sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is even more
problematic.

Character strings can be compared with different marked encodings (see Encoding): they are trans-
lated to UTF-8 before comparison.

At least one of X and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (NA and NaNvalues are regarded as non-comparable even to themselves, so compar-
isons involving them will always result in NAMissing values can also result when character strings
are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Comparezroup generic, and so methods can be written
for them individually as well as for the group generic (or the Opsgroup generic), with arguments
c(el, e2).

Note

Do not use ==and != for tests, such as in if expressions, where you must get a single TRUlr FALSE
Unless you are absolutely sure that nothing unusual can happen, you should use the identical
function instead.

For numerical and complex values, remember ==and != do not allow for the finite representation
of fractions, nor for rounding error. Using all.equal with identical is almost always preferable.
See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see http://en.wikipedia.
org/wiki/Collating_sequence . The Unicode Collation Algorithm (http://unicode.org/
reports/trl0/) is likely to be increasingly influential. Where available R makes use of ICU
(http://site.icu-project.org/ for collation.

http://en.wikipedia.org/wiki/Collating_sequence
http://en.wikipedia.org/wiki/Collating_sequence
http://unicode.org/reports/tr10/
http://unicode.org/reports/tr10/
http://site.icu-project.org/

complex 77

See Also

factor for the behaviour with factor arguments.
Syntax for operator precedence.

icuSetCollate to tune the string collation algorithm when ICU is in use.

Examples

X <- stats::rnorm(20)
x<1
X[x > 0]

x1 <- 05 -0.3

X2 <- 03 -0.1

x1 == x2 # FALSE on most machines
identical(all.equal(x1, x2), TRUE) # TRUE everywhere

range of most 8-bit charsets, as well as of Latin-1 in Unicode
z <- ¢(32:126, 160:255)
x <- if(I10n_info()$MBCS) {
intToUtf8(z, multiple = TRUE)
} else rawToChar(as.raw(z), multiple= TRUE)
by number
writeLines(strwrap(paste(x, collapse=" "), width = 60))
by locale collation
writeLines(strwrap(paste(sort(x), collapse=" "), width = 60))

complex Complex Vectors

Description

Basic functions which support complex arithmetic in R.

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)

is.complex(x)

Re(z)
Im(z)
Mod(z)
Arg(2)

Conj(2)
Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as needed.

real numeric vector.

78 complex
imaginary numeric vector.
modulus numeric vector.
argument numeric vector.
X an object, probably of mode complex
z an object of mode complex or one of a class for which a methods has been
defined.
further arguments passed to or from other methods.
Details

Complex vectors can be created with complex The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips at-

tributes including names. All forms of NAand NaMre coerced to a complex NA for which both the
real and imaginary parts are NA

Note that is.complex and is.numeric are never both TRUE

The functions Re Im, Mod Arg and Conj have their usual interpretation as returning the real part,
imaginary part, modulus, argument and complex conjugate for complex values. The modulus and
argument are also called the polar coordinates. If z = x + iy with real « and y, for r = Mod(z) =
Va2 +y?, and ¢ = Arg(z), x = r x cos(¢) and y = r x sin(¢p). They are all internal generic
primitive functions: methods can be defined for them individually or via the Complexgroup generic.

In addition, the elementary trigonometric, logarithmic, exponential, square root and hyperbolic
functions are implemented for complex values.

Internally, complex numbers are stored as a pair of double precision numbers, either or both of
which can be NaMNor plus or minus infinity.

S4 methods

as.complex s primitive and can have S4 methods set.

Re Im, Mod Arg and Conj constitute the S4 group generic Complexand so S4 methods can be set
for them individually or via the group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(graphics)
0i ~ (-3:3)

matrix(1i* (-6:5), nrow=4) #- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector

z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):

z2 <- 1:2 + 1i*(8:9)

conditions 79

The Arg(.) is an angle:
zz <- (rep(1:4,len=9) + 1i*(9:1))/10
zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by "," ", pi == 180"0)))
abline(h=0,v=0, col="blue", Ity=3)
points(zz.shift, col="orange")

conditions Condition Handling and Recovery

Description
These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.

Usage

tryCatch(expr, ..., finally)
withCallingHandlers(expr, ...)

signalCondition(cond)

simpleCondition(message, call = NULL)
simpleError (message, call = NULL)
simpleWarning (message, call = NULL)
simpleMessage (message, call = NULL)

S3 method for class 'condition’
as.character(x, ...)

S3 method for class 'error'
as.character(x, ...)

S3 method for class 'condition’

print(x, ...)
S3 method for class 'restart’
print(x, ...)

conditionCall(c)

S3 method for class ‘condition’
conditionCall(c)
conditionMessage(c)

S3 method for class ‘condition’
conditionMessage(c)

withRestarts(expr, ...)

computeRestarts(cond = NULL)
findRestart(name, cond = NULL)
invokeRestart(r, ...)
invokeRestartInteractively(r)

80 conditions

isRestart(x)
restartDescription(r)
restartFormals(r)

.signalSimpleWarning(msg, call)
.handleSimpleError(h, msg, call)

Arguments

c a condition object.

call call expression.

cond a condition object.

expr expression to be evaluated.

finally expression to be evaluated before returning or exiting.

h function.

message character string.

msg character string.

name character string naming a restart.

r restart object.

X object.

additional arguments; see details below.

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition . Errors and warnings are ob-
jects inheriting from the abstract subclasses error and warning. The class simpleError is the
class used by stop and all internal error signals. Similarly, simpleWarning is used by warning,
and simpleMessageis used by message The constructors by the same names take a string de-
scribing the condition as argument and an optional call. The functions conditionMessage and
conditionCall are generic functions that return the message and call of a condition.

Conditions are signaled by signalCondition . In addition, the stop and warning functions have
been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers provided
inthe ... argument are available. The finally expression is then evaluated in the context in which
tryCatch was called; that is, the handlers supplied to the current tryCatch call are not active when
the finally expression is evaluated.

Handlers provided in the ... argument to tryCatch are established for the duration of the evalua-
tion of expr. If no condition is signaled when evaluating expr then tryCatch returns the value of
the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single tryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the tryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with

conditions 81

the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers . If a condition is signaled and the ap-
plicable handler is a calling handler, then the handler is called by signalCondition in the context
where the condition was signaled but with the available handlers restricted to those below the han-
dler called in the handler stack. If the handler returns, then the next handler is tried; once the last
handler has been tried, signalCondition returns NULL

User interrupts signal a condition of class interrupt that inherits directly from class condition
before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using withRestarts .
One pre-established restart is an abort restart that represents a jump to top level.

findRestart and computeRestarts find the available restarts. findRestart returns the most re-
cently established restart of the specified name. computeRestarts returns a list of all restarts. Both
can be given a condition argument and will then ignore restarts that do not apply to the condition.

invokeRestart transfers control to the point where the specified restart was established and calls
the restart’s handler with the arguments, if any, given as additional arguments to invokeRestart .
The restart argument to invokeRestart can be a character string, in which case findRestart is
used to find the restart.

New restarts for withRestarts can be specified in several ways. The simplest is in name=function
form where the function is the handler to call when the restart is invoked. Another simple variant
is as name=string where the string is stored in the description field of the restart object returned
by findRestart ; in this case the handler ignores its arguments and returns NULLThe most flex-
ible form of a restart specification is as a list that can include several fields, including handler,
description , and test . The test field should contain a function of one argument, a condition,
that returns TRUH the restart applies to the condition and FALSES it does not; the default function
returns TRUEHor all conditions.

One additional field that can be specified for a restart is interactive . This should be a function of
no arguments that returns a list of arguments to pass to the restart handler. The list could be obtained
by interacting with the user if necessary. The function invokeRestartinteractively calls this
function to obtain the arguments to use when invoking the restart. The default interactive method
queries the user for values for the formal arguments of the handler function.

.signalSimpleWarning and .handleSimpleError are used internally and should not be called
directly.

References

The tryCatch mechanism is similar to Java error handling. Calling handlers are based on Common
Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and try is essentially a simplified version of tryCatch .

Examples

tryCatch(1, finally=print("Hello"))

e <- simpleError("test error")

Not run:

stop(e)

tryCatch(stop(e), finally=print("Hello"))
tryCatch(stop("fred"), finally=print("Hello"))

82 conflicts

End(Not run)

tryCatch(stop(e), error = function(e) e, finally=print("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally=print("Hello"))
withCallingHandlers({ warning("A"); 1+2 }, warning = function(w) {})
Not run:

{ withRestarts(stop("A"), abort = function() {}); 1 }

End(Not run)
withRestarts(invokeRestart("foo"”, 1, 2), foo = function(x, y) {x + y})

##--> More examples are part of
##--> demo(error.catching)

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage
conflicts(where = search(), detail = FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUEgive the masked or masking functions for all members of the search
path.
Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE a list of character vectors
giving the masked or masking objects in that member of the search path. Empty vectors are omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[1] "Im"

#

$package:base

[1] "Im"

Remove things from your "workspace" that mask others:
remove(list = conflicts(detail=TRUE)$.GlobalEnv)

connections

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

Usage
file(description = "™, open = ", blocking = TRUE,
encoding = getOption("encoding"), raw = FALSE)
url(description, open = "™, blocking = TRUE,
encoding = getOption("encoding"))
gzfile(description, open = ", encoding = getOption("encoding"),
compression = 6)
bzfile(description, open = "™, encoding = getOption("encoding"),
compression = 9)
xzfile(description, open = ", encoding = getOption("encoding"),

compression = 6)
unz(description, filename, open = ",
encoding = getOption("encoding"))

pipe(description, open = "™, encoding = getOption("encoding™))

fifo(description, open = ", blocking = FALSE,
encoding = getOption("encoding"))

socketConnection(host = "localhost", port, server = FALSE,
blocking = FALSE, open = "at+",
encoding = getOption("encoding"),
timeout = getOption("timeout"))

open(con, ...)
S3 method for class ‘connection’
open(con, open = "r", blocking = TRUE, ...

close(con, ...)
S3 method for class 'connection’
close(con, type = "rw", ...)

flush(con)

isOpen(con, rw = ")
isincomplete(con)

compression

connections

Arguments
description character string. A description of the connection: see ‘Details’.
open character. A description of how to open the connection (if it should be opened
initially). See section ‘Modes’ for possible values.
blocking logical. See the ‘Blocking’ section.
encoding The name of the encoding to be used. See the ‘Encoding’ section.
raw logical. If true, a ‘raw’ interface is used which will be more suitable for argu-

ments which are not regular files, e.g. character devices. This suppresses the
check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

integer in 0-9. The amount of compression to be applied when writing, from
none to maximal available. For xzfile can also be negative: see the ‘Compres-
sion’ section.

timeout numeric: the timeout (in seconds) to be used for this connection. Beware that
some OSes may treat very large values as zero: however the POSIX standard
requires values up to 31 days to be supported.

filename a filename within a zip file.

host character. Host name for port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

con a connection.

type character. Currently ignored.

rw character. Empty or "read" or "write" , partial matches allowed.
arguments passed to or from other methods.

Details

The first nine functions create connections. By default the connection is not opened (except for
socketConnection), but may be opened by setting a non-empty value of argument open

For file the description is a path to the file to be opened or a complete URL (when it is the same
as calling url), or " (the default) or "clipboard" (see the ‘Clipboard’ section). Use "stdin" to
refer to the C-level ‘standard input’ of the process (which need not be connected to anything in a
console or embedded version of R, and is not in RGuion Windows). See also stdin() for the subtly
different R-level concept of stdin .

For url the description is a complete URL, including scheme (such as ‘http:// °, “ftp:// ° or
“file://). Proxies can be specified for HTTP and FTP url connections: see download.file .

For gzfile the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and (as from R 2.10.0) those compressed by bzip2, xz or Izma

For bzfile the description is the path to a file compressed by bzip2.

For xzfile the description is the path to a file compressed by xz (http://en.wikipedia.org/
wiki/Xz) or (for reading only) Izma (http://en.wikipedia.org/wiki/LZMA).

unzreads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with *.zip ’ extension if required.

For pipe the description is the command line to be piped to or from. This is run in a shell, on
Windows that specified by the COMSPEf¥ironment variable.

http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/LZMA

connections 85

For fifo the description is the path of the fifo. (Windows does not have fifos, so attempts to use this
function there are an error. It was possible to use file with fifos prior to R 2.10.0, but raw=TRUE
now required for reading, and fifo was always the documented interface.)

All platforms support file , pipe, gzfile , bzfile ,xzfile ,unzand url("file://") connections.
The other connections may be partially implemented or not implemented at all. (They do work on
most Unix platforms, and all but fifo on Windows.)

The intention is that file and gzfile can be used generally for text input (from files and URLs)
and binary input respectively.

open close and seek are generic functions: the following applies to the methods relevant to con-
nections.

openopens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call openexplicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see stdout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

flush flushes the output stream of a connection open for write/append (where implemented, cur-
rently for file and clipboard connections, stdout and stderr).

If for afile or fifo connection the description is "™ , the file/fifo is immediately opened (in "w+"
mode unless open = "w+b'is specified) and unlinked from the file system. This provides a tempo-
rary file/fifo to write to and then read from.

Value

file , pipe, fifo , url , gzfile , bzfile , xzfile , unzand socketConnection return a connection
object which inherits from class "connection” and has a first more specific class.

isOpenreturns a logical value, whether the connection is currently open.

isincomplete returns a logical value, whether the last read attempt was blocked, or for an output
text connection whether there is unflushed output.

URLs
url and file support URL schemes ‘http:// °, ‘ftp:// > and file:// .
A note on ‘file:// ° URLs. The most general form (from RFC1738) is
“file://host/path/to/file >, but R only accepts the form with an empty host field refer-
ring to the local machine.
On a Unix-alike, this is then ‘file:///path/to/file ’, where ‘path/to/file ’ is relative to /.
So although the third slash is strictly part of the specification not part of the path, this can be
regarded as a way to specify the file ‘/path/to/file ’. It is not possible to specify a relative path
using a file URL.
In this form the path is relative to the root of the filesystem, not a Windows concept. The standard
form on Windows is “file:///d:/R/repos ’: for compatibility with earlier versions of R and Unix
versions, any other form is parsed as R as ‘file:// ’ plus path_to_file . Also, backslashes are

accepted within the path even though RFC1738 does not allow them.
No attempt is made to decode an encoded URL: call URLdecodé# necessary.

Note that ‘https:// ’ connections are not supported except on Windows. There they are only
supported if ‘--internet2 ’ or setinternet2(TRUE) was used (to make use of Internet Explorer

86

connections

internals), and then only if the certificate is considered to be valid. With that option only, the
‘http://luser:pass@site ’ notation for sites requiring authentication is also accepted.

Contributed package RCurl provides more comprehensive facilities to download from URLs.

Modes

Possible values for the argument openare

r" or"rt" Open for reading in text mode.

w" or "wt" Open for writing in text mode.
"a" or "at" Open for appending in text mode.
"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.
"ab" Open for appending in binary mode.

"r+" ,"r+b" Open for reading and writing.

w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for both reading and writing. An unsupported mode
is usually silently substituted.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask(see Sys.umash.

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work for any
form of line ending). Various R operations are possible in only one of the modes: for example
pushBackis text-oriented and is only allowed on connections open for reading in text mode, and
binary operations such as readBin, load and save operations can only be done on binary-mode
connections.

The mode of a connection is determined when actually opened, which is deferred if open = "™ is
given (the default for all but socket connections). An explicit call to opencan specify the mode,
but otherwise the mode will be "r" . (gzfile , bzfile and xzfile connections are exceptions, as
the compressed file always has to be opened in binary mode and no conversion of line-endings is
done even on Windows, so the default mode is interpreted as "rb" .) Most operations that need
write access or text-only or binary-only mode will override the default mode of a non-yet-open
connection.

Append modes need to be considered carefully for compressed-file connections. They do not pro-
duce a single compressed stream on the file, but rather append a new compressed stream to the file.
Readers (including R) may or may not read beyond end of the first stream: currently R does so for
gzfile , bzfile and xzfile connections, but earlier versions did not.

Compression

R has for a long time supported gzip and bzip2 compression, and support for Xz compression (and
read-only support for its precursor Izmacompression) was added in R 2.10.0.

For reading, the type of compression (if any) can be determined from the first few bytes of the file,

and this is exploited as from R 2.10.0. Thus for file(raw = FALSE) connections, if openis ",
"r'" or"rt" the connection can read any of the compressed file types as well as uncompressed files.

http://CRAN.R-project.org/package=RCurl

connections 87

(Using "rb" will allow compressed files to be read byte-by-byte.) Similarly, gzfile connections
can read any of the forms of compression and uncompressed files in any read mode.

(The type of compression is determined when the connection is created if openis unspecified and a
file of that name exists. If the intention is to open the connection to write a file with a different form

of compression under that name, specify open = "w"when the connection is created or unlink the
file before creating the connection.)

For write-mode connections, compressspecifies now hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb
for xzfile(compress = 9)). For xzfile negative values of compresscorrespond to adding the
Xz argument ‘-e’: this takes more time (double?) to compress but may achieve (slightly) better
compression. The default (6) has good compression and modest (100Mb memory usage): but if

you are using Xz compression you are probably looking for high compression.

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and Xz with maximal com-
pression 30% better. The experience with R save files is similar, but on some large ‘.rda ’ files
Xz compression is much better than the other two. With current computers decompression times
even with compress = Sare typically modest and reading compressed files is usually faster than
uncompressed ones because of the reduction in disc activity.

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same way
as it would be given to iconv: see that help page for how to find out what encoding names are
recognized on your platform. Additionally, ™ and "native.enc” both mean the ‘native’ encoding,
that is the internal encoding of the current locale and hence no translation is done.

Re-encoding only works for connections in text mode: reading from a connection with re-encoding
specified in binary mode will read the stream of bytes, but mixing text and binary mode reads (e.g.
mixing calls to readLines and readChar) is likely to lead to incorrect results.

The encodings "UCS-2LE"and "UTF-16LE"are treated specially, as they are appropriate values
for Windows ‘Unicode’ text files. If the first two bytes are the Byte Order Mark OxFFFEhen
these are removed as some implementations of iconv do not accept BOMs. Note that whereas most
implementations will handle BOMs using encoding "UCS-2"and choose the appropriate byte order,
some (including earlier versions of glibc) will not. There is a subtle distinction between "UTF-16"
and "UCS-2"(see http://en.wikipedia.org/wiki/UTF-16/UCS-2 : the use of surrogate pairs is
very rare so "UCS-2LE'is an appropriate first choice.

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done for invalid input is in general
undocumented. On output the result is likely to be that up to the error, with a warning. On input, it
will most likely be all or some of the input up to the error.

Blocking

Whether or not the connection blocks can be specified for file, url (default yes) fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

http://en.wikipedia.org/wiki/UTF-16/UCS-2

88

connections

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options("timeout”) . Note that this is a timeout for no response, not for the whole operation. The
timeout is set at the time the connection is opened (more precisely, when the last connection of that
type — ‘http: ’, ‘ftp: ’ or socket — was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file()

Clipboard

file can be used with description = "clipboard" in mode "r" only. This reads
the X11 primary selection (see http://standards.freedesktop.org/clipboards-spec/
clipboards-latest.txt), which can also be specified as "X11_primary" and the secondary se-
lection as "X11_secondary". On most systems the clipboard selection (that used by ‘Copy’ from
an ‘Edit’ menu) can be specified as "X11_clipboard" .

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing to wrife to one of the selections may be able to do so via xclip (http://
sourceforge.net/projects/xclip/), for example by pipe("xclip -i", "w") for the primary
selection.

Mac OS X users can use pipe("pbpaste”) and pipe("pbcopy”, "w") to read from and write to
that system’s clipboard.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections.

The default open mode in R is "r" except for socket connections. This differs from S, where it is
the equivalent of "r+" , known as "*" .

On (rare) platforms where vsnprintf does not return the needed length of output there is a 100,000
byte output limit on the length of line for text output on fifo , gzfile , bzfile and xzfile connec-
tions: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Ripley, B. D. (2001) Connections. R News, 1/1, 16-7. http://lwww.r-project.org/doc/Rnews/
Rnews_2001-1.pdf

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://sourceforge.net/projects/xclip/
http://sourceforge.net/projects/xclip/
http://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf
http://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

connections 89

See Also

textConnection , seek, showConnections pushBack

Functions making direct use of connections are (text-mode) readLines, writeLines , cat,
sink , scan, parse, read.dcf , dput, dumpand (binary-mode) readBin, readChar, writeBin ,
writeChar , load and save.

capabilities to see if HTTP/FTP url , fifo and socketConnection are supported by this build
of R.

gzconto wrap gzip (de)compression around a connection.

memComprefis more ways to (de)compress and references on data compression.

Examples

zz <- file("ex.data", "w") # open an output file connection

cat("TITLE extra line", "2 3 5 7", ™, "11 13 17", file = zz, sep = "\n")
cat("One more line\n", file = zz)
close(zz)

readLines("ex.data")
unlink("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file

cat("TITLE extra line", "2 3 5 7", ™, "11 13 17", file = zz, sep = "\n")
close(zz)

readLines(zz <- gzfile("ex.gz"))

close(zz)

unlink("ex.gz")

zz <- bzfile("ex.bz2", "w") # bzip2-ed file

cat("TITLE extra line", "2 3 5 7", "™, "11 13 17", file = zz, sep = "\n")
close(zz)

print(readLines(zz <- bzfile("ex.bz2")))

close(zz)

unlink("ex.bz2")

An example of a file open for reading and writing
Tfile <- file("testl", "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat("abc\ndefi\n”, file=Tfile)

readLines(Tfile)

seek(Tfile, O, rw="r") # reset to beginning
readLines(Tfile)

cat("ghi\n", file=Tfile)

readLines(Tfile)

close(Tfile)

unlink("test1")

We can do the same thing with an anonymous file.
Tfile <- file()

cat("abc\ndefin”, file=Tfile)

readLines(Tfile)

close(Tfile)

fifo example -- may fail even with OS support for fifos
if(capabilities("fifo")) {
zz <- fifo("foo-fifo", "w+")

90

writeLines("abc", zz)
print(readLines(zz))
close(zz)
unlink(“foo-fifo")

}

Unix examples of use of pipes

read listing of current directory
readLines(pipe('ls -1"))

remove trailing commas. Suppose

Not run: % cat data2

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

End(Not run)

Then read this by

scan(pipe("sed -e s/,$// data2_"), sep=",")

convert decimal point to comma in output: see also write.table
both R strings and (probably) the shell need \ doubled

zz <- pipe(paste("sed sN\./,/ >", "outfile"), "w"
cat(format(round(stats::rnorm(48), 4)), fill=70, file = zz)

close(zz)

file.show("outfile", delete.file=TRUE)

example for a machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)
writeLines(paste(system("whoami", intern=TRUE), "\r", sep=""), con)
gsub(" *$", "™, readLines(con))

close(con)

Not run:

Two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection(port = 6011, server=TRUE)
writeLines(LETTERS, conl)

close(conl)

R process 2
con2 <- socketConnection(Sys.info()["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines(con2)
while(isincomplete(con2)) {

Sys.sleep(1)

z <- readLines(con2)

if(length(z)) print(z)

close(con2)

examples of use of encodings
write a file in UTF-8

connections

Constants 91

cat(x, file = (con <- file("foo", "w", encoding="UTF-8")); close(con)
read a 'Windows Unicode' file
A <- read.table(con <- file("students", encoding="UCS-2LE")); close(con)

End(Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name

pI

Details

R has a small number of built-in constants.

The following constants are available:

e LETTER$he 26 upper-case letters of the Roman alphabet;

* letters : the 26 lower-case letters of the Roman alphabet;

» month.abh the three-letter abbreviations for the English month names;
* month.namethe English names for the months of the year;

* pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base namespace taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data, DateTimeClasses

Quotesfor the parsing of character constants, NumericConstantsfor numeric constants.

92 Control

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4*(4*atan(1/5) - atan(1/239))

months in English

month.name

months in your current locale
format(ISOdate(2000, 1:12, 1), "%B")
format(ISOdate(2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

Usage

if(cond) expr
if(cond) cons.expr else alt.expr

for(var in seq) expr
while(cond) expr
repeat expr

break
next
Arguments

cond A length-one logical vector that is not NA Conditions of length greater than one
are accepted with a warning, but only the first element is used. Other types are
coerced to logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULLA factor value will be coerced to a character vector.

Control 93

expr, cons.expr, alt.expr
An expression in a formal sense. This is either a simple expression or a so called

compound expression, usually of the form { exprl ; expr2 } .

Details

break breaks out of a for , while or repeat loop; control is transferred to the first statement outside
the inner-most loop. next halts the processing of the current iteration and advances the looping
index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ .. }) around your statements, e.g., after
if(..) orfor(...) . In particular, you should not have a newline between } and else to avoid
a syntax error in entering a if ... else construct at the keyboard or via source. For that reason,
one (somewhat extreme) attitude of defensive programming is to always use braces, e.g., for if
clauses.

The seqin a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seq. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

Value

if returns the value of the expression evaluated, or NULLinvisibly if none was (which may happen
if there is no else).

for , while and repeat return NULLinvisibly. for sets var to the last used element of seg, or to
NULLS it was of length zero.

break and next do not return a value as they transfer control within the loop.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Parenfor parentheses and braces.

ifelse , switch for other ways to control flow.

Examples

for(i in 1:5) print(1:i)
for(n in ¢(2,5,10,20,50)) {
X <- stats::rnorm(n)
cat(n,":", sum(x"2),"\n")
}
f = factor(sample(letters[1:5], 10, replace=TRUE))
for(i in unique(f)) print(i)

94 converters

converters Management of .C argument conversion list

Description

Warning: these functions are deprecated and will be removed shortly. Use the .Call interface
instead.

These functions provide facilities to manage the extensible list of converters used to translate R
objects to C pointers for use in .C calls. The number and a description of each element in the list
can be retrieved. One can also query and set the activity status of individual elements, temporarily
ignoring them. And one can remove individual elements.

Usage

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
setCConverterStatus(id, status)

removeCConverter(id)
Arguments
id either a number or a string identifying the element of interest in the converter list.

A string is matched against the description strings for each element to identify
the element. Integers are specified starting at 1 (rather than 0).

status a logical value specifying whether the element is to be considered active (TRUJE
or not (FALSE

Details

The internal list of converters is potentially used when converting individual arguments in a .C
call. If an argument has a non-trivial class attribute, we iterate over the list of converters looking
for the first that matches. If we find a matching converter, we have it create the C-level pointer
corresponding to the R object. When the call to the C routine is complete, we use the same converter
for that argument to reverse the conversion and create an R object from the current value in the C
pointer. This is done separately for all the arguments.

The functions documented here provide R user-level capabilities for investigating and managing
the list of converters. There is currently no mechanism for adding an element to the converter list
within the R language. This must be done in C code using the routine R_addToCConverter()

Value

getNumCConverterseturns an integer giving the number of elements in the list, both active and
inactive.

getCConverterDescriptions returns a character vector containing the description string of each
element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter list.
Each value indicates whether that converter is active (TRUJor inactive (FALSE The names of the
elements are the description strings returned by getCConverterDescriptions .

copyright 95

setCConverterStatus returns the logical value indicating the activity status of the specified ele-
ment before the call to change it took effect. This is TRUEor active and FALSHor inactive.

removeCConvertetreturns TRUH an element in the converter list was identified and removed. In
the case that no such element was found, an error occurs.

Author(s)

Duncan Temple Lang

References

http://cm.bell-labs.com/stat/duncan/SCConverters/CObjectConversion.pdf

See Also
.C

Examples

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()

Not run:

old <- setCConverterStatus(1, FALSE)

setCConverterStatus(1, old)
End(Not run)

Not run:
removeCConverter(1)

removeCConverter(getCConverterDescriptions()[1])

End(Not run)

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see contributors) for the ability to use
their work.

Details
The file ‘R_HOME/COPYRIGHTISts the copyrights in full detail.

http://cm.bell-labs.com/stat/duncan/SCConverters/CObjectConversion.pdf

96 crossprod

crossprod Matrix Crossproduct

Description

Given matrices X and Yy as arguments, return a matrix cross-product. This is formally equivalent to
(but usually slightly faster than) the call t(x) %*% Yy (crossprod) or X %*% t(y) (tcrossprod).

Usage
crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments
X, Y numeric or complex matrices: Y = NULLs taken to be the same matrix as X.
Vectors are promoted to single-column or single-row matrices, depending on
the context.
Value

A double or complex matrix, with appropriate dimnamesaken from X and y.

Note

When X or y are not matrices, they are treated as column or row matrices, but their namesre usually
not promoted to dimnamesHence, currently, the last example has empty dimnames.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*%nd outer product %0%

Examples

(z <- crossprod(1:4)) # = sum(l + 272 + 372 + 4/2)
drop(z) # scalar
x <- 1:4; names(x) <- letters[1:4]; x
tcrossprod(as.matrix(x)) # is
identical(tcrossprod(as.matrix(x)),

crossprod(t(x)))
tcrossprod(x) # no dimnames

m <- matrix(1:6, 2,3) ; v <- 1:3; v2 <- 2:1

stopifnot(identical(tcrossprod(v, m), v %*% t(m)),
identical(tcrossprod(v, m), crossprod(v, t(m))),
identical(crossprod(m, v2), t(m) %*% v2))

Cstack_info 97

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage
Cstack_info()

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA and stack-checking is
not performed.

The information on the stack base address is thought to be accurate on Windows, Linux and
FreeBSD (including Mac OS X), but a heuristic is used on other platforms. Because this might
be slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used
on embedded uses of R on platforms where the stack base is not thought to be accurate.)

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NAif unknown.

current The estimated current usage (in bytes), possibly NA

direction 1 (stack grows down, the usual case) or -1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to Cstack_info).
Examples

Cstack_info()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax(x)
cummin(x)

98 cut

Arguments
X a numeric or complex (not cummiror cummaobject, or an object that can be
coerced to one of these.
Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as X (after coercion), except that cumprodreturns a numeric
vector for integer input (for consistency with *). Names are preserved.

An NAvalue in X causes the corresponding and following elements of the return value to be NA as
does integer overflow in cumsuntwith a warning).

S4 methods

cumsurand cumprodare S4 generic functions: methods can be defined for them individually or via
the Mathgroup generic. cummaand cummirare individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsurnnly.)

Examples

cumsum(1:10)
cumprod(1:10)
cummin(c(3:1, 2:0, 4:2))
cummax(c(3:1, 2:0, 4:2))

cut Convert Numeric to Factor

Description

cut divides the range of X into intervals and codes the values in X according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

cut(x, ...)

Default S3 method:

cut(x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3,
ordered_result = FALSE, ..))

cut 99

Arguments
X a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more cut points or a single number (greater
than or equal to 2) giving the number of intervals into which X is to be cut.
labels labels for the levels of the resulting category. By default, labels are constructed

using "(a,b]" interval notation. If labels = FALSE simple integer codes are
returned instead of a factor.

include.lowest logical, indicating if an ‘x[i]” equal to the lowest (or highest, for
right = FALSE ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result logical: should the result be an ordered factor?

further arguments passed to or from other methods.

Details

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If X is a constant vector, equal-length intervals
are created that cover the single value.)

If alabels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as "(b1, b2]" , "(b2, b3]" etc. for right = TRUEand as
"[b1, b2)" ,...ifright = FALSE In this case, dig.lab indicates the minimum number of digits
should be used in formatting the numbers bl b2 A larger value (up to 12) will be used if
needed to distinguish between any pair of endpoints: if this fails labels such as "Range3"will be
used.

Value

A factor is returned, unless labels = FALSEwhich results in the mere integer level codes.

Note
Instead of table(cut(x, br)) , hist(x, br, plot = FALSE) is more efficient and less memory
hungry. Instead of cut(*, labels = FALSE) , findinterval() is more efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor , tabulate , table,
findInterval()

guantile for ways of choosing breaks of roughly equal content (rather than length).

100 cut. POSIXt

Examples

Z <- stats::rnorm(10000)

table(cut(Z, breaks = -6:6))

sum(table(cut(Z, breaks = -6:6, labels=FALSE)))
sum(graphics::hist(Z, breaks = -6:6, plot=FALSE)$counts)

cut(rep(1,5),4)#-- dummy

tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
X <- rep(0:8, tx0)

stopifnot(table(x) == tx0)

table(cut(x, b = 8))
table(cut(x, breaks = 3*(-2:5)))
table(cut(x, breaks = 3*(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :

table(cx <- cut(x, breaks = 2*(0:4)))

table(cxl <- cut(x, breaks = 2*(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:

y <- stats::rnorm(100)

table(cut(y, breaks = pi/3*(-3:3)))
table(cut(y, breaks = pi/3*(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))

extra digits don't "harm" here

table(cut(y, breaks = 1*(-3:3), right = FALSE))
#- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- ¢(1,2,3,4,5,2,3,4,5,6,7)

cut(aaa, 3)

cut(aaa, 3, dig.lab=4, ordered = TRUE)

one way to extract the breakpoints

labs <- levels(cut(aaa, 3))

cbind(lower = as.numeric(sub("\((.+),.*", "\1", labs)),
upper = as.numeric(sub("[*J*(M*W\", "\1", labs)))

cut.POSIXt Convert a Date or Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt
cut(x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)

data.class 101

S3 method for class 'Date’
cut(x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ..)

Arguments

X an object inheriting from class "POSIXt" or "Date" .

breaks a vector of cut points or number giving the number of intervals which X is to
be cut into or an interval specification, one of "sec", "min", "hour" , "day",
"DSTday, "week", "month", "quarter" or "year" , optionally preceded by
an integer and a space, or followed by "s". For "Date" objects only "day",
"week", "month", "quarter" and "year" are allowed.

labels labels for the levels of the resulting category. By default, labels are constructed

from the left-hand end of the intervals (which are include for the default value
of right). If labels = FALSE simple integer codes are returned instead of a
factor.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sundays?

right, ... arguments to be passed to or from other methods.

Details

Using both right = TRUEand include.lowest = TRUE will include both ends of the range of
dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals beginning
on January 1, April 1, July 1 or October 1, based upon min(x) as appropriate.
Value

A factor is returned, unless labels = FALSEwhich returns the integer level codes.

See Also
seq.POSIXt seq.Date, cut

Examples

random dates in a 10-week period
cut(ISOdate(2001, 1, 1) + 70*86400*stats::runif(100), "weeks")
cut(as.Date("2001/1/1") + 70*stats::runif(100), "weeks")

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class(x)

102 data.frame

Arguments

X an R object.

Value

character string giving the class of X.

The class is the (first element) of the class attribute if this is non-NULLor inferred from the object’s
dim attribute if this is non-NULLor mode(x)

Simply speaking, data.class(x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When X is integer , the result
of data.class(x) is "numeric" even when X is classed.

See Also
class

Examples
x <- LETTERS
data.class(factor(x)) # has a class attribute
data.class(matrix(x, ncol = 13)) # has a dim attribute
data.class(list(x)) # the same as mode(x)
data.class(x) # the same as mode(x)
stopifnot(data.class(1:2) == "numeric")# compatibility "rule"

data.frame Data Frames
Description

This function creates data frames, tightly coupled collections of variables which share many of the
properties of matrices and of lists, used as the fundamental data structure by most of R’s modeling

software.
Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

default.stringsAsFactors()

data.frame 103

Arguments
these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.
row.names NULér a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.
check.rows if TRUBEhen the rows are checked for consistency of length and names.

check.names logical. If TRUhen the names of the variables in the data frame are checked to
ensure that they are syntactically valid variable names and are not duplicated. If
necessary they are adjusted (by make.namesso that they are.

stringsAsFactors
logical: should character vectors be converted to factors? The ‘factory-fresh’
default is TRUBbut this can be changed by setting options(stringsAsFactors
= FALSE)

Details

A data frame is a list of variables of the same number of rows with unique row names, given class
"data.frame" . If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsupported
results. Duplicate column names are allowed, but you need to use check.names = FALSfor
data.frame to generate such a data frame. However, not all operations on data frames will preserve
duplicated column names: for example matrix-like subsetting will force column names in the result
to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame(optional=TRUE) . As that is a generic function, methods can be written to
change the behaviour of arguments according to their classes: R comes with many such methods.
Character variables passed to data.frame are converted to factor columns unless protected by | or
argument StringsAsFactors is false. If a list or data frame or matrix is passed to data.frame it
is as if each component or column had been passed as a separate argument (except for matrices of
class "model.matrix" and those protected by I).

Objects passed to data.frame should have the same number of rows, but atomic vectors, factors and
character vectors protected by | will be recycled a whole number of times if necessary (including
as elements of list arguments).

If row names are not supplied in the call to data.frame , the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.nameswas supplied as NULLor no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as.matrix).

If row names are supplied of length one and the data frame has a single row, the row.namesis taken
to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by | .

default.stringsAsFactors is a utility that takes getOption("stringsAsFactors”) and ensures
the result is TRUr FALSEor throws an error if the value is not NULL

104 data.frame

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the
basic story. If the arguments are all named and simple objects (not lists, matrices of data frames)
then the argument names give the column names. For an unnamed simple argument, a deparsed
version of the argument is used as the name (with an enclosing I(...) removed). For a named
matrix/list/data frame argument with more than one named column, the names of the columns
are the name of the argument followed by a dot and the column name inside the argument: if
the argument is unnamed, the argument’s column names are used. For a named or unnamed ma-
trix/list/data frame argument that contains a single column, the column name in the result is the
column name in the argument. Finally, the names are adjusted to be unique and syntactically valid
unless check.names = FALSE

Note

In versions of R prior to 2.4.0 row.nameshad to be character: to ensure compatibility with such
versions of R, supply a character vector as the row.namesargument.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I, plot.data.frame , print.data.frame , row.names names (for the column names),
[.data.frame for subsetting methods, Math.data.frame etc, about Group methods for
data.frame s; read.table , make.names

Examples

L3 <- LETTERS[1:3]
(d <- data.frame(cbind(x=1, y=1:10), fac=sample(L3, 10, replace=TRUE)))

The same with automatic column names:
data.frame(cbind(1, 1:10), sample(L3, 10, replace=TRUE))

is.data.frame(d)

do not convert to factor, using I() :

(dd <- cbind(d, char = I(letters[1:10])))
rbind(class=sapply(dd, class), mode=sapply(dd, mode))
stopifnot(1:10 == row.names(d))# {coercion}

(d0 <- d[, FALSE]) # NULL data frame with 10 rows

(d.0 <- d[FALSE,]) # <0 rows> data frame (3 cols)
(dO0 <- dO[FALSE,]) # NULL data frame with O rows

data.matrix 105

data.matrix Convert a Data Frame to a Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage

data.matrix(frame, rownames.force = NA)

Arguments

frame a data frame whose components are logical vectors, factors or numeric vectors.

rownames.force logical indicating if the resulting matrix should have character (rather than NULL
rownames The default, NA uses NULLrownames if the data frame has ‘auto-
matic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Any other column which is not numeric
(according to is.numeric) is converted by as.numeric or, for S4 objects, as(, "numeric”) . If all
columns are integer (after conversion) the result is an integer matrix, otherwise a numeric (double)
matrix.

Value

If frame inherits from class "data.frame" , an integer or numeric matrix of the same dimensions
as frame, with dimnames taken from the row.namegor NUL|depending on rownames.force) and
names

Otherwise, the result of as.matrix .

Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix , data.frame , matrix .

106 date

Examples

DF <- data.frame(a=1:3, b=letters[10:12],
c=seq(as.Date("2004-01-01"), by = "week", len = 3),
stringsAsFactors = TRUE)

data.matrix(DF[1:2])

data.matrix(DF)

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage
date()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e., length 24, since it relies on POSIX’s
ctime ensuring the above fixed format. Timezone and Daylight Saving Time are taken account of,
but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Sys.Date and Sys.time ; Date and DateTimeClassesfor objects representing date and time.

Examples

(d <- date())
nchar(d) == 24

something similar in the current locale
format(Sys.time(), "%a %b %d %H:%M:%S %Y")

Dates 107

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

Usage

S3 method for class 'Date’
summary(object, digits = 12, ...)

Arguments
object An object summarized.
digits Number of significant digits for the computations.
Further arguments to be passed from or to other methods.
Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean
method or by adding or subtracting (see Ops.Date.

The print methods respect options("max.print")

See Also

Sys.Date for the current date.

Ops.Datefor operators on "Date" objects.

format.Date for conversion to and from character strings.
axis.Date and hist.Date for plotting.

weekdaydor convenience extraction functions.
seq.Date, cut.Date , round.Date for utility operations.
DateTimeClassesfor date-time classes.

Examples

Not run:

(today <- Sys.Date())

format(today, "%d %b %Y") # with month as a word

(tenweeks <- seq(today, length.out=10, by="1 week")) # next ten weeks
weekdays(today)

months(tenweeks)

as.Date(.leap.seconds)

End(Not run)

108 DateTimeClasses

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIXIt" and "POSIXct" representing calendar dates and times (to the
nearest second).

Usage
S3 method for class 'POSIXct'
print(x, ...)

S3 method for class 'POSIXct'
summary(object, digits = 15, ...)

time + z
z + time
time - z
timel lop time2

Arguments
X, object An object to be printed or summarized from one of the date-time classes.
digits Number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.
Further arguments to be passed from or to other methods.
time date-time objects
timel, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct)
z a numeric vector (in seconds)
lop One of =5 I=, <, <5 >or >=
Details

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number of
seconds since the beginning of 1970 (in the UTC timezone) as a numeric vector. Class "POSIXIt"
is a named list of vectors representing

sec 0-61: seconds

min 0-59: minutes

hour 0-23: hours

mday1-31: day of the month

mon0-11: months after the first of the year.

year years since 1900.

wday 0-6 day of the week, starting on Sunday.

yday 0-365: day of the year.

DateTimeClasses 109

isdst Daylight Savings Time flag. Positive if in force, zero if not, negative if unknown.

Note that the internal list structure is somewhat hidden, as many methods, including print()
or Str , apply to the abstract date-time vector, as for "POSIXct". The classes correspond to the
POSIX/C99 constructs of ‘calendar time’ (the time_t data type) and ‘local time’ (or broken-down
time, the struct tm data type), from which they also inherit their names. The components of
"POSIXIt" are integer vectors, except Sec.

"POSIXct" is more convenient for including in data frames, and "POSIXIt" is closer to human-
readable forms. A virtual class "POSIXt" exists from which both of the classes inherit: it is used to
allow operations such as subtraction to mix the two classes. Note that length(x) is the length of
the corresponding (abstract) date/time vector, also in the "POSIXIt" case.

Components wdayand yday of "POSIXIt" are for information, and are not used in the conversion
to calendar time. However, isdst is needed to distinguish times at the end of DST: typically lam to
2am occurs twice, first in DST and then in standard time. At all other times isdst can be deduced
from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and limited arithmetic are available for both classes. One can add or sub-
tract a number of seconds from a date-time object, but not add two date-time objects. Subtraction
of two date-time objects is equivalent to using difftime . Be aware that "POSIXIt" objects will
be interpreted as being in the current timezone for these operations, unless a timezone has been
specified.

"POSIXIt" objects will often have an attribute “tzone" , a character vector of length 3 giving the
timezone name from the TZ environment variable and the names of the base timezone and the
alternate (daylight-saving) timezone. Sometimes this may just be of length one, giving the timezone
name.

"POSIXct" objects may also have an attribute "tzone" , a character vector of length one. If set to a
non-empty value, it will determine how the object is converted to class "POSIXIt" and in particular
how it is printed. This is usually desirable, but if you want to specify an object in a particular
timezone but to be printed in the current timezone you may want to remove the "tzone" attribute
(e.g. by c(X)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(24 days have been 86401 seconds long so far: the times of the extra seconds are in the object
Jeap.seconds). The details of this are entrusted to the OS services where possible. This always
covers the period 1970-2037, and on most machines back to 1902 (when time zones were in their
infancy). Outside the platform limits we use our own C code. This uses the offset from GMT in
use either for 1902 (when there was no DST) or that predicted for one of 2030 to 2037 (chosen so
that the likely DST transition days are Sundays), and uses the alternate (daylight-saving) timezone
only if isdst is positive or (if -1) if DST was predicted to be in operation in the 2030s on that day.
(There is no reason to suppose that the DST rules will remain the same in the future, and indeed the
US legislated in 2005 to change its rules as from 2007, with a possible future reversion.)

It seems that some rare systems use leap seconds, but most ignore them (as required by POSIX).
This is detected and corrected for at build time, so all "POSIXct" times used by R do not include
leap seconds. (Conceivably this could be wrong if the system has changed since build time, just
possibly by changing locales or the ‘zoneinfo > database.)

Using ¢ on "POSIXIt" objects converts them to the current time zone, and on "POSIXct" objects
drops any "tzone" attributes (even if they are all marked with the same time zone).

A few times have specific issues. First, the leap seconds are ignored, and real times such as
"2005-12-31 23:59:60" are (probably) treated as the next second. However, they will never be
generated by R, and are unlikely to arise as input. Second, on some OSes there is a problem in
the POSIX/C99 standard with "1969-12-31 23:59:59 UTC', which is -1 in calendar time and
that value is on those OSes also used as an error code. Thus as.POSIXct("1969-12-31

110 DateTimeClasses

23:59:59", format = "%Y-%m-%d %H:%M:%S", tz = "UTCiay give NA and hence
as.POSIXct("1969-12-31 23:59:59", tz = "UTC") will give "1969-12-31 23:59:00".
Other OSes (including the code used by R on Windows) report errors separately and so are able to
handle that time as valid.

The print methods respect options("max.print")

Sub-second Accuracy

Classes "POSIXct" and "POSIXIt" are able to express fractions of a second. (Conversion of frac-
tions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options("digits.secs") is set: see strftime .

Warning

Some Unix-like systems (especially Linux ones) do not have environment variable TZset, yet have
internal code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting TZ See Sys.timezone for valid settings.

References

Ripley, B. D. and Hornik, K. (2001) Date-time classes. R News, 1/2, 8-11. http://www.
r-project.org/doc/Rnews/Rnews_2001-2.pdf

See Also

Dates for dates without times.

as.POSIXctand as.POSIXIt for conversion between the classes.

strptime for conversion to and from character representations.

Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut.POSIXt, seq.POSIXt round.POSIXtand trunc.POSIXt for methods for these classes.

weekdaydor convenience extraction functions.

Examples
(z <- Sys.time()) # the current date, as class "POSIXct"
Sys.time() - 3600 # an hour ago

as.POSIXIt(Sys.time(), "GMT") # the current time in GMT
format(.leap.seconds) # all 24 leap seconds in your timezone
print(.leap.seconds, tz="PST8PDT") # and in Seattle's

look at *internal* representation of "POSIXIt" :
leapS <- as.POSIXIt(.leap.seconds)

names(leaps) ; is.list(leapS)
utils::str(unclass(leapS), vec.len = 7)

http://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf
http://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf

dcf

111

dcf

Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage

read.dcf(file, fields = NULL, all = FALSE, keep.white = NULL)

write.dcf(x, file = ™, append = FALSE,

Arguments
file
fields

all

keep.white

append
indent
width

Details

indent = 0.1 * getOption("width"),
width = 0.9 * getOption("width"),
keep.white = NULL)

either a character string naming a file or a connection. " indicates output to the
console. For read.dcf this can name a compressed file (see gzfile).

Fields to read from the DCEF file. Default is to read all fields.

a logical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. If all is false (default), only the last such occur-
rence is used.

a character string with the names of the fields for which whitespace should be
kept as is, or NULL(default) indicating that there are no such fields. Coerced
to character if possible. For fields where whitespace is not to be kept as is,
read.dcf removes leading and trailing whitespace, and write.dcf folds using
strwrap .

the object to be written, typically a data frame. If not, it is attempted to coerce X
to a data frame.

logical. If TRUEhe output is appended to the file. If FALSEany existing file of
the name is destroyed.

a positive integer specifying the indentation for continuation lines in output en-
tries.

a positive integer giving the target column for wrapping lines in the output.

DCEF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to store R system information, like descriptions
and contents of packages.

The DCEF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value , i.e., have a name tag and a value for the field, separated
by : (only the first . counts). The value can be empty (i.e., whitespace only).

112 dcf

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
character is a ‘.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (i.e., whitespace only) lines.

Note that read.dcf(all = FALSE) reads the file byte-by-byte. This allows a ‘DESCRIPTIORNIe
to be read and only its ASCII fields used, or its ‘Encoding field used to re-encode the remaining
fields.

write.dcf does not write NAfields.

Value

The default read.dcf(all = FALSE) returns a character matrix with one row per record and one
column per field. Leading and trailing whitespace of field values is ignored unless a field is listed
in keep.white . If a tag name is specified in the file, but the corresponding value is empty, then an
empty string is returned. If the tag name of a field is specified in fields but never used in a record,
then the corresponding value is NAIf fields are repeated within a record, the last one encountered
is returned. Malformed lines lead to an error.

For read.dcf(all = TRUE) a data frame is returned, again with one row per record and one col-
umn per field. The columns are lists of character vectors for fields with multiple occurrences, and
character vectors otherwise.

Note that an empty file is a valid DCF file, and read.dcf will return a zero-row matrix or data
frame.

For write.dcf , invisible NULL

References

http://www.debian.org/doc/debian-policy/ch-controlfields.html . Note that R does not
require encoding in UTF-8, which is a recent Debian requirement.

See Also

write.table

Examples

Not run:
Create a reduced version of the 'CONTENTS' file in package 'splines’
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),
fields = c("Entry", "Description"))
write.dcf(x)

End(Not run)

http://www.debian.org/doc/debian-policy/ch-controlfields.html

debug 113

debug Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condition arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once the
browser has been entered, and provide a mechanism to allow users to identify which breakpoint has
been activated.

Usage

debug(fun, text="", condition=NULL)
debugonce(fun, text="", condition=NULL)
undebug(fun)

isdebugged(fun)

Arguments

fun any interpreted R function.
text a text string that can be retrieved when the browser is entered.

condition a condition that can be retrieved when the browser is entered.

Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step (and
the previous one destroyed).

At the debug prompt the user can enter commands or R expressions, followed by a newline. The
commands are

N (or just an empty line, by default). Advance to the next step.

C continue to the end of the current context: e.g. to the end of the loop if within a loop or to the
end of the function.

cont synonym for C.
where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for an empty line).

Anything else entered at the debug prompt is interpreted as an R expression to be evaluated in the
calling environment: in particular typing an object name will cause the object to be printed, and
Is() lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

Setting option "browserNLdisabled" to TRUHisables the use of an empty line as a synonym for
n. If this is done, the user will be re-prompted for input until a valid command or an expression is
entered.

To debug a function is defined inside a function, single-step though to the end of its definition, and
then call debugon its name.

114 Defunct

If you want to debug a function not starting at the very beginning, use trace(..., at = *) or
setBreakpoint .

Using debugis persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonceo enter the debugger only the next time the function is invoked.

In order to debug S4 methods (see Methods, you need to use trace , typically calling browser,
e.g., as
trace("plot", browser, exit=browser, signature = c("track"”, "missing"))

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting options(deparse.max.lines)

When debugging is enabled on a byte compiled function then the interpreted version of the function
will be used until debugging is disabled.

See Also
browser, trace ; traceback to see the stack after an Error: ... message; recover for another
debugging approach.
Defunct Marking Objects as Defunct
Description

When a function is removed from R it should be replaced by a function which calls .Defunct .

Usage
.Defunct(new, package = NULL, msg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details

.Defunct is called from defunct functions. Functions should be listed in help("pkg-defunct”)
for an appropriate pkg, including base (with the alias added to the respective Rd file).
See Also

Deprecated

base-defunct and so on which list the defunct functions in the packages.

delayedAssign 115

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)
functions.

Usage

delayedAssign(x, value, eval.env = parent.frame(1),
assign.env = parent.frame(1))

Arguments
X a variable name (given as a quoted string in the function call)
value an expression to be assigned to X
eval.env an environment in which to evaluate value
assign.env an environment in which to assign X
Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is eventually
‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by eval.env
(whose contents may have changed in the meantime). After that, the value is fixed and the expres-
sion will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable X.

See Also

substitute , to see the expression associated with a promise.

Examples

msg <- "old"
delayedAssign("x", msg)

msg <- "new!"

X #- new!

substitute(x) #- x (was 'msg' ?)

delayedAssign("x", {
for(i in 1:3)
cat("yippee\n")
10

116 deparse

)

X2 #- yippee
x"2 #- simple number

e <- (function(x, y = 1, z) environment())(1+2, "y", {cat(" HO! "); pi+2})
(le <- as.list(e)) # evaluates the promises

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60L,
backtick = mode(expr) %in%
c("call", "expression”, "(", "function"),
control = c("keeplnteger”, "showAttributes”, "keepNA"),
nlines = -1L)

Arguments
expr any R expression.
width.cutoff integer in [20, 500] determining the cutoff (in bytes) at which line-breaking is
tried.
backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.
control character vector of deparsing options. See .deparseOpts.
nlines integer: the maximum number of lines to produce. Negative values indicate no
limit.
Details

This function turns unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode "expression” used in expression) into character strings (a kind
of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a plot
which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expressions.
This is a compromise to avoid breaking existing code.

Using control = "all" comes closest to making deparse() an inverse of parse() . However,
not all objects are deparse-able even with this option and a warning will be issued if the function
recognizes that it is being asked to do the impossible.

Numeric and complex vectors are converted using 15 significant digits: see as.character for more
details.

deparseOpts

width.cutoff

lines.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source

is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff bytes have been output and e.g. arg = value expressions will not be split across

attribute of a function will never be deparsed as an attribute.

Deparsing internal structures may not be accurate: for example the graphics display list recorded by
recordPlot is not intended to be deparsed and .Internal

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

substitute , parse, expression.

Quotesfor quoting conventions, including backticks.

Examples

calls will be shown as primitive calls.

require(stats); require(graphics)

deparse(args(Im))
deparse(args(Im), width = 500)
myplot <-
function(x, y) {
plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

}

e <- quote(‘foo bar’)

deparse(e)

deparse(e, backtick=TRUE)
e <- quote(‘foo bar+1)

deparse(e)

deparse(e, control = "all")

deparseOpts

Options for Expression Deparsing

Description

Process the deparsing options for deparse, dput and dump

Usage
.deparseOpts(control)
Arguments
control character vector of deparsing options.

118 deparseOpts

Details

This is called by deparse, dput and dumpo process their control argument.

The control argument is a vector containing zero or more of the following strings. Partial string
matching is used.

keeplinteger Either surround integer vectors by as.integer() or use suffix L, so they are not
converted to type double when parsed. This includes making sure that integer NA are pre-
served (via NA_integer_if there are no non-NAvalues in the vector, unless "S_compatible"
is set).

guoteExpressions Surround expressions with quote() , so they are not evaluated when re-parsed.

showAttributes If the object has attributes (other than a source attribute), use structure() to
display them as well as the object value. This is the default for deparse and dput.

useSource If the object has a source attribute, display that instead of deparsing the object. Cur-
rently only applies to function definitions.

warnincomplete Some exotic objects such as environments, external pointers, etc. can not be
deparsed properly. This option causes a warning to be issued if the deparser recognizes one of
these situations.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

keepNAlnteger, real and character NA are surrounded by coercion where necessary to ensure that
they are parsed to the same type.

all An abbreviated way to specify all of the options listed above. This is the default for dumpand
the options used by edit (which are fixed).

delayPromises Deparse promises in the form <promise: expression> rather than evaluating them.
The value and the environment of the promise will not be shown and the deparsed code cannot
be sourced.

S_compatible Make deparsing as far as possible compatible with S and R < 2.5.0. For compat-
ibility with S, integer values of double vectors are deparsed with a trailing decimal point.
Backticks are not used.

For the most readable (but perhaps incomplete) display, use control = NULL This displays the
object’s value, but not its attributes. The default in deparse s to display the attributes as well, but
not to use any of the other options to make the result parseable. (dput and dumplo use more default
options, and printing of functions without sources uses c("keeplnteger”, "keepNA") .)

Using control = "all" comes closest to making deparse() an inverse of parse() . However,
not all objects are deparse-able even with this option. A warning will be issued if the function
recognizes that it is being asked to do the impossible.

Value

A numerical value corresponding to the options selected.

Deprecated 119

Deprecated Marking Objects as Deprecated

Description

When an object is about to be removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated(new, package=NULL, msg,
old = as.character(sys.call(sys.parent()))[1L])

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
old character string specifying the function (default) or usage which is being depre-
cated.
Details

.Deprecated("<new name>"}is called from deprecated functions. The original help page for these
functions is often available at help("oldName-deprecated") (note the quotes). Functions should
be listed in help("pkg-deprecated”) for an appropriate pkg, including base

See Also

Defunct
base-deprecated and so on which list the deprecated functions in the packages.

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns sepa-
rately the modulus of the determinant, optionally on the logarithm scale, and the sign of the deter-
minant.

Usage

det(x, ...
determinant(x, logarithm = TRUE, ...)

120 detach

Arguments
X numeric matrix.
logarithm logical; if TRUEdefault) return the logarithm of the modulus of the determinant.
Optional arguments. At present none are used. Previous versions of det al-
lowed an optional methodargument. This argument will be ignored but will not
produce an error.
Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant .

Often, computing the determinant is not what you should be doing to solve a given problem.

Value

For det, the determinant of X. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if logarithm
is FALSFotherwise the logarithm of the modulus.
sign integer; either +1 or —1 according to whether the determinant is positive or
negative.
Examples

(x <- matrix(1:4, ncol=2))
unlist(determinant(x))
det(x)

det(print(cbind(1,1:3,c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search() path of available R objects. Usually this is
either a data.frame which has been attach ed or a package which was attached by library .

Usage

detach(name, pos = 2, unload = FALSE, character.only = FALSE,
force = FALSE)

Arguments
name The object to detach. Defaults to search()[pos] . This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.
pos Index position in search() of the database to detach. When names a number,

pos = namés used.

detach 121

unload A logical value indicating whether or not to attempt to unload the namespace
when a package is being detached. If the package has a namespace and unload is
TRUEhen detach will attempt to unload the namespace via unloadNamespace
if the namespace is imported by another namespace or unload is FALSEno
unloading will occur.

character.only alogical indicating whether namecan be assumed to be character strings.

force logical: should a package be detached even though other attached packages de-
pend on it?

Details

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools .

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload=TRUE and detaching will not in general unload any dynamically loaded
compiled code (DLLs). Further, registered S3 methods from the namespace will not be removed.
If you use library on a package whose namespace is loaded, it attaches the exports of the already
loaded namespace. So detaching and re-attaching a package may not refresh some or all components
of the package, and is inadvisable.

Value

The return value is invisible. It is NULLwhen a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it
was attached).

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some namespaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on most systems teltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach , library , search, objects , unloadNamespacdibrary.dynam.unload

Examples

require(splines) # package
detach(package:splines)
or also

library(splines)

pkg <- "package:splines”

detach(pkg, character.only = TRUE)

122 diag

careful: do not do this unless 'splines' is not already attached.
library(splines)
detach(2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function(db, pos=2)

{
name <- deparse(substitute(db))
attach(db, pos=pos, name=name)
print(search()[pos])
detach(name, character.only = TRUE)
}

attach_and_detach(women, pos=3)

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol)
diag(x) <- value

Arguments
X a matrix, vector or 1D array, or missing.
nrow, ncol Optional dimensions for the result when X is not a matrix.
value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of X.
Details

diag has four distinct usages:

1. X is a matrix, when it extracts the diagonal.
2. X is missing and nrowis specified, it returns an identity matrix.

3. X is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. X 1is a vector, either of length at least 2 or there were further arguments. This returns a matrix
with the given diagonal and zero off-diagonal entries.

It is an error to specify nrowor ncol in the first case.

diff 123

Value

If X is a matrix then diag(X) returns the diagonal of X. The resulting vector will have namesf the
matrix X has matching column and rownames.

The replacement form sets the diagonal of the matrix X to the given value(s).

In all other cases the value is a diagonal matrix with nrowrows and ncol columns (if ncol is not
given the matrix is square). Here nrowis taken from the argument if specified, otherwise inferred
from X: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrownor ncol is specified, nrow = as.integer(x) .

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
X gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

Note
Using diag(x) can have unexpected effects if X is a vector that could be of length one. Use
diag(x, nrow = length(x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri , lower.tri , matrix .

Examples

require(stats)

dim(diag(3))

diag(10,3,4) # guess what?

all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X = 1:5, Y = stats::rnorm(5))))
#-> vector with names "X" and "Y"

rownames(M) <- c(colnames(M),rep("",3));
M; diag(M) # named as well

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

124 diff
Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences = 1, ..)

S3 method for class 'POSIXt'
diff(x, lag = 1, differences = 1, ..))

S3 method for class 'Date’
diff(x, lag = 1, differences = 1, ...)

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.
differences an integer indicating the order of the difference.
further arguments to be passed to or from methods.
Details

diff is a generic function with a default method and ones for classes "ts" , "POSIXt" and "Date".

NAs propagate.

Value

If X is a vector of length n and differences=1 , then the computed result is equal to the successive
differences x[(1+lag):n] - x[1:(n-lag)]

If difference is larger than one this algorithm is applied recursively to X. Note that the returned
value is a vector which is shorter than X.

If X is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
diff.ts , diffinv

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

X <- cumsum(cumsum(1:10))
diff(x, lag = 2)

diff(x, differences = 2)

diff(.leap.seconds)

difftime 125

difftime Time Intervals

Description
Time intervals creation, printing, and some arithmetic.
Usage
timel - time2
difftime(timel, time2, tz,
units = c("auto", "secs", "mins", "hours",
Ildaysll, "Weeks”))

as.difftime(tim, format = "%X", units = "auto”)

S3 method for class 'difftime’

format(x, ...)
S3 method for class 'difftime’
units(x)

S3 replacement method for class 'difftime’
units(x) <- value

S3 method for class 'difftime’

as.double(x, units = "auto", ...)

Group methods, notably for round(), signif(), floor(),
ceiling(), trunc(), abs(); called directly, *not* as Math():
S3 method for class 'difftime’

Math(x, ...)

Arguments

timel, time2 date-time or date objects.

tz an optional timezone specification to be used for the conversion, mainly for
"POSIXIt" objects.

units character string. Units in which the results are desired. Can be abbreviated.

value character string. Like units , except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of tim: see strptime . The default is a locale-

specific time format.
X an object inheriting from class "difftime"

arguments to be passed to or from other methods.

Details

Function difftime calculates a difference of two date/time objects and returns an object of class
"diffime" with an attribute indicating the units. The Mathgroup method provides round, signif ,

126 dim

floor , ceiling , trunc, abs, and sign methods for objects of this class, and there are methods for
the group-generic (see Op3 logical and arithmetic operations.

If units = "auto" , a suitable set of units is chosen, the largest possible (excluding "weeks") in
which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling difftime with
units = "auto" . Alternatively, as.difftime() = works on character-coded or numeric time in-
tervals; in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and mul-
tiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by a
"difftime" object implicitly converts the numeric vector to a "difftime" object with the same
units as the "difftime" object. There are methods for meanand sum(via the Summargroup
generic).

The units of a "difftime" object can be extracted by the units function, which also has a replace-
ment form. If the units are changed, the numerical value is scaled accordingly. As from R 2.15.0
the replacement version keeps attributes such as names and dimensions.

The as.double method returns the numeric value expressed in the specified units. Using
units = "auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

The default behaviour when timel or time2 was a "POSIXIt" object changed in R 2.12.0: pre-
viously such objects were regarded as in the timezone given by tz which defaulted to the current
timezone.

See Also

DateTimeClasses
Examples

(z <- Sys.time() - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between releases of R 1.2.2 and 1.2.3.
ISOdate(2001, 4, 26) - ISOdate(2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format= "%H:%M")# 3rd gives NA
(z <- as.difftime(c(0,30,60), units="mins"))

as.numeric(z, units="secs")

as.numeric(z, units="hours")

format(z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

dimnames 127

Usage

dim(x)
dim(x) <- value

Arguments

X an R object, for example a matrix, array or data frame.

value For the default method, either NULLor a numeric vector, which is coerced to
integer (by truncation).

Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data.frame s, which returns the lengths of the row.namesattribute of X and
of X (as the numbers of rows and columns respectively).

Value

For an array (and hence in particular, for a matrix) dimretrieves the dim attribute of the object. It is
NULlor a vector of mode integer .

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames'and "names"attributes.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrowand dimnames

Examples

x <- 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x)[1]
ncol0 <- function(x) dim(x)[2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames(x)
dimnames(x) <- value

128 dimnames

Arguments
X an R object, for example a matrix, array or data frame.
value a possible value for dimnames(x) see the ‘Value’ section.
Details

The functions dimnameand dimnames<are generic.

For an array (and hence in particular, for a matrix), they retrieve or set the dimnameattribute (see
attributes) of the object. A list value can have names, and these will be used to label the dimensions
of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to charac-
ter, but does not dispatch methods for as.character . It coerces zero-length elements to NULLand

a zero-length list to NULLIf value is a list shorter than the number of dimensions, it is extended
with NULK to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.namesand its names
For the replacement method each component of value will be coerced by as.character .

For a 1D matrix the namesire the same thing as the (only) component of the dimnames

Both are primitive functions.

Value

The dimnames of a matrix or array can be NULLor a list of the same length as dim(x) . If a list, its
components are either NULlor a character vector with positive length of the appropriate dimension
of X. The list can be named.

For the "data.frame" method both dimnames are character vectors, and the rownames must con-
tain no duplicates nor missing values.

Note

Setting components of the dimnames, e.g. dimnames(A)[[1]] <- value is a common paradigm,
but note that it will not work if the value assigned is NULLUse rownamesnstead, or (as it does)
manipulate the whole dimnames list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownamegscolnames array , matrix , data.frame .

Examples

simple versions of rownames and colnames
could be defined as follows

rownames0 <- function(x) dimnames(x)[[1]]
colnames0 <- function(x) dimnames(x)[[2]]

do.call 129

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage

do.call(what, args, quote = FALSE, envir = parent.frame())

Arguments
what either a function or a non-empty character string naming the function to be
called.
args a list of arguments to the function call. The namesattribute of args gives the
argument names.
quote a logical value indicating whether to quote the arguments.
envir an environment within which to evaluate the call. This will be most useful if
whatis a character string and the arguments are symbols or quoted expressions.
Details

If quote is FALSEhe default, then the arguments are evaluated (in the calling environment, not in
envir). If quote is TRUKhen each argument is quoted (see quote) so that the effect of argument
evaluation is to remove the quotes — leaving the original arguments unevaluated when the call is
constructed.

The behavior of some functions, such as substitute , will not be the same for functions evaluated
using do.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

130 double

Examples

do.call("complex", list(imag = 1:3))

if we already have a list (e.g. a data frame)
we need c() to add further arguments

tmp <- expand.grid(letters[1:2], 1:3, c("+", "-"))
do.call("paste”, c(tmp, sep=""))

do.call(paste, list(as.name("A"), as.name("B")), quote=TRUE)

examples of where objects will be found.
A< 2

f <- function(x) print(x"2)

env <- new.env()

assign("A", 10, envir = env)

assign("f", f, envir = env)

f <- function(x) print(x)

f(A) # 2
do.call("f", list(A)) # 2
do.call("f", list(A), envir=env) # 4
do.call(f, list(A), envir=env) # 2

do.call("f", list(quote(A)), envir=env) # 100
do.call(f, list(quote(A)), envir=env) # 10
do.call("f", list(as.name("A")), envir=env) # 100

eval(call("f", A)) # 2
eval(call("f", quote(A))) # 2
eval(call("f', A), envir=env) # 4

eval(call("f', quote(A)), envir=env) # 100

double Double-Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

Usage

double(length = 0)
as.double(x, ...)
is.double(x)

single(length = 0)
as.single(x, ...)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.

further arguments passed to or from other methods.

double 131

Details

double creates a double-precision vector of the specified length. The elements of the vector are all
equal to 0. It is identical to numeric (and real).

as.double is a generic function. It is identical to as.numeric (and as.real). Methods should
return an object of base type "double” .

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as.single and single are identical to as.double and double except they set the at-
tribute Csingle that is used in the .C and .Fortran interface, and they are intended only to be used
in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are all
equal to O.

as.double attempts to coerce its argument to be of double type: like as.vector it strips attributes
including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode.) Character strings containing optional whitespace followed by either a decimal
representation or a hexadecimal representation (starting with OX or 0X) can be converted, as can
special values such as "NA", "NaN", "Inf" and "infinity" , irrespective of case.

as.double for factors yields the codes underlying the factor levels, not the numeric representation
of the labels, see also factor .

is.double returns TRUr FALSHepending on whether its argument is of double type or not.

Double-precision values

All R platforms are required to work with values conforming to the IEC 60559 (also known as IEEE
754) standard. This basically works with a precision of 53 bits, and represents to that precision a
range of absolute values from about 2 x 1073% to 2 x 10398, It also has special values NaNmany
of them), plus and minus infinity and plus and minus zero (although R acts as if these are the same).
There are also denormal(ized) (or subnormal) numbers with absolute values above or below the
range given above but represented to less precision.

See .Machine for precise information on these limits. Note that ultimately how double precision
numbers are handled is down to the CPU/FPU and compiler.

In IEEE 754-2008/IEC60559:2011 this is called ‘binary64’ format.

Note on names

It is a historical anomaly that R has three names for its floating-point vectors, double, numeric and
real .

double is the name of the type. humeric is the name of the mode and also of the implicit class. As
an S4 formal class, use "numeric" .

real is deprecated and should not be used in new code.

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric (which
is identical to as.double) coerces to the class.

132 dput

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

http://en.wikipedia.org/wiki/IEEE_754-1985 , http://fen.wikipedia.org/wiki/IEEE_
754-2008 http://en.wikipedia.org/wiki/Double_precision , http://en.wikipedia.org/
wiki/Denormal_numbet

http://grouper.ieee.org/groups/754/ for links to information on the standards.

See Also

integer , numeric, storage.mode.

Examples

is.double(1)
all(double(3) == 0)

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to recreate

the object.
Usage
dput(x, file = ™,
control = c("keepNA", "keeplinteger”, "showAttributes"))
dget(file)
Arguments
X an object.
file either a character string naming a file or a connection. " indicates output to the
console.
control character vector indicating deparsing options. See .deparseOpts for their de-
scription.
Details

dput opens file and deparses the object X into that file. The object name is not written (unlike
dump If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control , dput() attempts
to deparse in a way that is readable, but for more complex or unusual objects (see dumpnot likely
to be parsed as identical to the original. Use control = "all" for the most complete deparsing;
use control = NULL for the simplest deparsing, not even including attributes.

http://en.wikipedia.org/wiki/IEEE_754-1985
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Double_precision
http://en.wikipedia.org/wiki/Denormal_number
http://en.wikipedia.org/wiki/Denormal_number
http://grouper.ieee.org/groups/754/

drop 133

dput will warn if fewer characters were written to a file than expected, which may indicate a full or
corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource" in
control . R currently saves source only for function definitions.

Value

For dput, the first argument invisibly.
For dget, the object created.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

deparse, dumpwrite .

Examples

Write an ASCIl version of mean to the file "foo"
dput(mean, "foo")
And read it back into 'bar'
bar <- dget("foo")
unlink("foo")
Create a function with comments
baz <- function(x) {
Subtract from one
1-x
}
and display it
dput(baz)
and now display the saved source
dput(baz, control = "useSource")

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage
drop(x)

134 droplevels

Arguments

X an array (including a matrix).

Value

If X is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like X,
but with any extents of length one removed. Any accompanying dimnameattribute is adjusted and
returned with x: if the result is a vector the namesre taken from the dimnamesif any). If the result
is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop = FALSEbut sometimes it is
useful to invoke drop directly.
See Also

dropl which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# = 3 2 2
drop(1:3 %*% 2:4)# scalar product

droplevels droplevels

Description

The function droplevels is used to drop unused levels from a factor or, more commonly, from
factors in a data frame.

Usage

S3 method for class 'factor'
droplevels(x,...)

S3 method for class 'data.frame’
droplevels(x, except, ...)

Arguments
X an object from which to drop unused factor levels.
further arguments passed to methods
except indices of columns from which not to drop levels
Details

The method for class "factor” is essentially equivalent to factor(x)

The except argument follow the usual indexing rules.

Value

droplevels returns an object of the same class as X

dump 135

Note

This function was introduced in R 2.12.0. It is primarily intended for cases where one or more
factors in a data frame contains only elements from a reduced level set after subsetting. (Notice that
subsetting does not in general drop unused levels). By default, levels are dropped from all factors in
a data frame, but the except argument allows you to specify columns for which this is not wanted.

See Also

subset for subsetting data frames. factor for definition of factors. drop for dropping array di-
mensions. dropl for dropping terms from a model. [.factor for subsetting of factors.

Examples

aq <- transform(airquality, Month=factor(Month,labels=month.abb[5:9]))
aq <- subset(aq, Month != "Jul")

table(ag$Month)

table(droplevels(ag)$Month)

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dumffile can usually be sourced into another R (or S) session.

Usage
dump(list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)
Arguments
list character. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. " indicates output to the
console.
append if TRUENd file is a character string, output will be appended to file ; other-
wise, it will overwrite the contents of file .
control character vector indicating deparsing options. See .deparseOpts for their de-
scription.
envir the environment to search for objects.

evaluate logical. Should promises be evaluated?

136 dump

Details
If some of the objects named do not exist (in scope), they are omitted, with a warning. If file isa
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumpd objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dumpwill also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dumfile can be sourced into another R (or perhaps S) session, but the function saveis designed
to be used for transporting R data, and will work with R objects that dumploes not handle.

To produce a more readable representation of an object, use control = NULL This will skip at-
tributes, and will make other simplifications that make source less likely to produce an identical
copy. See deparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control = c("keeplnteger”, "warnincomplete”, "keepNA") . This will lose all format-
ting and comments, but may be useful in those cases where the saved source is no longer correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the default
evaluate = TRUGEs essential) and after the use of delayedAssign, when evaluate = FALSE
might be intended.

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dumps defined in the base namespace, the base package will be searched before the global envi-
ronment unless dumgs called from the top level prompt or the envir argument is given explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way whatever
the value of control , and this includes not dumping their attributes (which will result in a warning).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dput, dget, write .
save for a more reliable way to save R objects.

Examples

X <1,y <110

dump(Is(pattern = "N[xyz]'), "xyz.Rdmped")
print(.Last.value)

unlink("xyz.Rdmped")

duplicated 137

duplicated Determine Duplicate Elements

Description

duplicated() determines which elements of a vector or data frame are duplicates of elements with
smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

anyDuplicated(.) is a “generalized” more efficient shortcut for any(duplicated(.))

Usage
duplicated(x, incomparables = FALSE, ..))

Default S3 method:
duplicated(x, incomparables = FALSE,
fromLast = FALSE, ..))

S3 method for class 'array’
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ..)

anyDuplicated(x, incomparables = FALSE, ..))
Default S3 method:
anyDuplicated(x, incomparables = FALSE,

fromLast = FALSE, ...

S3 method for class ‘array’

anyDuplicated(x, incomparables = FALSE,
MARGIN = 1, fromLast = FALSE, ...

Arguments

X a vector or a data frame or an array or NULL

incomparables a vector of values that cannot be compared. FALSEs a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as X.

fromLast logical indicating if duplication should be considered from the reverse
side, i.e., the last (or rightmost) of identical elements would correspond to
duplicated=FALSE

arguments for particular methods.

MARGIN the array margin to be held fixed: see apply, and note that MARGIN = flaybe
useful.

Details

These are generic functions with methods for vectors (including lists), data frames and arrays (in-
cluding matrices).

For the default methods, and whenever there are equivalent method definitions for
duplicated and anyDuplicated, anyDuplicated(x,...) is a “generalized” shortcut for
any(duplicated(x,...)) , in the sense that it returns the index i of the first duplicated entry X][i]

138 duplicated

if there is one, and O otherwise. Their behaviours may be different when at least one of duplicated
and anyDuplicated has a relevant method.

duplicated(x, fromLast=TRUE) is equivalent to but faster than rev(duplicated(rev(x)))

The data frame method works by pasting together a character representation of the rows separated
by \r , so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

The array method calculates for each element of the sub-array specified by MARGIN the remaining
dimensions are identical to those for an earlier (or later, when fromLast=TRU[Eelement (in row-
major order). This would most commonly be used to find duplicated rows (the default) or columns
(with MARGIN =).2Note that MARGIN = Bturns an array of the same dimensionality attributes
as X.

Missing values are regarded as equal, but NaNs not equal to NA_real .

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

When used on a data frame with more than one column, or an array or matrix when comparing
dimensions of length greater than one, this tests for identity of character representations. This will
catch people who unwisely rely on exact equality of floating-point numbers!

Character strings will be compared as byte sequences if any input is marked as "bytes" .

Value

duplicated() : For a vector input, a logical vector of the same length as X. For a data frame,
a logical vector with one element for each row. For a matrix or array, and when MARGIN =, @
logical array with the same dimensions and dimnames.

anyDuplicated() : a non-negative integer (of length one).

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see Vector)
or differ only in their attributes. In the worst case it is O(n?).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

X <- ¢(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <- x[!duplicated(x)])

similar, same elements but different order:
(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique(x) but unique(x) is more efficient
stopifnot(identical(xu, unique(x)),
identical(xu2, unique(x, fromLast = TRUE)))

dyn.load

139

duplicated(iris)[140:143]

duplicated(iris3, MARGIN = c(1, 3))
anyDuplicated(iris) ## 143

anyDuplicated(x)

anyDuplicated(x, fromLast = TRUE)

dyn.load

Foreign Function Interface

Description

Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...

dyn.unload(x)

is.loaded(symbol, PACKAGE = ", type = ")
Arguments
X a character string giving the pathname to a DLL, also known as a dynamic shared

local

now

symbol
PACKAGE

type

object. (See ‘Details’ for what these terms mean.)

a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

other arguments for future expansion.
a character string giving a symbol name.

if supplied, confine the search for the nameo the DLL given by this argument
(plus the conventional extension, ‘.s0°, “.sl *, <.dll ’,...). This is intended to
add safety for packages, which can ensure by using this argument that no other
package can override their external symbols. Use PACKAGE="bas®t symbols
linked in to R. This is used in the same way as in .C, .Call , .Fortran and
.External functions

The type of symbol to look for: can be any (", the default), "Fortran™ , "Call"
or "External” .

140 dyn.load

Details

The objects dyn.load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’ on
all platforms except Mac OS X, which unfortunately uses the term for a different sort of sobject.
On Unix-alikes they are also called ‘dynamic shared objects’ (‘DSQO’), or ‘shared objects’ for short.
(The POSIX standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration” manuals for
how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g. Compaq Tru64) do not handle the PACKAGigument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn.load mirror the different aspects of the mode argument to the
dlopen() routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own namespace is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the nowargument as
FALSHT a routine is called that has a missing symbol, the process will terminate immediately. The
intended use is for library developers to call with value TRUEo check that all symbols are actually
resolved and for regular users to call with FALSEo that missing symbols can be ignored and the
available ones can be called.

The initial motivation for adding these was to avoid such termination in the _init() routines of the
Java virtual machine library. However, symbols loaded locally may not be (read probably) available
to other DLLs. Those added to the global table are available to all other elements of the application
and so can be shared across two different DLLs.

Some (very old) systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning messages
emitted when unsupported options are used. This is done by setting either of the options verbose
or warnto be non-zero via the options function.

There is a short discussion of these additional arguments with some example code available at
http://cm.bell-labs.com/stat/duncan/R/dynload

Value

The function dyn.load is used for its side effect which links the specified DLL to the executing
R image. Calls to .C, .Call , .Fortran and .External can then be used to execute compiled C
functions or Fortran subroutines contained in the library. The return value of dyn.load is an object
of class DLLInfo. See getLoadedDLLgor information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a DLL
of the same name may or may not work: on Solaris it uses the first version loaded.

is.loaded checks if the symbol name is loaded and hence available for use in .C or .Fortran or
.Call or.External . It will succeed if any one of the four calling functions would succeed in using
the entry point unless type is specified. (See .Fortran for how Fortran symbols are mapped.)

Warning

Do not use dyn.unload on a DLL loaded by library.dynam : use library.dynam.unload . This
is needed for system housekeeping.

http://cm.bell-labs.com/stat/duncan/R/dynload

eapply 141

Note
is.loaded requires the name you would give to .C etc and not (as in S) that remapped by defunct
functions symbol.Cor symbol.For.

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn.load uses the
dlopen mechanism and should work on all platforms which support it. On Windows it uses the
standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s .onLoad initialization.
SHLIBfor how to create suitable DLLs.
.C, .Fortran , .External , .Call .

Examples

is.loaded("hcass2") #-> probably TRUE, as stats is loaded
is.loaded("supsmu") # Fortran entry point in stats
is.loaded("supsmu", "stats", "Fortran")

is.loaded("PDF", type = "External")

eapply Apply a Function Over Values in an Environment

Description

eapply applies FUNo the named values from an environment and returns the results as a list. The
user can request that all named objects are used (normally names that begin with a dot are not). The
output is not sorted and no enclosing environments are searched.

This is a primitive function.

Usage
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)

Arguments
env environment to be used.
FUN the function to be applied, found via match.fun. In the case of functions like +,
%*Yetc., the function name must be backquoted or quoted.
optional arguments to FUN
all.names a logical indicating whether to apply the function to all values.

USE.NAMES logical indicating whether the resulting list should have names

142

Value

eigen

A named (unless USE.NAMES = FAUSE Note that the order of the components is arbitrary for
hashed environments.

See Also

environment, lapply .

Examples

require(stats)

env <- new.env(hash = FALSE) # so the order is fixed
env$a <- 1:10

env$beta <- exp(-3:3)
env$logic <- ¢(TRUE, FALSE, FALSE, TRUE)
what have we there?

utils::ls.str(env)

compute the mean for each list element
eapply(env, mean)
unlist(eapply(env, mean, USE.NAMES = FALSE))

median and quartiles for each element (making use of "..." passing):
eapply(env, quantile, probs = 1:3/4)
eapply(env, quantile)

eigen

Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of real (double, integer, logical) or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments

X a matrix whose spectral decomposition is to be computed.

symmetric if TRUEhe matrix is assumed to be symmetric (or Hermitian if complex) and
only its lower triangle (diagonal included) is used. If symmetric is not specified,
the matrix is inspected for symmetry.

only.values if TRUFonly the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Should EISPACK be used (for compatibility with R < 1.7.0)?

eigen 143

Details

By default eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV whereas
eigen(EISPACK = TRUpgpvides an interface to the EISPACK routines RS RGCHand CG

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up to plausi-
ble numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred to eigen(EISPACK = TRUfoy new projects, but its eigenvectors may differ in
sign and (in the asymmetric case) in normalization. (They may also differ between methods and
between platforms.)

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to X. So even though a real asymmetric X may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Value

The spectral decomposition of X is returned as components of a list with components

values a vector containing the p eigenvalues of X, sorted in decreasing order, according
to Mod(values) in the asymmetric case when they might be complex (even for
real matrices). For real asymmetric matrices the vector will be complex only if
complex conjugate pairs of eigenvalues are detected.

vectors either a p X p matrix whose columns contain the eigenvectors of X, or NULLf
only.values is TRUE

For eigen(, symmetric = FALSE, EISPACK =TRUR) choice of length of
the eigenvectors is not defined by EISPACK. In all other cases the vectors are
normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

Ifr <- eigen(A) ,and V <- r$vectors; lam <- r$values , then
A=VAV!

(up to numerical fuzz), where A =diag(lam) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler, C.
B. (1976). Matrix Eigensystems Routines — EISPACK Guide. Springer-Verlag Lecture Notes in
Computer Science 6.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

http://www.netlib.org/lapack/lug/lapack_lug.html

144 encodeString

See Also

svd, a generalization of eigen; gr, and chol for related decompositions.

To compute the determinant of a matrix, the qr decomposition is much more efficient: det.

Examples

eigen(cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)

eigen(cbind(-1,2:1)) # complex values

eigen(print(cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values
3 x 3:

eigen(cbind(1,3:1,1:3))

eigen(cbind(-1,c(1:2,0),0:2)) # complex values

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same way print.default does, and
optionally fits the encoded strings within a field width.

Usage
encodeString(x, width = 0, quote = "™, na.encode = TRUE,
justify = c("left", "right", "centre", "none"))
Arguments
X A character vector, or an object that can be coerced to one by as.character .
width integer: the minimum field width. If NULLor NA this is taken to be the largest
field width needed for any element of X.
quote character: quoting character, if any.
na.encode logical: should NAstrings be encoded?
justify character: partial matches are allowed. If padding to the minimum field width
is needed, how should spaces be inserted? justify == "none" is equivalent to
width = 0, for consistency with format.default
Details

This escapes backslash and the control characters ‘\a’ (bell), \b’ (backspace), ‘\f * (formfeed),
‘\n”’ (line feed), ‘\r * (carriage return), ‘\t * (tab) and ‘\v ’ (vertical tab) as well as any non-printable
characters in a single-byte locale, which are printed in octal notation (‘\Xyz * with leading zeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all

Encoding 145

characters with codes 32-255 as printable in a single-byte locale. See print.default for how
non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as X, with the same attributes (including names and dimen-
sions) but with no class set.

Note

The default for width is different from format.default , which does similar things for character
vectors but without encoding using escapes.

See Also

print.default

Examples

X <- "ab\bc\ndef"

print(x)

cat(x) # interprets escapes

cat(encodeString(x), "\n", sep="") # similar to print()

factor(x) # makes use of this to print the levels

x <- c("a", "ab", "abcde")

encodeString(x, width = NA) # left justification
encodeString(x, width = NA, justify = "c")
encodeString(x, width = NA, justify = "r")
encodeString(x, width = NA, quote = ", justify = "r")

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.
Usage

Encoding(x)

Encoding(x) <- value

enc2native(x)
enc2utf8(x)

146 Encoding

Arguments

X A character vector.

value A character vector of positive length.
Details

Character strings in R can be declared to be in "latin1" or "UTF-8" or "bytes" . These declara-
tions can be read by Encoding which will return a character vector of values "latin1" , "UTF-8"
"bytes" or "unknown', or set, when value is recycled as needed and other values are silently
treated as "unknown' ASCII strings will never be marked with a declared encoding, since their
representation is the same in all supported encodings. Strings marked as "bytes" are intended to
be non-ASCII strings which should be manipulated as bytes, and never converted to a character
encoding.

enc2native and enc2utf8 convert elements of character vectors to the native encoding or UTF-8
respectively, taking any marked encoding into account. They are primitive functions, designed to
do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explicitly
setting it (and these have changed as R has evolved). Functions scan, read.table , readLines,
and parse have an encoding argument that is used to declare encodings, iconv declares encodings
from its from argument, and console input in suitable locales is also declared. intToUtf8 declares
its output as "UTF-8", and output text connections (see textConnection) are marked if running
in a suitable locale. Under some circumstances (see its help page) source(encoding=) will mark
encodings of character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was declared
on the corresponding input. These include chartr , strsplit(useBytes = FALSE) , tolower and
toupper as well as sub(useBytes = FALSE}nd gsub(useBytes = FALSE)Note that such
functions do not preserve the encoding, but if they know the input encoding and that the string has
been successfully re-encoded (to the current encoding or UTF-8), they mark the output.

substr does preserve the encoding, and chartr , tolower and toupper preserve UTF-8 encoding
on systems with Unicode wide characters. With their fixed and perl options, strsplit , suband
gsubwill give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprintf return elements marked as bytes if any of the corresponding inputs is marked
as bytes, and otherwise marked as UTF-8 of any of the inputs is marked as UTF-8.

match pmatch charmatch duplicated and unique all match in UTF-8 if any of the elements are
marked as UTF-8.

Value

A character vector.

Examples

x is intended to be in latinl
x <- "fa\xE7ile"

Encoding(x)

Encoding(x) <- "latin1"

X

xx <- iconv(x, "latinl", "UTF-8")
Encoding(c(x, xx))

c(x, xx)

Encoding(xx) <- "bytes"

environment 147

xx # will be encoded in hex

Cat(uxx = n’ XX, u\nu' Sep = nu)
environment Environment Access
Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value

is.environment(x)
.GlobalEnv
globalenv()

.BaseNamespaceEnv

emptyenv()
baseenv()

new.env(hash = TRUE, parent = parent.frame(), size = 29L)

parent.env(env)
parent.env(env) <- value

environmentName(env)

env.profile(env)

Arguments
fun a function , a formula, or NULLwhich is the default.
value an environment to associate with the function
X an arbitrary R object.
hash a logical, if TRUHEhe environment will use a hash table.
parent an environment to be used as the enclosure of the environment created.
env an environment
size an integer specifying the initial size for a hashed environment. An internal de-

fault value will be used if size is NAor zero. This argument is ignored if hash
is FALSE

148 environment

Details

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined (unless changed subsequently). The enclosing
environment is distinguished from the parent frame: the latter (returned by parent.frame) refers
to the environment of the caller of a function. Since confusion is so easy, it is best never to use
‘parent’ in connection with an environment (despite the presence of the function parent.env).

When get or exists search an environment with the default inherits = TRUE, they look for the
variable in the frame, then in the enclosing frame, and so on.

The global environment .GlobalEnv, more often known as the user’s workspace, is the first item on
the search path. It can also be accessed by globalenv() . On the search path, each item’s enclosure
is the next item.

The object .BaseNamespaceEnythe namespace environment for the base package. The environ-
ment of the base package itself is available as baseenv().

If one follows the chain of enclosures found by repeatedly calling parent.env from any envi-
ronment, eventually one reaches the empty environment emptyenv(), into which nothing may be
assigned.

The replacement function parent.env<- is extremely dangerous as it can be used to destructively
change environments in ways that violate assumptions made by the internal C code. It may be
removed in the near future.

The replacement form of environment, is.environment , baseenv emptyenvand globalenv are
primitive functions.

System environments, such as the base, global and empty environments, have names as do the
package and namespace environments and those generated by attach() . Other environments can
be named by giving a "name"attribute, but this needs to be done with care as environments have
unusual copying semantics.

Value

If fun is a function or a formula then environment(fun) returns the environment associated with
that function or formula. If fun is NULIthen the current evaluation environment is returned.

The replacement form sets the environment of the function or formula fun to the value given.
is.environment(obj) returns TRUK and only if obj is an environment.

new.envreturns a new (empty) environment with (by default) enclosure the parent frame.
parent.env returns the enclosing environment of its argument.

parent.env<- sets the enclosing environment of its first argument.

environmentNameeturns a character string, that given when the environment is printed or ™ if it
is not a named environment.

env.profile returns a list with the following components: Size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported by
HASHPRIand counts an integer vector giving the length of each chain (zero for empty chains).
This function is intended to assess the performance of hashed environments. When env is a non-
hashed environment, NULLs returned.

See Also

For the performance implications of hashing or not, see http://en.wikipedia.org/wiki/Hash_
table .

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

EnvVar 149

The envir argument of eval, get, and exists .

Is may be used to view the objects in an environment, and hence Is.str may be useful for an
overview.

sys.source can be used to populate an environment.

Examples

f <- function() "top level function"

##-- all three give the same:

environment()

environment(f)

.GlobalEnv

Is(envir=environment(stats::approxfun(1:2,1:2, method="const")))

is.environment(.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = el)

assign("a", 3, envir=el)

Is(el)

Is(e2)

exists("a", envir=e2) # this succeeds by inheritance

exists("a", envir=e2, inherits = FALSE)

exists("+", envir=e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)

with(env.profile(eh), stopifnot(size == length(counts)))
EnvVar Environment Variables
Description

Details of some of the environment variables which affect an R session.

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).

HOMEThe user’s ‘home’ directory.

LANGUAGEptional. The language(s) to be used for message translations. This is consulted when
needed.

LC_ALL (etc) Optional. Use to set various aspects of the locale — see Sys.getlocale . Consulted
at startup.

MAKEINDEXhe path to makeindex If unset to a value determined when R was built. Used by the
emulation mode of texi2dvi and texi2pdf .

150

EnvVar

R_BATCHOptional — set in a batch session, that is one started by R CMD BAT®Hst often set to
" so test by something like lis.na(Sys.getenv("R_BATCH", NA)) .

R_BROWSHIRe path to the default browser. Used to set the default value of options("browser")

R_COMPLETIADptional. If set to FALSEcommand-line completion is not used. (Not used by
Mac OS GUL)

R_DEFAULT_PACKAGESmma-separated list of packages which are to be attached in every ses-
sion. See options .

R_DOC_DIRhe location of the R ‘doc’ directory. Set by R.
R_ENVIR®MNptional. The path to the site environment file: see Startup. Consulted at startup.

R_GSCMDptional. The path to Ghostscript, used by dev2bitmap bitmap and embedFontsCon-
sulted when those functions are invoked. Since it will be treated as if passed to System, spaces
and shell metacharacters should be escaped.

R_HISTFILE Optional. The path of the history file: see Startup. Consulted at startup and when the
history is saved.

R_HISTSIZE Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface. For the readline command-line interface it takes effect when the
history is saved (by savehistory or at the end of a session).

R_HOMHBhe top-level directory of the R installation: see R.homeSet by R.
R_INCLUDE_DIRhe location of the R ‘include * directory. Set by R.
R_LIBS Optional. Used for initial setting of .libPaths .

R_LIBS_SITE Optional. Used for initial setting of .libPaths .
R_LIBS_USERptional. Used for initial setting of .libPaths .

R_PAPERSIZBptional. Used to set the default for options("papersize") ,e.g. used by pdf and
postscript .

R_PDFVIEWERie path to the default PDF viewer. Used by R CMD Rd2pdf
R_PLATFORTWhe platform — a string of the form cpu- vendor- os, see R.Version.
R_PROFILEOptional. The path to the site profile file: see Startup. Consulted at startup.
R_RD4PbBptions for pdflatex processing of Rdfiles. Used by R CMD Rd2pdf
R_SHARE_DIRhe location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMDhe path to texi2dvi . Defaults to the value of TEXI2DV] and if that is un-
set to a value determined when R was built. Consulted at startup to set the default for
options("texi2dvi") , used by texi2dvi and texi2pdf in package tools.

R_UNZIPCMMDhe path to unzip. Sets the initial value for options("unzip") on a Unix-alike
when namespace utils is loaded.

R_ZIPCMDThe path to zip . Used by zip and by R CMD INSTALL --buildn Windows.

TMPDIR'MPTEM®P Consulted (in that order) when setting the temporary directory for the session:
see tempdir. TMPDIR also used by some of the utilities see the help for build .

TZ Optional. The current timezone. See Sys.timezone for the system-specific formats. Consulted
as needed.

no_proxy, http_proxy , ftp_proxy : (and more). Optional. Settings for download.file : see its
help for further details.

eval 151

Unix-specific
Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY Optional: used by X11 Tk (in package tcltk), the data editor and various packages.

EDITORThe path to the default editor: sets the default for options("editor") when namespace
utils is loaded.

PAGERThe path to the pager with the default setting of options("pager") . The default value is
chosen at configuration, usually as the path to less .

R_PRINTCMBets the default for options("printcmd") , which sets the default print command to
be used by postscript .

See Also

Sys.getenv and Sys.setenv to read and set environmental variables in an R session.

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv())
evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments
expr an object to be evaluated. See ‘Details’.
envir the environment in which expr is to be evaluated. May also be NULLa list, a
data frame, a pairlist or an integer as specified to sys.call
enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir . This can be NULL(interpreted as
the base package environment, baseenv()) or an environment.
n number of parent generations to go back
Details

eval evaluates the expr argument in the environment specified by envir and returns the computed
value. If envir is not specified, then the default is parent.frame() (the environment where the
call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

152 eval

The evalq form is equivalent to eval(quote(expr), ...) . eval evaluates its first argument in
the current scope before passing it to the evaluator: evalg avoids this.

eval.parent(expr, n) is a shorthand for eval(expr, parent.frame(n))

If envir is a list (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes any
of the components named in the (pair)list, the changes are lost.

If envir is NULLt is interpreted as an empty list so no values could be found in envir and look-up
goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalg except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited namespace feature since variables defined in the environment are
not visible from the outside.

Value

The result of evaluating the object: for an expression vector this is the result of evaluating the last
element.

Note

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument
to a function, the relevant enclosure is often the caller’s environment, i.e., one needs
eval(x, data, parent.frame())

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame , environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval(2 ~ 2 ~ 3)
mEx <- expression(27273); mEx; 1 + eval(mEx)
eval({ xx <- pi; xx*2}) ; xx

a <- 3 ; aa <- 4 ; evalg(evalg(a+b+aa, list(a=1)), list(b=5)) # == 10
a <- 3 ; aa <- 4 ; evalg(evalg(atb+aa, -1), list(b=5)) # == 12

ev <- function() {
el <- parent.frame()
Evaluate a in el
aa <- eval(expression(a),el)
evaluate the expression bound to a in el
a <- expression(x+y)
listtaa = aa, eval = eval(a, el))

exists 153

tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }
tstev()#-> aa : 7, eval : 4.14

a <- list(a=3, b=4)
with(a, a <- 5) # alters the copy of a from the list, discarded.

Hi
Example of evalq()
Hit

N <-3

env <- new.env()

assign("N", 27, envir=env)

this version changes the visible copy of N only, since the argument
passed to eval is '4".

eval(N <- 4, env)

N

get("N", envir=env)

this version does the assignment in env, and changes N only there.
evalg(N <- 5, env)

N

get("N", envir=env)

H#it
Uses of local()
it

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local({
k <- function(y)f(y)

f <- function(x) if(x) x*k(x-1) else 1
)]
gg(10)
sapply(1.5, gg)

Nesting locals: a is private storage accessible to k
gg <- local({
k <- local({
a<-1
function(y){print(a <<- a+1);f(y)}
)
f <- function(x) if(x) x*k(x-1) else 1
)
sapply(1:5, gg)

Is(envir=environment(gg))
Is(envir=environment(get("k", envir=environment(gg))))

exists Is an Object Defined?

154 exists

Description

Look for an R object of the given name.

Usage
exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)
Arguments
X a variable name (given as a character string).
where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the whereargument.
frame a frame in the calling list. Equivalent to giving whereas sys.frame(frame) .
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?
Details

The whereargument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently active
function calls). The envir argument is an alternative way to specify an environment, but is primarily
there for back compatibility.

This function looks to see if the name X has a value bound to it in the specified environment. If
inherits is TRUENA a value is not found for X in the specified environment, the enclosing frames
of the environment are searched until the name X is encountered. See environment and the ‘R
Language Definition” manual for details about the structure of environments and their enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If modeis specified then only objects of that type are sought. The modemay specify one of the
collections "numeric" and "function” (see modg& any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode="special" will
seek any type of function.)

Value

Logical, true if and only if an object of the correct name and mode is found.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get. For quite a different kind of “existence” checking, namely if function arguments were speci-
fied, missing.

expand.grid 155

Examples

Define a substitute function if necessary:
if(lexists("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }
search()
exists("Is", 2) # true even though Is is in pos=3
exists("Is", 2, inherits = FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description
Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage
expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

Arguments

vectors, factors or a list containing these.

KEEP.OUT.ATTRSogical indicating the "out.attrs" attribute (see below) should be computed
and returned.

stringsAsFactors
logical specifying if character vectors are converted to factors.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out.attrs" is a list which gives the dimension and dimnames for use by predict meth-
ods.

Note

Conversion to a factor is done with levels in the order they occur in the character vectors (and not
alphabetically, as is most common when converting to factors).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combr(package utils) for the generation of all combinations of n elements, taken m at a time.

156 expression

Examples
require(utils)

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male","Female"))

X <- seq(0,10, length.out=100)

y <- seq(-1,1, length.out=20)

dl <- expand.grid(x=Xx, y=y)

d2 <- expand.grid(x=x, y=y, KEEP.OUT.ATTRS = FALSE)
object.size(d1) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression" .

Usage

expression(...)

is.expression(x)
as.expression(x, ...)

Arguments
expression : R objects, typically calls, symbols or constants.
as.expression : arguments to be passed to methods.
X an arbitrary R object.
Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, for example as
returned by parse.

As an object of mode "expression” is a list, it can be subsetted by [, [[or $, the latter two
extracting individual calls etc. The replacement forms of these operators can be used to replace or
delete elements.

expression and is.expression are primitive functions. expression is ‘special’: it does not
evaluate its arguments.

Extract 157

Value

expression returns a vector of type "expression” containing its arguments (unevaluated).
is.expression returns TRUKE expr is an expression object and FAL Skbtherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and only the
default method is described here. (The default method calls as.vector(type="expression") and
so may dispatch methods for as.vector .) NULLcalls, symbols (see as.symbol) and pairlists are
returned as the element of a length-one expression vector. Atomic vectors are placed element-by-
element into an expression vector (without using any names): lists are changed type to an expression
vector (keeping all attributes). Other types are not currently supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call , eval, function . Further, text and legend for plotting mathematical expressions.

Examples

length(ex1 <- expression(1+ 0:9))# 1
exl
eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3
mode(ex3 [3]) # expression
mode(ex3[[3]])# call

rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage

X[i]

X[i, j, ... , drop = TRUE]
X[[i, exact = TRUE]]

x[[i, j, ..., exact = TRUE]]
x$name
getElement(object, name)

X[i] <- value
X[i, j, ...] <- value
X[[i]] <- value
x$i <- value

158 Extract

Arguments

X, object object from which to extract element(s) or in which to replace element(s).

i Jy .. indices specifying elements to extract or replace. Indices are numeric or
character vectors or empty (missing) or NULLNumeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the namesof the object (or for matrices/arrays, the
dimnameg see ‘Character indices’ below for further details.

For [-indexing only: i,], ... can be logical vectors, indicating elements/slices
to select. Such vectors are recycled if necessary to match the corresponding
extent. i,]j, .. can also be negative integers, indicating elements/slices to
leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of X; the result is then a vector with elements
corresponding to the sets of indices in each row of i .

An index value of NULLs treated as if it were integer(0) .

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the namesof
the object.

drop For matrices and arrays. If TRUEhe result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

exact Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NAallows partial matching but issues a warning when it occurs.
Value FALSEIllows partial matching without any warning.

value typically an array-like R object of a similar class as X.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [.data.frame and [.factor . The descriptions here apply only to
the default methods. Note that separate methods are required for the replacement functions [<- ,
[[<- and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $is only valid for recursive objects, and is only discussed
in the section below on recursive objects.

Subsetting (except by an empty index) will drop all attributes except namesdim and dimnames

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of X is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed
to accept the values. Attributes are preserved (although namesdim and dimnamesvill be adjusted
suitably). Subassignment is done sequentially, so if an index is specified more than once the latest
assigned value for an index will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g. a function).

Extract 159

Atomic vectors

The usual form of indexing is "[" . "[[" can be used to select a single element dropping names
whereas "[" keeps them, e.g., in c(abc = 123)[1] .

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character(i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless X is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. An empty index (a
comma separated blank) indicates that all entries in that dimension are selected. The argument drop
applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NAand zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NAproduce an NAin the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single
element of the array. Indices are matched against the appropriate dimension names. NAis allowed

and will produce an NAin the result. Unmatched indices as well as the empty string (") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless X is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow
computed indices, whereas [[does. xX$namés equivalent to X[['name", exact = FALSE]] . Also,
the partial matching behavior of [[can be controlled using the exact argument.

getElement(x, name) is a version of X[[name, exact = TRUE]]which for formally classed (S4)
objects returns slot(x, name) , hence providing access to even more general list-like objects.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
are coerced to lists for extraction by [, but all three operators can be used for replacement.

[[canbe applied recursively to lists, so that if the single index i is a vector of length p, alist[[i]]
is equivalent to alist[[i1]]...[[ip]] providing all but the final indexing results in a list.

Note that in all three kinds of replacement, a value of NULLdeletes the corresponding item of the
list. To set entries to NULLyou need X[i] <- list(NULL)

When $<- is applied to a NULL xit first coerces X to list() . This is what also happens with [[<-
if the replacement value value is of length greater than one: if value has length 1 or 0, X is first
coerced to a zero-length vector of the type of value.

160 Extract

Environments
Both $ and [[can be applied to environments. Only character indices are allowed
and no partial matching is done. The semantics of these operations are those of

get(i, env=x, inherits=FALSE) . If no match is found then NULLs returned. The replace-
ment versions, $<- and [[<- , can also be used. Again, only character arguments are allowed. The
semantics in this case are those of assign(i, value, env=x, inherits=FALSE) . Such an
assignment will either create a new binding or change the existing binding in X.

NAs in indexing

When extracting, a numerical, logical or character NAindex picks an unknown element and so
returns NAin the corresponding element of a logical, integer, numeric, complex or character result,
and NULIfor a list. (It returns 00 for a raw result.]

When replacing (that is using indexing on the lhs of an assignment) NAdoes not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome).

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. So m[j=2,i=1] is equivalent to m[2,1] and not
tom[1,2].

This may not be true for methods defined for them; for example it is not true for the data.frame
methods described in [.data.frame which warn if i orj is named and have undocumented be-
haviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods

These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects X.

The implicit generics for the $ and $<- operators do not have namen their signature because the
grammar only allows symbols or string constants for the hameargument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker ef al p.
358)), R has never used partial matching when extracting by [, and as from R 2.7.0 partial matching
is not by default used by [[(see argument exact).

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options(warnPartialMatchAttr = TRUE) .

Neither empty (") nor NAindices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all " and so match nothing.

Note

The documented behaviour of S is that an NAreplacement index ‘goes nowhere’ but uses up an
element of value (Becker et al p. 359). However, that has not been true of other implementations.

Extract 161

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

namedor details of matching to names, and pmatchfor partial matching.
list ,array, matrix .
[.data.frame and [.factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and the R Language reference manual about indexing details.

Examples

X <- 1:12
m <- matrix(1:6, nrow=2, dimnames=list(c("a", "b"), LETTERS[1:3]))
li <- list(pi=pi, e = exp(1))

X[10] # the tenth element of x
X <- X[-1] # delete the 1st element of x
m[1,] # the first row of matrix m

m[1, , drop = FALSE] # is a 1l-row matrix
m[,c(TRUE,FALSE, TRUE)J# logical indexing
m[cbind(c(1,2,1),3:1)]# matrix numeric index
ci <- chind(c("a", "b", "a"), c("A", "C", "B"))

m[ci] # matrix character index

m <- m[,-1] # delete the first column of m

l[[a1] # the first element of list li

y <- list(1,2,a=4,5)

y[c(3,4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(i <- 3.999999999) # "4" is printed
(2:5)[i] # 3

named atomic vectors, compare "[" and "[[" :

nx <- c(Abc = 123, pi = pi)

nx[1] ; nx["'pi"] # keeps names, whereas "[[* does not:
nx[[1]] ; nx[["pi"]]

recursive indexing into lists

z <- list(a=list(b=9, c='hello’), d=1:5)
unlist(z)

z[[c(1, 2)]]

z[[c(1, 2, 1)]] # both "hello"

z[[c("a", "b")]] <- "new"

unlist(z)

check $ and [[for environments
el <- new.env()

el$a <- 10

elf["a"]]

el[["b"]] <- 20

els$b

Is(el)

162 Extract.data.frame

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame’

X[i, j, drop =]

S3 replacement method for class 'data.frame’
X[i, j] <- value

S3 method for class 'data.frame'

X[[..., exact = TRUE]]

S3 replacement method for class 'data.frame’
X[, jl <- value

S3 replacement method for class 'data.frame’
x$name <- value

Arguments
X data frame.
i, .. elements to extract or replace. For [and [[, these are numeric or character or,
for [only, empty. Numeric values are coerced to integer as if by as.integer .
For replacement by [, a logical matrix is allowed.
name A literal character string or a name (possibly backtick quoted).
drop logical. If TRUHEhe result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.
value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULLdeletes the
column if a single column is selected.
exact logical: see [, and applies to column names.
Details

Data frames can be indexed in several modes. When [and [[are used with a single index (X[i]
or X[[(]]), they index the data frame as if it were a list. In this usage a drop argument is ignored,
with a warning.

Note that there is no data.frame method for $, so x$namaeuses the default method which treats X
as a list. There is a replacement method which checks value for the correct number of rows, and
replicates it if necessary.

When [and [[are used with two indices (X[i, j] and X[[i, j]]) they act like indexing a matrix:
[[can only be used to select one element. Note that for each selected column, Xj say, typically
(if it is not matrix-like), the resulting column will be Xj[i] , and hence rely on the corresponding [
method, see the examples section.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transform-
ing the row names using make.unique Similarly, if columns are selected column names will be

Extract.data.frame 163

transformed to be unique if necessary (e.g. if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

When drop = TRUFEhis is applied to the subsetting of any matrices contained in the data frame as
well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULlelements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing (X[i] with a logical or a 2-column integer matrix i) using [is not recommended,
and barely supported. For extraction, X is first coerced to a matrix. For replacement, a logical matrix
(only) can be used to select the elements to be replaced in the same way as for a matrix.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will unless exact=TRUHTf you want to do exact matching on row names use
matchas in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a matrix results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a *missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL

For [[a column of the data frame or NULL(extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL

For [<-, [[<- and $<-, a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data.frame and as.data.frame do) but inserted as a single column.

164 Extract.data.frame

Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSETo drop
from a data frame to a list, drop = TRUas to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and the
behaviour differs from the description here.
See Also

subset which is often easier for extraction, data.frame , Extract .

Examples
sw <- swiss[1:5, 1:4] # select a manageable subset
sw[1:3] # select columns

sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns

sw[1] # a one-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
sw[[1]] # the same

sw[l,] # a one-row data frame

sw[l,, drop=TRUE] # a list

sw['C",] # partially matches
sw[match("C", row.names(sw)),] # no exact match
try(sw[, "Ferti"]) # column names must match exactly

swiss[c(1, 1:2),] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
sw

adding a column

sw['newl"] <- LETTERS[1:5] # adds a character column
sw[['new2"]] <- letters[1:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

sw$newsd <- 1:5

sapply(sw, class)

swnew4 <- NULL # delete the column
sw

sw[6:8] <- list(letters[10:14], NULL, aa=1:5)

update col. 6, delete 7, append

sw

matrices in a data frame

A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters[1:9],3,3)))
A[1:3, "y"] # a matrix

A[1:3, "z"] # a matrix

Al "y # a matrix

keeping special attributes: use a class with a
"as.data.frame" and "[" method:

Extract.factor 165

as.data.frame.avector <- as.data.frame.vector

‘[.avector® <- function(x,i,...) {
r <- NextMethod("[")
mostattributes(r) <- attributes(x)
r

}

d <- data.frame(i= 0:7, f= gl(2,4),
u= structure(11:18, unit = "kg", class="avector"))
str(d[2:4, -1]) # 'u’ keeps its "unit"

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

S3 method for class 'factor'

X[..., drop = FALSE]

S3 method for class ‘factor'

X[[..]]

S3 replacement method for class 'factor'
X[...] <- value

S3 replacement method for class 'factor'
X[[...]] <- value

Arguments
X a factor
a specification of indices — see Extract .
drop logical. If true, unused levels are dropped.
value character: a set of levels. Factor values are coerced to character.
Details

When unused levels are dropped the ordering of the remaining levels is preserved.
If value is not in levels(x) , a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unless drop=TRUE

The [[method supports argument exact.

Value

A factor with the same set of levels as X unless drop=TRUE

166 Extremes

See Also

factor , Extract .

Examples

following example(factor)

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
ff[, drop=TRUE]

factor(letters[7:10])[2:3, drop = TRUE]

Extremes Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage
max(..., ha.rm = FALSE)
min(..., na.rm = FALSE)

pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)

pmax.int(..., na.rm = FALSE)
pmin.int(..., na.rm = FALSE)

Arguments
numeric or character arguments (see Note).
na.rm a logical indicating whether missing values should be removed.
Details

maxand min return the maximum or minimum of all the values present in their arguments, as
integer if all are logical or integer , as double if all are numeric, and character otherwise.

If na.rm is FALSEn NAvalue in any of the arguments will cause a value of NAto be returned,
otherwise NAvalues are ignored.

The minimum and maximum of a numeric empty set are +Inf and -Inf (in this order!) which
ensures transitivity, e.g., min(x1, min(x2)) == min(x1, x2) . For numeric X max(x) == -Inf
and min(x) == +Inf whenever length(x) == 0 (after removing missing values if requested).
However, pmaxand pminreturn NAif all the parallel elements are NAeven for na.rm = TRUE

pmaxand pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘parallel’” maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result is
the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs (of
non-zero length) are recycled if necessary. Attributes (see attributes : such as namesr dim) are
copied from the first argument (if applicable).

Extremes 167

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic vec-
tors and there are no classes: they drop all attributes. (Note that all versions fail for raw and complex
vectors since these have no ordering.)

maxand minare generic functions: methods can be defined for them individually or via the Summary
group generic. For this to work properly, the arguments ... should be unnamed, and dispatch is on
the first argument.

By definition the min/max of a numeric vector containing an NaNs NaNexcept that the min/max of
any vector containing an NAis NAeven if it also contains an NaNNote that max(NA, Inf) == NA
even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be character NA (One could argue that as ™ is the smallest character element, the
maximum should be " , but there is no obvious candidate for the minimum.)

Value

For min or max a length-one vector. For pminor pmaxa vector of length the longest of the input
vectors, or length zero if one of the inputs had zero length.

The type of the result will be that of the highest of the inputs in the hierarchy integer < real <
character.

For min and maxf there are only numeric inputs and all are empty (after possible removal of NA),
the result is double (Inf or -Inf).

S4 methods

maxand min are part of the S4 Summargroup generic. Methods for them must use the signature
X, ..., ha.rm

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULLs accepted as equivalent to integer(0) .

pmaxand pminwill also work on classed objects with appropriate methods for comparison, is.na
and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.ma for the arg min, i.e., the location where an
extreme value occurs.

‘plotmath’ for the use of minin plot annotation.

Examples

require(stats); require(graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #> 5 numbers

168 factor

X <- sort(rnorm(100)); cH <- 1.35
pmin(cH, quantile(x)) # no names
pmin(quantile(x), cH) # has names
plot(x, pmin(cH, pmax(-cH, X)), type='b', main= "Huber's function")

cut0l <- function(x) pmax(pmin(x, 1), 0)
curve(x"2 - 1/4, -1.4, 1.5, col=2)
curve(cut01(x"2 - 1/4), col="blue", add=TRUE, n=500)
pmax(), pmin() preserve attributes of *first* argument
D <- diag(x=(3:1)/4) ; n0 <- numeric()
stopifnot(identical(D, cut01(D)),

identical(nO, cut01(n0)),

identical(n0, cutO1(NULL)),

identical(n0, pmax(3:1, n0, 2)),

identical(n0, pmax(n0, 4)))

factor Factors

Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If argument ordered is TRUEhe factor levels are assumed to be
ordered. For compatibility with S there is also a function ordered.

is.factor ,is.ordered , as.factor and as.ordered are the membership and coercion functions
for these classes.

Usage

factor(x = character(), levels, labels = levels,
exclude = NA, ordered = is.ordered(x))

ordered(x, ...

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

addNA(x, ifany = FALSE)

Arguments

X a vector of data, usually taking a small number of distinct values.

levels an optional vector of the values that X might have taken. The default is the
unique set of values taken by as.character(x) , sorted into increasing order of
X. Note that this set can be smaller than sort(unique(x))

labels either an optional vector of labels for the levels (in the same order as levels
after removing those in exclude), or a character string of length 1.

exclude a vector of values to be excluded when forming the set of levels. This should be

of the same type as X, and will be coerced if necessary.

factor 169

ordered logical flag to determine if the levels should be regarded as ordered (in the order
given).

(in ordered(.)): any of the above, apart from ordered itself.

ifany (only add an NAlevel if it is used, i.e. if any(is.na(x))

Details

The type of the vector X is not restricted; it only must have an as.character method and be sortable
(by sort.list).

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from
levels . If x[i] equalslevels[j] ,then the i -th element of the result is j . If no match is found for
X[i] inlevels (which will happen for excluded values) then the i -th element of the result is set to
NA

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying labels . This should either be a set of new
labels for the levels, or a character string, in which case the levels are that character string with a
sequence number appended.

factor(x, exclude=NULL) applied to a factor is a no-operation unless there are unused levels: in
that case, a factor with the reduced level set is returned. If exclude is used it should also be a factor
with the same level set as X or a set of codes for the levels to be excluded.

The codes of a factor may contain NAFor a numeric X, set exclude=NULIto make NAan extra level
(prints as <NAY¥, by default, this is the last level.

If NAis a level, the way to set a code to be missing (as opposed to the code of the missing level) is
to use is.na on the left-hand-side of an assignment (as in is.na(f)[i] <- TRUE ; indexing inside
is.na does not work). Under those circumstances missing values are currently printed as <NA3>i.e.,
identical to entries of level NA

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Value

factor returns an object of class "factor" which has a set of integer codes the length of X with
a "levels" attribute of mode character and unique (!anyDuplicated(.)) entries. If argument
ordered is true (or ordered() is used) the result has class c("ordered", "factor")

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just the
levels which occur: see also [.factor for a more transparent way to achieve this.

is.factor returns TRUlr FALSHepending on whether its argument is of type factor or not. Corre-
spondingly, is.ordered returns TRUEvhen its argument is an ordered factor and FALSkbtherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor .
as.ordered(x) returns X if this is ordered, and ordered(x) otherwise.

addNAmnodifies a factor by turning NAinto an extra level (so that NAvalues are counted in tables, for
instance).

170 factor

Warning

The interpretation of a factor depends on both the codes and the "levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as.numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor f
to approximately its original numeric values, as.numeric(levels(f))[f] is recommended and
slightly more efficient than as.numeric(as.character(f))

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCIIL.

There are some anomalies associated with factors that have NAas a level. It is suggested to use them
sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor” and "ordered" methods for the group generic Opswhich provide methods for
the Comparison operators, and for the minmaxand range generics in Summaryf "ordered" . (The
rest of the groups and the Mathgroup generate an error as they are not meaningful for factors.)

Only ==and != can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Collation is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even a
small proportion of repeats. However, identical character strings share storage, so the difference is
now small in most cases. (Integer values are stored in 4 bytes whereas each reference to a character
string needs a pointer of 4 or 8§ bytes.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[.factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
as.integer(ff) # the internal codes

(f. <- factor(ff))# drops the levels that do not occur

ff[, drop=TRUE] # the same, more transparently

factor(letters[1:20], labels="letter")
class(ordered(4:1)) # "ordered", inheriting from "factor"

z <- factor(LETTERS[3:1], ordered = TRUE)
and "relational" methods work:

file.access 171

stopifnot(sort(z)[c(1,3)] == range(z), min(z) < max(z))

suppose you want "NA" as a level, and to allow missing values.
(x <- factor(c(1, 2, NA), exclude = NULL))

is.na(x)[2] <- TRUE

x #[1] 1 <NA> <NA>

is.na(x)

[1] FALSE TRUE FALSE

Using addNA()

Month <- airquality$Month
table(addNA(Month))
table(addNA(Month, ifany=TRUE))

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access(names, mode = 0)

Arguments
names character vector containing file names. Tilde-expansion will be done: see
path.expand.
mode integer specifying access mode required: see ‘Details’.
Details

The modevalue can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not a good idea to use this function to test before trying to open a file. On a
multi-tasking system, it is possible that the accessibility of a file will change between the time you
call file.access() and the time you try to open the file. It is better to wrap file open attempts in

try .

Value

An integer vector with values O for success and -1 for failure.

172 file.choose

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys.chmodo change permissions, and try for a ‘test
it and see’ approach.

file_test for shell-style file tests.

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new = FALSE)

Arguments
new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.
Value

A character vector of length one giving the file path.

See Also

list.files for non-interactive selection.

file.info 173

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage
file.info(...)
Arguments
character vectors containing file paths. Tilde-expansion is done: see
path.expand.
Details

What constitutes a ‘file’ is OS-dependent but includes directories. (However, directory names
must not include a trailing backslash or slash on Windows.) See also the section in the help for
\;link{file.exists} on case-insensitive file systems.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

A data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode"”. The file permissions, printed in octal, for example
644

mtime, ctime, atime
integer of class "POSIXct": file modification, ‘last status change’ and last access

times.
uid integer: the user ID of the file’s owner.
gid integer: the group ID of the file’s group.
uname character: uid interpreted as a user name.
grname character: gid interpreted as a group name.

Unknown user and group names will be NA

Entries for non-existent or non-readable files will be NAThe uid, gid, unamend grnamecolumns
may not be supplied on a non-POSIX Unix-alike system, and will not be on Windows.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ctime is the file creation time (something which is not recorded on most Unix-alike file
systems). What is meant by ‘file access’ and hence the ‘last access time’ is system-dependent.

174 file.path

The times are reported to an accuracy of seconds, and perhaps more on some systems. However,
many file systems only record times in seconds, and some (e.g. modification time on FAT systems)
are recorded in increments of 2 or more seconds.

Note

Some systems allow files of more than 2Gb to be created but not accessed by the stat system
call. Such files will show up as non-readable (and very likely not be readable by any of R’s input
functions) — fortunately such file systems are becoming rare.

See Also

Sys.readlink to find out about symbolic links, files , file.access , listfiles ., and
DateTimeClassesfor the date formats.

Sys.chmodo change permissions.

Examples

ncol(finf <- file.info(dir()))# at least six

Not run: finf # the whole list

Those that are more than 100 days old :
finf[difftime(Sys.time(), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage
file.path(..., fsep = .Platform$file.sep)

Arguments

. character vectors.

fsep the path separator to use.
Details

The implementation is designed to be fast (faster than paste) as this function is used extensively in
R itself.

It can also be wused for environment paths such as PATH and R_LIBS with
fsep = .Platform$path.sep .

Value

A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector (unlike paste).

file.show 175

Note

The components are separated by / (not \) on Windows.

file.show Display One or More Files

Description

Display one or more files.

Usage

file.show(..., header = rep(", nfiles),
title = "R Information”,
delete.file = FALSE, pager = getOption("pager"),

encoding = ")
Arguments
one or more character vectors containing the names of the files to be displayed.
Paths with have tilde expansion.
header character vector (of the same length as the number of files specified in ...)
giving a header for each file being displayed. Defaults to empty strings.
title an overall title for the display. If a single separate window is used for the display,
title will be used as the window title. If multiple windows are used, their titles
should combine the title and the file-specific header.
delete.file should the files be deleted after display? Used for temporary files.
pager the pager to be used: not used on all platforms
encoding character string giving the encoding to be assumed for the file(s).
Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command to run on the set of files. The ‘factory-fresh’ default is to use ‘R_HOME/bin/pageér
which is a shell script running the command specified by the environment variable PAGERhose
default is set at configuration, usually to less . On a Unix-alike moreis used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave
it up while R continues running. The selection of such pagers could either be done us-
ing special pager names being intercepted by lower-level code (such as "internal® and
"console" on Windows), or by letting pager be an R function which will be called with argu-
ments (files, header, title, delete.file) corresponding to the first four arguments of
file.show and take care of interfacing to the GUL

The R.appMac OS X GUI uses its internal pager irrespective of the setting of pager.

Not all implementations will honour delete.file . In particular, using an external pager on Win-
dows does not, as there is no way to know when the external application has finished with the
file.

176 files

Author(s)

Ross Thaka, Brian Ripley.

See Also

files , list.fles , help.

file.edit

Examples

file.show(file.path(R.home("doc"), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create(..., showWarnings = TRUE)

file.exists(...)

file.remove(...)

file.rename(from, to)

file.append(filel, file2)

file.copy(from, to, overwrite = recursive, recursive = FALSE,
copy.mode = TRUE)

file.symlink(from, to)

file.link(from, to)

Arguments
..., filel, file2
character vectors, containing file names or paths.
from, to character vectors, containing file names or paths. For file.copy and
file.symlinkto can alternatively be the path to a single existing directory.
overwrite logical; should existing destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical. If to is a directory, should directories in from be copied (and their
contents)?
copy.mode logical: should file permission bits be copied where possible? This applies to

both files and directories.

files 177

Details

The ... arguments are concatenated to form one character string: you can specify the files sepa-
rately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates them if
they do. They are created with the maximal read/write permissions allowed by the ‘umask’ setting
(where relevant). By default a warning is given (with the reason) if the operation fails.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if you
have the permissions needed by stat . Existence can also be checked by file.access , which might
use different permissions and so obtain a different result. Note that the existence of a file does not
imply that it is readable: for that use file.access .) What constitutes a ‘file’ is system-dependent,
but should include directories. (However, directory names must not include a trailing backslash or
slash on Windows.) Note that if the file is a symbolic link on a Unix-alike, the result indicates if the
link points to an actual file, not just if the link exists.

file.remove attempts to remove the files named in its argument. On most Unix platforms ‘file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename files (and from and to must be of the same length). Where file
permissions allow this will overwrite an existing element of to. This is subject to the limitations
of the OS’s corresponding system call (see something like man 2 renamen a Unix-alike): in
particular in the interpretation of ‘file’: most platforms will not rename files across file systems.
(On Windows, file.rename nowadays works across volumes for files but not directories.)

file.append attempts to append the files named by its second argument to those named by its first.
The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to file.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE The to
argument can specify a single existing directory. If copy.mode = TRUE&dded in R 2.13.0) file
read/write/execute permissions are copied where possible, restricted by ‘umask’. Other security
attributes such as ACLs are not copied. On a POSIX filesystem the targets of symbolic links will
be copied rather than the links themselves.

file.symlink and file.link make symbolic and hard links on those file systems which support
them. For file.symlink the to argument can specify a single existing directory. (Unix and Mac
OS X native filesystems support both. Windows has hard links to files on NTFS file systems and
concepts related to symbolic links on recent versions: see the section below on the Windows version
of this help page. What happens on a FAT or SMB-mounted file system is OS-specific.)

Value

These functions return a logical vector indicating which operation succeeded for each of the files
attempted. Using a missing value for a file or path name will always be regarded as a failure.

If showWarnings = TRUie.create will give a warning for an unexpected failure.

Case-insensitive file systems

Case-insensitive file systems are the norm on Windows and Mac OS X, but can be found on all
OSes (for example a FAT-formatted USB drive is probably case-insensitive).

These functions will most likely match existing files regardless of case on such file systems: how-
ever this is an OS function and it is possible that file names might be mapped to upper or lower
case.

178 files2

Author(s)
Ross Thaka, Brian Ripley

See Also

file.info , file.access , file.path , file.show , listfles , wunlink, basenamge
path.expand.

dir.create
Sys.glob to expand wildcards in file specifications.
file_test , Sys.readlink .

http://en.wikipedia.org/wiki/Hard_link and http://en.wikipedia.org/wiki/
Symbolic_link for the concepts of links and their limitations.

Examples

cat("file A\n", file="A")

cat("file B\n", file="B")
file.append("A", "B")
file.create("A")

file.append("A", rep("B", 10))
if(interactive()) file.show("A")
file.copy("A", "C")
dir.create("tmp")
file.copy(c("A", "B"), "tmp")
list.files("tmp")

setwd("'tmp")

file.remove("B")
file.symlink(file.path("..", c("A", "B")), ".")
setwd("..")

unlink("tmp”, recursive=TRUE)
file.remove("A", "B", "C")

files2 Manipulaton of Directories and File Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage

dir.create(path, showWarnings = TRUE, recursive = FALSE, mode = "0777")
Sys.chmod(paths, mode = "0777", use_umask=TRUE)
Sys.umask(mode = NA)

Arguments
path a character vector containing a single path name. Tilde expansion (see
path.expand) is done.
paths character vectors containing file or directory paths. Tilde expansion (see

path.expand) is done.

http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Symbolic_link
http://en.wikipedia.org/wiki/Symbolic_link

files2 179

showWarnings logical; should the warnings on failure be shown?

recursive logical. Should elements of the path other than the last be created? If true, like
the Unix command mkdir -p.
mode the mode to be used on Unix-alikes: it will be coerced by as.octmode For
Sys.chmodt is recycled along paths.
use_umask logical: should the mode be restricted by the umaslksetting?
Details

dir.create creates the last element of the path, unless recursive = TRUE Trailing path sepa-
rators are discarded. The mode will be modified by the umasksetting in the same way as for the
system function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume that
more than three octal digits will be used. For more details see your OS’s documentation on the
system call mkdir, e.g. man 2 mkdirand not that on the command-line utility of that name).

One of the idiosyncrasies of Windows is that directory creation may report success but create a
directory with a different name, for example dir.create("G.S.") creates "G.S"’. This is undoc-
umented, and what are the precise circumstances is unknown (and might depend on the version of
Windows). Also avoid directory names with a trailing space.

Sys.chmodsets the file permissions of one or more files. It may not be supported on a system (when
a warning is issued). See the comments for dir.create for how modes are interpreted. Changing
mode on a symbolic link is unlikely to work (nor be necessary). For more details see your OS’s
documentation on the system call chmode.g. man 2 chmognd not that on the command-line
utility of that name). Whether this changes the permission of a symbolic link or its target is OS-
dependent (although to change the target is more common, and POSIX does not support modes for
symbolic links: BSD-based Unixes do, though).

Sys.umasksets the umaskand returns the previous value: as a special case mode = Njst returns
the current value. It may not be supported (when a warning is issued and "0" is returned). For more
details see your OS’s documentation on the system call umaske.g. man 2 umask

How modes are handled depends on the file system, even on Unix-alikes (although their documen-
tation is often written assuming a POSIX file system). So treat documentation cautiously if you are
using, say, a FAT/FAT32 or network-mounted file system.

Value

dir.create and Sys.chmodreturn invisibly a logical vector indicating if the operation succeeded
for each of the files attempted. Using a missing value for a path name will always be regarded as

a failure. dir.create indicates failure if the directory already exists. If showWarnings = TRUE
dir.create will give a warning for an unexpected failure (e.g. not for a missing value nor for an
already existing component for recursive = TRUB.

Sys.umaskreturns the previous value of the umaskas a length-one object of class "octmode": the
visibility flag is off unless modds NA

See also the section in the help for file.exists on case-insensitive file systems for the interpreta-
tion of path and paths.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info | file.exists |, file.path ,list.files ,unlink , basenamgpath.expand.

180 find.package

Examples

Not run:

Fix up maximal allowed permissions in a file tree
Sys.chmod(list.dirs("."), "777")

f <- list.files(".", all.files = TRUE, full.names = TRUE, recursive = TRUE)
Sys.chmod(f, (file.info(f)j$mode | "664"))

End(Not run)

find.package Find Packages

Description

Find the paths to one or more packages.

Usage

find.package(package, lib.loc = NULL, quiet = FALSE,
verbose = getOption("verbose"))

path.package(package, quiet = FALSE)

Arguments
package character vector: the names of packages.
lib.loc a character vector describing the location of R library trees to search through, or
NULLThe default value of NULIcorresponds to checking the attached packages,
then all libraries currently known in .libPaths()
quiet logical. Should this not give warnings or an error if the package is not found?
verbose a logical. If TRUEdditional diagnostics are printed.
Details

find.package returns path to the locations where the given packages are found. If lib.loc is NULL
then attached packages are searched before the libraries. If a package is found more than once, the

first match is used. Unless quiet = TRUEa warning will be given about the named packages

which are not found, and an error if none are. If verbose is true, warnings about packages found

more than once are given. For a package to be returned it must contain a either a ‘Metd subdirectory

or a ‘DESCRIPTIORIe containing a valid version field, but it need not be installed (it could be a

source package if lib.loc was set suitably).

find.package is not usually the right tool to find out if a package is available for use: the only
way to do that is to use require to try to load it. It need not be installed for the correct platform, it
might have a version requirement not met by the running version of R, there might be dependencies
which are not available,

path.package returns the paths from which the named packages were loaded, or if none were
named, for all currently attached packages. Unless quiet = TRUEit will warn if some of the
packages named are not attached, and given an error if none are.

findInterval 181

Value

A character vector of paths of package directories.

Note

find.package and .path.package were internal-only versions prior to R 2.13.0, and are now
wrappers for these public versions.

findinterval Find Interval Numbers or Indices

Description

Find the indices of X in vec, where vec must be sorted (non-decreasingly); i.e., if
i <- findinterval(x,v) , we have v;; < z; < v;;41 where vg := —00, vn41 = +00, and
N <- length(vec) . At the two boundaries, the returned index may differ by 1, depending on the
optional arguments rightmost.closed and all.inside

Usage
findinterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments
X numeric.
vec numeric, sorted (weakly) increasingly, of length N say.

rightmost.closed
logical; if true, the rightmost interval, vec[N-1] .. vec[N] is treated as closed,
see below.

all.inside logical; if true, the returned indices are coerced into 1,...,N-1 ,i.e., Ois mapped
to 1 and Nto N-1

Details

The function findInterval finds the index of one vector X in another, vec, where the latter must be
non-decreasing. Where this is trivial, equivalent to apply(outer(x, vec, ">="), 1, sum) ,as
a matter of fact, the internal algorithm uses interval search ensuring O(nlog N') complexity where
n <- length(x) (and N <- length(vec)). For (almost) sorted X, it will be even faster, basically
O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval(t, sort(X)) is identical to nF, (t; X1, ...,X,) where F,, is the empirical dis-
tribution function of X1,..., X,,.

When rightmost.closed = TRUE, the result for X[j] = vec[N] (= maxwvec),is N - 1as for all
other values in the last interval.

Value

vector of length length(x) with values in O:N (and NA where N <- length(vec) , or values co-
erced to 1:(N-1) if and only if all.inside = TRUE (equivalently coercing all x values inside the
intervals). Note that NA are propagated from X, and Inf values are allowed in both X and vec.

182 force

Author(s)

Martin Maechler

See Also

approx(*, method = "constant") which is a generalization of findinterval() , ecdf for com-
puting the empirical distribution function which is (up to a factor of n) also basically the same as
findInterval(.).

Examples

N <- 100

X <- sort(round(stats::rt(N, df=2), 2))

tt <- ¢(-100, seq(-2,2, len=201), +100)

it <- findInterval(tt, X)

ttlit < 1 | it >= N] # only first and last are outside range(X)

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force(x)

Arguments

X a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note
This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Foreign

Examples

183

f <- function(y) function() y
If <- vector("list", 5)
for (i in seq_along(If)) Iff[il] <- f(i)

If[[1]]0) # returns

5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)
for (i in seq_along(lg)) Io[[i]] <- g(i)

Ig[[1]]0 # returns

1

This is identical to
g <- function(y) { y; function() y }

Foreign

Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)

.Fortran(.NAME,

Arguments

.NAME

NAOK

DUP

PACKAGE

ENCODING

..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)

a character string giving the name of a C function or Fortran subroutine,
or an object of class "NativeSymbolinfo" , "RegisteredNativeSymbol" or
"NativeSymbol" referring to such a name.

arguments to be passed to the foreign function. Up to 65.

if TRUEhen any NAor NalNbor Inf values in the arguments are passed on to the
foreign function. If FALSEthe presence of NAor NaNbr Inf values is regarded
as an error.

if TRUEhen arguments are duplicated before their address is passed to C or
Fortran.

if supplied, confine the search for the .NAMHEo the DLL given by this argument
(plus the conventional extension, ‘.s0”, “.dll ’,...).

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

optional name for an encoding to be assumed for character vectors. Allowed but
ignored for .Fortran , deprecated for .C. See ‘Details’.

184 Foreign

Details

These functions can be used to make calls to compiled C and Fortran 77 code. Later interfaces are
.Call and .External .

Character strings will be translated from the value of ENCODINSS any declared encoding (see
Encoding) to the current locale before being passed to the compiled C code. They will be returned
encoded in the current locale unless ENCODINfEs specified, when the output strings are translated
to the specified encoding. This is deprecated: convert code to use iconv .

These functions are all primitive, and .NAMEs always matched to the first argument supplied (which
if named must partially match .NAME The other named arguments follow ... and so cannot be
abbreviated. For clarity, should avoid using names in the arguments passed to ... that match or
partially match .NAME

Value
A list similar to the ... list of arguments passed in (including any names given to the arguments),
but reflecting any changes made by the C or Fortran code.

Argument types

The mapping of the types of R arguments to C or Fortran arguments is

R C Fortran

integer int * integer

numeric double * double precision
—or— float * real

complex Rcomplex * double complex
logical int * integer
character char ** [see below]

raw unsigned char * not allowed

list SEXP * not allowed
other SEXP not allowed

Numeric vectors in R will be passed as type double * to C (and as double precision to Fortran)
unless (i) DURSs true and (ii) the argument has attribute Csingle set to TRUEuse as.single or
single). This mechanism is only intended to be used to facilitate the interfacing of existing C and
Fortran code.

The C type Rcomplexs defined in ‘Complex.H as a typedef struct {double r; double i}
It may or may not be equivalent to the C99 double complextype, depending on the compiler used.

Logical values are sent as O (FALSE 1 (TRUEor INT_MIN = -2147483648NA but only if
NAOK = TRU#nd the compiled code should return one of these three values: however non-zero
values other than INT_MINire mapped to TRUE

Note: The C types corresponding to integer and logical are int , not long as in S. This differ-
ence matters on most 64-bit platforms, where int is 32-bit and long is 64-bit (but not on 64-bit
Windows).

Note: The Fortran type corresponding to logical is integer , not logical : the difference matters
on some Fortran compilers.

Missing (NA string values are passed to .C as the string "NA". As the C char type can represent all
possible bit patterns there appears to be no way to distinguish missing strings from the string "NA".
If this distinction is important use .Call .

Foreign 185

.Fortran passes the first (only)character string of a character vector is passed as a C character
array to Fortran: that may be usable as character*255 if its true length is passed separately. Only
up to 255 characters of the string are passed back. (How well this works, and even if it works at all,
depends on the C and Fortran compilers and the platform.)

Lists, functions are other R objects can (for historical reasons) be passed to .C, but the .Call
interface is much preferred. All inputs apart from atomic vectors should be regarded as read-only,
and all apart from vectors (including lists), functions and environments are now deprecated.

Warning

DUP = FALSElangerous.

People concerned about memory usage are strongly recommended to use the .Call interface instead
of these interfaces.

If you pass a local variable to .C/.Fortran with DUP = FALS¥our compiled code can alter the
local variable and not just the copy in the return list. Worse, if you pass a local variable that is a
formal parameter of the calling function, you may be able to change not only the local variable but
the variable one level up. This will be very hard to trace.

Character vectors cannot be used with DUP = FALSE

It is safe and useful to set DUP = FALSEyou do not change any of the variables that might be
affected, e.g.,

.C("Cfunction”, input = x, output = numeric(10))

In this case the output variable did not exist before the call so it cannot cause trouble. If the input
variable is not changed in the C code of Cfunction you are safe.

Note that if DUP = TRUthere are up to two copies involved. Prior to R 2.15.1 this was always the
case for vectors (one before calling the compiled code and one to collect the results), and this is still
the case for character vectors. For other atomic vectors, the argument is copied before calling the
compiled code if it is not otherwise used in the calling code (such as output in the example above).
Non-atomic-vector objects are read-only to the C code and are never copied.

Fortran symbol names

All Fortran compilers known to be usable to compile R map symbol names to lower case, and so
does .Fortran .

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers will allow them but may translate them in a different way to
names not containing underscores. Such names will often work with .Fortran (since how they are
translated is detected when R is built and the information used by .Fortran), but portable code
should not use Fortran names containing underscores.

Use .Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran 77 compiler used when configuring R, especially if the subroutine
name is not lower-case or includes an underscore. It is also possible to use .C and do any necessary
symbol-name translation yourself.

Note

If one of these functions is to be used frequently, do specify PACKAG# confine the search to a
single DLL) or pass .NAMEs one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "bag®t symbols linked into R. Do not use this in your own code: such
symbols are not part of the API and may be changed without warning.

186 formals

The way pairlists were passed by .C prior to R 2.15.0 was not as documented. This has been
corrected, but the .Call and .External interfaces are much preferred for passing anything other
than atomic vectors.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dyn.load, .Call .

The ‘Writing R Extensions’ manual.

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun, envir = environment(fun)) <- value

Arguments
fun a function object, or see ‘Details’.
envir environment in which the function should be defined.
value a list (or pairlist) of R expressions.

Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for from the parent frame. If it is not specified, the function calling formals is used.

Only closures have formals, not primitive functions.

Value

formals returns the formal argument list of the function specified, as a pairlist , or NULLfor a
non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function.

See Also

args for a human-readable version, alist , body, function .

format

Examples

187

require(stats); require(graphics)

length(formals(lm))

the number of formal arguments

names(formals(boxplot)) # formal arguments names

f <- function(x) a+b
formals(f) <- alist(a=,b=3) # function(a,b=3)a+b
f(2) # result = 5

format

Encode in a Common Format

Description

Format an R object for pretty printing.

Usage

format(x, ...

)

Default S3 method:

format(x, trim

FALSE, digits = NULL, nsmall = OL,

justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,

big.mark = "™, big.interval = 3L,

small.mark =
decimal.mark =

, small.interval = 5L,

., zero.print = NULL,

dropOtrailing = FALSE, ...)

S3 method for class 'data.frame’
format(x, ..., justify = "none")

S3 method for class 'factor'

format(x, ...

)

S3 method for class 'Asls'
format(x, width = 12, ...)

Arguments

X
trim

digits

nsmall

any R object (conceptually); typically numeric.

logical; if FALSElogical, numeric and complex values are right-justified to a
common width: if TRUhe leading blanks for justification are suppressed.

how many significant digits are to be used for numeric and complex X. The
default, NULLuses getOption(digits) . This is a suggestion: enough decimal
places will be used so that the smallest (in magnitude) number has this many
significant digits, and also to satisfy nsmall. (For the interpretation for complex
numbers see Signif .)

the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are
0 <= nsmall <= 20

188 format

justify should a character vector be left-justified (the default), right-justified, centred
or left alone.
width default method: the minimum field width or NULIlor O for no restriction.

Asls method: the maximum field width for non-character objects. NULLcorre-
sponds to the default 12.

na.encode logical: should NAstrings be encoded? Note this only applies to elements of
character vectors, not to numerical or logical NA, which are always encoded as
"NA"

scientific Either a logical specifying whether elements of a real or complex vector should

be encoded in scientific format, or an integer penalty (see options("scipen™)).
Missing values correspond to the current default penalty.

further arguments passed to or from other methods.
blg mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, dropOtrailing

used for prettying (longish) decimal sequences, passed to prettyNum: that help
page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods
for dates (see format.Date), date-times (see format.POSIXct)) and for other classes such as
format.octmode and format.dist

format.data.frame formats the data frame column by column, applying the appropriate method
of format for each column. Methods for columns are often similar to as.character but offer
more control. Matrix and data-frame columns will be converted to separate columns in the result,
and character columns (normally all) will be given class "Asls" .

format.factor converts the factor to a character vector and then calls the default method (and so
justify applies).
format.Asls deals with columns of complicated objects that have been extracted from a data frame.
Character objects are passed to the default method (and so width does not apply). Otherwise it calls
toString to convert the object to character (if a vector or list, element by element) and then right-
justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods)
is done on display width (see nchar), taking double-width characters and the rendering of spe-
cial characters (as escape sequences, including escaping backslash but not double quote: see
print.default) into account. Thus the width is as displayed by print(quote = FALSE) and
not as displayed by cat. Character strings are padded with blanks to the display width of the widest.
(If na.encode = FALSHissing character strings are not included in the width computations and
are not encoded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least the digits significant digits. However, if all the elements then have trailing ze-
roes, the number of decimal places is reduced until at least one element has a non-zero final digit; see
also the argument documentation for big.* , small.* etc, above. See the note in print.default
about digits >= 16 .

Raw vectors are converted to their 2-digit hexadecimal representation by as.character .

Value

An object of similar structure to X containing character representations of the elements of the first
argument X in a common format, and in the current locale’s encoding.

format.info 189

For character, numeric, complex or factor X, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If X is a list, the result is a character vector obtained by applying format.default(x, ...) to
each element of the list (after unlist ing elements which are themselves lists), and then collaps-
ing the result for each element with paste(collapse = ", ") . The defaults in this case are
trim = TRUE, justify = "none" since one does not usually want alignment in the collapsed
strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

format.info indicates how an atomic vector would be formatted.

formatC, paste, as.character , sprintf , print , prettyNum, toString , encodeString.

Examples

format(1:10)
format(1:10, trim = TRUE)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)
format(zz)
format(zz, justify = "left")

use of nsmall
format(13.7)

format(13.7, nsmall = 3)
format(c(6.0, 13.1), digits
format(c(6.0, 13.1), digits

2)
2, nsmall = 1)

use of scientific
format(2731-1)
format(2731-1, scientific = TRUE)

a list

z <- list(a=letters[1:3], b=(-pi+0i)*((-2:2)/2), c=c(1,10,100,1000),
d=c("a", "longer", "character", "string"))

format(z, digits = 2)

format(z, digits = 2, justify = "left", trim = FALSE)

format.info format(.) Information

Description

Information is returned on how format(x, digits, nsmall) would be formatted.

Usage
format.info(x, digits = NULL, nsmall = 0)

190 format.info

Arguments
X an atomic vector; a potential argument of format(x, ...)
digits how many significant digits are to be used for numeric and complex X. The
default, NULLuses getOption(digits)
nsmall (see format(..., nsmall)).
Value

An integer vector of length 1,3 or 6,say r.

For logical, integer and character vectors a single element, the width which would be used by
format if width = NULL

For numeric vectors:

1] width (in characters) used by format(x)

r2] number of digits after decimal point.

r[3] in 0:2; if >1, exponential representation would be used, with exponent length
of r[3]+1 .

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

See Also

format (notably about digits >= 16), formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following
format.info(123) #3 00

format.info(pi) #860

format.info(1e8) # 5 0 1 - exponential "1e+08"
format.info(1e222) # 6 0 2 - exponential "le+222"

X <- pi*10”c(-10,-2,0:2,8,20)

names(x) <- formatC(x, width=1, digits=3, format="g")
chind(sapply(x,format))

t(sapply(x, format.info))

using at least 8 digits right of "."
t(sapply(x, format.info, nsmall = 8))

Reset old options:
options(dd)

format.pval 191

format.pval Format P Values

Description

format.pval is intended for formatting p-values.

Usage

format.pval(pv, digits = max(1, getOption("digits") - 2),
eps = .Machine$double.eps, na.form = "NA", ...)

Arguments
pv a numeric vector.
digits how many significant digits are to be used.
eps a numerical tolerance: see ‘Details’.
na.form character representation of NA.
further arguments to be passed to format such as nsmall.
Details

format.pval is mainly an auxiliary function for print.summary.Im etc., and does separate format-
ting for fixed, floating point and very small values; those less than eps are formatted as "< [eps]"
(where ‘[eps]’ stands for format(eps, digits)).

Value

A character vector.

Examples

format.pval(c(stats::runif(5), pi*-100, NA))
format.pval(c(0.1, 0.0001, le-27))

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, using Cstyle format specifications.

192

formatC

Usage
formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "™, mode = NULL,
big.mark = ", big.interval = 3L,

small.mark =
decimal.mark =

, small.interval = 5L,

", preserve.width = "individual",

zero.print = NULL, dropOtrailing = FALSE)

prettyNum(x, big.mark = ", big.interval = 3L,

Arguments

X

digits

width

format

flag

mode
big.mark

big.interval
small.mark

small.mark =

, small.interval = 5L,

decimal.mark = ".",
preserve.width = c("common”, "individual”, "none"),
zero.print = NULL, dropOtrailing = FALSE, is.cmplx = NA,

)

an atomic numerical or character object, possibly complex only for
prettyNum() , typically a vector of real numbers.

the desired number of digits after the decimal point (format = "f*) or signifi-
cant digits (format = "g",= "e" or= "fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6 digits
is used. If specified as more than 50, 50 will be used with a warning unless
format = "f* where it is limited to typically 324. (Not more than 15-21 digits
need be accurate, depending on the OS and compiler used. This limit is just a
precaution against segfaults in the underlying C runtime.)

the total field width; if both digits and width are unspecified, width defaults to
1, otherwise to digits + 1 . width = O will use width = digits , width < 0
means left justify the number in this field (equivalent to flag ="-"). If neces-
sary, the result will have more characters than width . For character data this is
interpreted in characters (not bytes nor display width).

equal to "d" (for integers), "f* ,"e","E","g","G","fg" (for reals), or "s" (for
strings). Default is "d" for integers, "g" for reals.

"f" gives numbers in the usual Xxx.xxX format; "e" and "E" give n.ddde+nn
or n.dddE+nn(scientific format); "g" and "G" put X[i] into scientific format
only if it saves space to do so.

"fg" uses fixed format as "f* , but digits as the minimum number of significant
digits. This can lead to quite long result strings, see examples below. Note
that unlike signif this prints large numbers with more significant digits than
digits . Trailing zeros are dropped in this format, unless flag contains "#" .

For formatC, a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243). "0" pads leading zeros; "-" does left adjustment,

others are "+"," ", and "#" . There can be more than one of these, in any order.

"double"(or "real"), "integer" or "character" . Default: Determined from
the storage mode of X.

character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

see big.mark above; defaults to 3.

character; if not empty used as mark between every small.interval decimals
after (hence small) the decimal point.

formatC 193

small.interval see small.mark above; defaults to 5.
decimal.mark the character to be used to indicate the numeric decimal point.

preserve.width string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common'the de-
fault, corresponds to format -like behavior whereas "individual" is the default
in formatC() .

zero.print logical, character string or NULIspecifying if and how zeros should be formatted
specially. Useful for pretty printing ‘sparse’ objects.

dropOtrailing logical, indicating if trailing zeros, i.e., "0" after the decimal mark, should be
removed; also drops "e+00" in exponential formats.

is.cmplx optional logical, to be used when X is "character" to indicate if it stems from
complexvector or not. By default (NA, X is checked to ‘look like’ complex.

arguments passed to format.

Details

If you set format it overrides the setting of mode o)
formatC(123.45, mode="double", format="d") gives 123

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnnor
n.dddennrather than n.ddde+nn

formatC does not necessarily align the numbers on the decimal point, so
formatC(c(6.11, 13.1), digits=2, format="fg") gives c("6.1", " 13") . If you want
common formatting for several numbers, use format.

prettyNumis the utility function for prettifying X. X can be complex (or format(<complex>), here.
If X is not a character, format(x[i], ...) is applied to each element, and then it is left unchanged
if all the other arguments are at their defaults. Note that prettyNum(x) may behave unexpectedly
if X is a character vector not resulting from something like format(<number>): in particular it
assumes that a period is a decimal mark.

Because gsubis used to insert the big.mark and small.mark, special characters need escaping. In
particular, to insert a single backslash, use "\"

In versions of R before 2.13.0, the big.mark would be reversed on insertion if it contained more
than one character.

Value

A character object of same size and attributes as X, in the current locale’s encoding. Unlike
format, each number is formatted individually. Looping over each element of X, the C function
sprintf(...) is called for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Author(s)

formatC was originally written by Bill Dunlap, later much improved by Martin Maechler. It was
first adapted for R by Friedrich Leisch.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

194 formatC

See Also

format.

sprintf for more general C like formatting.

Examples

XX <- pi * 10°(-5:4)

cbind(format(xx, digits=4), formatC(xx))

cbind(formatC(xx, width = 9, flag = "-"))

cbind(formatC(xx, digits = 5, width = 8, format = "f*, flag = "0"))
cbind(format(xx, digits=4), formatC(xx, digits = 4, format = "fg"))

formatC(c("a", "Abc", "no way"), width = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), width=8, digits=1)

xx <- c(le-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)

#Ht 1 2 3 4 5 6
formatC(xx)
formatC(xx, format="fg") # special "fixed" format.

formatC(xx[1:4], format="f", digits=75) #>> even longer strings
formatC(c(3.24, 2.3e-6), format="f", digits=11, dropOtrailing=TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:

prettyNum(r, big.mark = ",")

Some Europeans:

prettyNum(r, big.mark = ™", decimal.mark = ",")

(dd <- sapply(1:10, function(i)paste((9:0)[1:i],collapse="")))
prettyNum(dd, big.mark="")

examples of 'small.mark’

pN <- stats::pnorm(1:7, lower.tail = FALSE)

cbind(format (pN, small.mark = " ", digits = 15))
cbind(formatC(pN, small.mark = " ", digits = 17, format = "f"))

cbind(ff <- format(1.2345 + 107(0:5), width = 11, big.mark = "))
all with same width (one more than the specified minimum)

individual formatting to common width:
fc <- formatC(1.234 + 107(0:8), format="fg", width=11, big.mark = ")
cbind(fc)

complex numbers:
r <- 10.0000001; rv <- (r/10)"(1:10)
(zv <- (rv + li*rv))
op <- options(digits=7) ## (system default)
(pnv <- prettyNum(zv))
stopifnot(pnv == "1+1i", pnv == format(zv),
pnv == prettyNum(zv, dropOtrailing=TRUE))
more digits change the picture:
options(digits=8)
head(fv <- format(zv), 3)
prettyNum(fv)
prettyNum(fv, dropOtrailing=TRUE) # a bit nicer

formatDL

options(op)

195

formatDL

Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

Usage

formatDL(x, y, style = c("table", "list"),

Arguments

X

style

width
indent

Details

width = 0.9 * getOption("width"), indent = NULL)

a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.

a vector of the same length as X with the corresponding descriptions. Only used
if X does not already give the descriptions.

a character string specifying the rendering style of the description informa-
tion. If "table" , a two-column table with items and descriptions as columns
is produced (similar to Texinfo’s @table environment. If "list" , a LaTeX-style
tagged description list is obtained.

a positive integer giving the target column for wrapping lines in the output.

a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2 , and defaults to width/3 for table style and width/9 for list style.

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

Examples

Not run:

Use R to create the 'INDEX' for package 'splines' from its 'CONTENTS'
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),

fields = c("Entry", "Description™))

X <- as.data.frame(x)

writeLines(formatDL(x$Entry, x$Description))

or equivalently: writeLines(formatDL(x))

Same information in tagged description list style:
writeLines(formatDL(x$Entry, x$Description, style = "list"))

196 function

or equivalently: writeLines(formatDL(x, style = "list"))

End(Not run)

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
return(value)

Arguments
arglist Empty or one or more name or name=expression terms.
expr An expression.
value An expression.

Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote’).

If value is missing, NULLs returned. If it is a single expression, the value of the evaluated expres-
sion is returned. (The expression is evaluated as soon as return is called, in the evaluation frame
of the function and before any on.exit expression is evaluated.)

If the end of a function is reached without calling return , the value of the last evaluated expression
is returned.

Technical details
This type of function is not the only type in R: they are called closures (a name with origins in
LISP) to distinguish them from primitive functions.

A closure has three components, its formals (its argument list), its body (expr in the ‘Usage’
section) and its environment which provides the enclosure of the evaluation frame when the closure
is used.

There is an optional further component if the closure has been byte-compiled. This is not normally
user-visible, but it indicated when functions are printed.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args.
formals , bodyand environment for accessing the component parts of a function.
debugfor debugging; using invisible inside return(.) for returning invisibly.

funprog 197

Examples

norm <- function(x) sqrt(x%*%ox)
norm(1:4)

An anonymous function:
(function(x,y){ z <- x"2 + y"2; x+y+z })(0:7, 1)

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reducauses a binary function to successively combine the elements of a given vector and a possibly
given initial value. Filter extracts the elements of a vector for which a predicate (logical) function
gives true. Find and Position give the first or last such element and its position in the vector,
respectively. Mapapplies a function to the corresponding elements of given vectors. Negatecreates
the negation of a given function.

Usage

Reduce(f, x, init, right = FALSE, accumulate = FALSE)
Filter(f, x)

Find(f, x, right = FALSE, nomatch = NULL)

Map(f, ...)

Negate(f)

Position(f, x, right = FALSE, nomatch = NA_integer)

Arguments
f a function of the appropriate arity (binary for Reduce unary for Filter , Find
and Position , k-ary for Mapif this is called with & arguments). An arbitrary
predicate function for Negate
X a vector.
init an R object of the same kind as the elements of X.
right a logical indicating whether to proceed from left to right (default) or from right
to left.
accumulate a logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.
nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.
vectors.
Details

If init is given, Reducelogically adds it to the start (when proceeding left to right) or the end
of X, respectively. If this possibly augmented vector v has n > 1 elements, Reducesuccessively
applies f to the elements of v from left to right or right to left, respectively. Le., a left reduce
computes [y = f(v1,v2), la = f(l1,v3), etc., and returns I,,_1; = f(I,_2,v,), and a right reduce

198 funprog

does -1 = f(vp—1,Vn), Tn—2 = f(vp—2,7,—1) and returns 7 = f(v1,7r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULLs
returned. Thus, it is ensured that f is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

Reducds patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in Haskell)
or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version corre-
sponds to Haskell’s scan functions.

Filter applies the unary predicate function f to each element of X, coercing to logical if necessary,
and returns the subset of X for which this gives true. Note that possible NAvalues are currently
always taken as false; control over NAhandling may be added in the future. Filter corresponds to
filter in Haskell or remove-if-not in Common Lisp.

Find and Position are patterned after Common Lisp’s find-if ~ and position-if , respectively. If
there is an element for which the predicate function gives true, then the first or last such element or
its position is returned depending on whether right is false (default) or true, respectively. If there
is no such element, the value specified by nomatchis returned. The current implementation is not
optimized for performance.

Maypis a simple wrapper to mapplywhich does not attempt to simplify the result, similar to Common
Lisp’s mapcar(with arguments being recycled, however). Future versions may allow some control
of the result type.

Negate corresponds to Common Lisp’s complement Given a (predicate) function f, it creates a
function which returns the logical negation of what f returns.

See Also

Function clusterMap and mcmapplynot Windows) in package parallel provide parallel versions
of Map

Examples

A general-purpose adder:

add <- function(x) Reduce("+", x)

add(list(1, 2, 3))

Like sum(), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.

More generally, many generics meant to work on arbitrarily many
arguments can be defined via reduction:

FOO <- function(...) Reduce(FOO2, list(...))

FOO2 <- function(x, y) UseMethod("FOO2")

FOO() methods can then be provided via FOO2() methods.

A general-purpose cumulative adder:
cadd <- function(x) Reduce("+", x, accumulate = TRUE)
cadd(seq_len(7))

A simple function to compute continued fractions:

cfrac <- function(x) Reduce(function(u, v) u + 1 / v, X, right = TRUE)
Continued fraction approximation for pi:

cfrac(c(3, 7, 15, 1, 292))

Continued fraction approximation for Euler's number (e):

cfrac(c(2, 1, 2, 1, 1, 4,1, 1, 6, 1, 1, 8))

Iterative function application:

gc 199

Funcall <- function(f, ...) f(...)
Compute log(exp(acos(cos(0))
Reduce(Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)

function(x) Reduce(Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate(function(x) 1 + 1 / x, 30)(1)
which is the same as
cfrac(rep.int(1, 31))
Computing square root approximations for x as fixed points of the
function t |-> (t + x / t) / 2, as a function of the initial value:
asqrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)
asqrt(2, 30)(10) # Starting from a positive value => +sqrt(2)
asqrt(2, 30)(-1) # Starting from a negative value => -sqgrt(2)

A list of all functions in the base environment:
funs <- Filter(is.function, sapply(Is(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names(Filter(function(f) length(formals(args(f))) > 10, funs))
Number of functions in base with a '..." argument:
length(Filter(function(f)

any(names(formals(args(f))) %in% "..."),

funs))

Find all objects in the base environment which are *not* functions:
Filter(Negate(is.function), sapply(Is(baseenv()), get, baseenv()))

gc Garbage Collection

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic collection
is either silent (verbose=FALS}or prints memory usage statistics (verbose=TRUE

Usage

gc(verbose = getOption("verbose"), reset=FALSE)
gcinfo(verbose)

Arguments
verbose logical; if TRUEhe garbage collection prints statistics about cons cells and the
space allocated for vectors.
reset logical; if TRUEhe values for maximum space used are reset to the current
values.
Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.

200 g¢
However, it can be useful to call gc after a large object has been removed, as this may prompt R to
return memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells" , a relict of an
earlier allocator (that used a vector heap).

When gcinfo(TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0) ...
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells” (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used" and
"gc trigger" , each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells" or "Vcells" , a fifth column is printed giving the
current limits in Mb (with NAdenoting no limit).

The final two columns show the maximum space used since the last call to gc(reset=TRUE) (or
since R started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.
Memoryn R’s memory management, and gctorture if you are an R developer.

reg.finalizer for actions to happen at garbage collection.

Examples

gc() #- do it now

gcinfo(TRUE) #-- in the future, show when R does it
X <- integer(100000); for(i in 1:18) x <- c(X,i)
gcinfo(verbose = FALSE)#-- don't show it anymore

gc(TRUE)

gc(reset=TRUE)

gc.time 201

gc.time Report Time Spent in Garbage Collection

Description
This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage
gc.time(on = TRUE)

Arguments

on logical; if TRUEGC timing is enabled.

Details

The timings are rounded up by the sampling interval for timing processes, and so are likely to be
over-estimates.

It is a primitive.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Times of child processes are not available on Windows and will always be given as NA

See Also

gc, proc.time for the timings for the session.

Examples

gc.time()

gctorture Torture Garbage Collector

Description
Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture(on = TRUE)
gctorture2(step, wait = step, inhibit_release = FALSE)

202 get

Arguments
on logical; turning it on/off.
step integer; run GC every step allocations; step = 0 turns the GC torture
off.
wait integer; number of allocations to wait before starting GC torture.

inhibit_release
logical; do not release free objects for re-use: use with caution.

Details

Calling gctorture(TRUE) instructs the memory manager to force a full GC on every allocation.
gctorture2 provides a more refined interface that allows the start of the GC torture to be deferred
and also gives the option of running a GC only every step allocations.

The third argument to gctorture2 is only used if R has been configured with a strict write barrier
enabled. When this is the case all garbage collections are full collections, and the memory manager
marks free nodes and enables checks in many situations that signal an error when a free node is
used. This can greatly help in isolating unprotected values in C code. It does not detect the case
where a node becomes free and is reallocated. The inhibit_release argument can be used to
prevent such reallocation. This will cause memory to grow and should be used with caution and in
conjunction with operating system facilities to monitor and limit process memory use.

Value

Previous value of first argument.

Author(s)

Peter Dalgaard and Luke Tierney

get Return the Value of a Named Object

Description

Search for an R object with a given name and return it.

Usage

get(x, pos = -1, envir = as.environment(pos), mode = "any",
inherits = TRUE)

mget(x, envir, mode = "any",
ifnotfound = list(function(x)
stop(pasteO("value for
call. = FALSE)),
inherits = FALSE)

, X, " not found"),

get 203

Arguments
X a variable name (given as a character string).
pos where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in; see the ‘Details’ section.
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?
ifnotfound A list of values to be used if the item is not found: it will be coerced to list if
necessary.
Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using Sys.frame to access the currently active
function calls). The envir argument is an alternative way to specify an environment, but is primarily
there for back compatibility.

This function looks to see if the name X has a value bound to it in the specified environment. If
inherits is TRUERNA a value is not found for X in the specified environment, the enclosing frames
of the environment are searched until the name X is encountered. See environment and the ‘R
Language Definition” manual for details about the structure of environments and their enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If modeis specified then only objects of that type are sought. The modemay specify one of the
collections "numeric” and "function” (see modg any member of the collection will suffice.

Using a NULlenvironment is equivalent to using the current environment.

For mgetmultiple values are returned in a named list . This is true even if only one value is
requested. The value in modeand ifnotfound can be either the same length as the number of
requested items or of length 1. The argument ifnotfound must be a list containing either the value
to use if the requested item is not found or a function of one argument which will be called if
the item is not found, with argument the name of the item being requested. The default value for
inherits is FALSHEn contrast to the default behavior for get.

modehere is a mixture of the meanings of typeof and mode "function” covers primitive func-
tions and operators, "numeric", "integer” , "real” and "double" all refer to any numeric type,
"symbol" and "name"are equivalent but "language" must be used.

Value

The object found. (If no object is found an error results.)

Note

The reverse of a <- get(nam) is assign(nam, a).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

204 getDLLRegisteredRoutines

See Also

exists , assign.

Examples

get("%0%")

##test mget
el <- new.env()
mget(letters, el, ifnotfound = as.list(LETTERS))

getDLLRegisteredRoutines
Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call , .Fortran and .External .

Usage
getDLLRegisteredRoutines(dll, addNames = TRUE)

Arguments

dil a character string or DLLINfo object. The character string specifies the file
name of the DLL of interest, and is given without the file name extension
(e.g., the “.dll * or “.s0’) and with no directory/path information. So a file
‘MyPackage/libs/MyPackage.sd would be specified as ‘MyPackage
The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam , or can be found after the DLL has been loaded using
getLoadedDLLswhich returns a list of DLLInfo objects (index-able by DLL
file name).

The DLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

addNames a logical value. If this is TRUEthe elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSEthese names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolinfo objects in the lists.

Details

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information

getLoadedDLLs 205

Value

A list with four elements corresponding to the routines registered for the .C, .Call, .Fortran and
.External interfaces. Each element is a list with as many elements as there were routines registered
for that interface. Each element identifies a routine and is an object of class NativeSymbolinfo.
An object of this class has the following fields:

name the registered name of the routine (not necessarily the name in the C code).

address the memory address of the routine as resolved in the loaded DLL. This may be
NULLf the symbol has not yet been resolved.

dlil an object of class DLLInfo describing the DLL. This is same for all elements
returned.

numParameters the number of arguments the native routine is to be called with. In the future,
we will provide information about the types of the parameters also.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References
"Writing R Extensions Manual" for symbol registration. R News, Volume 1/3, September 2001. "In
search of C/C++ & Fortran Symbols"

See Also
getLoadedDLLs

Examples

dils <- getLoadedDLLs()
getDLLRegisteredRoutines(dlIs[["base"]])

getDLLRegisteredRoutines("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description
This function provides a way to get a list of all the DLLs (see dyn.load) that are currently loaded
in the R session.

Usage
getLoadedDLLs()

Details

This queries the internal table that manages the DLLs.

206 getNativeSymbollnfo

Value

An object of class "DLLInfoList" which is a list with an element corresponding to each DLL that
is currently loaded in the session. Each element is an object of class "DLLInfo" which has the
following entries.

name the abbreviated name.
path the fully qualified name of the loaded DLL.

dynamicLookup a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has an overloaded method for $ which can be used to resolve native
symbols within that DLL. Therefore, one must access the R-level elements described above using
[[,e.g X[['name"]] or X[["handle"]]

Note
We are starting to use the handle elements in the DLL object to resolve symbols more directly in
R.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

getDLLRegisteredRoutines, getNativeSymbolinfo

Examples

getLoadedDLLs()

getNativeSymbolinfo Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns as comprehensive a description of one or more dynamically loaded or ‘ex-
ported’ built-in native symbols. For each name, it returns information about the name of the symbol,
the library in which it is located and, if available, the number of arguments it expects and by which
interface it should be called (i.e .Call , .C, .Fortran , or .External). Additionally, it returns the
address of the symbol and this can be passed to other C routines which can invoke. Specifically,
this provides a way to explicitly share symbols between different dynamically loaded package li-
braries. Also, it provides a way to query where symbols were resolved, and aids diagnosing strange
behavior associated with dynamic resolution.

This is vectorized in the namergument so can process multiple symbols in a single call. The result
is a list that can be indexed by the given symbol names.

getNativeSymbollnfo 207

Usage

getNativeSymbolinfo(name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

Arguments
name the name(s) of the native symbol(s) as used in a call to is.loaded , etc. Note
that Fortran symbols should be supplied as-is, not wrapped in Ssymbol.For.
PACKAGE an optional argument that specifies to which DLL we restrict the search for this
symbol. If this is "base", we search in the R executable itself.
unlist a logical value which controls how the result is returned if the function is called

with the name of a single symbol. If unlist is TRUEnNd the number of symbol
names in hameis one, then the NativeSymbolinfo object is returned. If it is
FALSEthen a list of NativeSymbolinfo objects is returned. This is ignored if
the number of symbols passed in namds more than one. To be compatible with
earlier versions of this function, this defaults to TRUE
withRegistrationInfo

a logical value indicating whether, if TRURo return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSHo return the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (.Call ,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

Value

Generally, a list of NativeSymbolinfo elements whose elements can be indexed by the elements
of nhamen the call. Each NativeSymbolInfo object is a list containing the following elements:

name the name of the symbol, as given by the nameargument.

address if withRegistrationinfo is FALSEthis is the native memory address of the
symbol which can be used to invoke the routine, and also to compare with other
symbol addresses. This is an external pointer object and of class NativeSymbol
If withRegistrationinfo is TRUEnd registration information is available for
the symbol, then this is an object of class RegisteredNativeSymbol and is
a reference to an internal data type that has access to the routine pointer and
registration information. This too can be used in calls to .Call , .C, .Fortran
and .External .

package a list containing 3 elements:
name the short form of the library name which can be used as the value of the
PACKAGEgument in the different native interface functions.
path the fully qualified name of the DLL.

dynamicLookup alogical value indicating whether dynamic resolution is used
when looking for symbols in this library, or only registered routines can be
located.

If the routine was explicitly registered by the dynamically loaded library, the list contains a fourth
field

208 gettext

numParameters the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRouting CallRoutine ,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should be
invoked.

If any of the symbols is not found, an error is immediately raised.

If namesontains only one symbol name and unlist is TRUEhen the single NativeSymbolinfo is
returned rather than the list containing that one element.
Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., nls). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache. In the future, one may be able to treat
NativeSymbolobjects directly as callback objects.

Author(s)

Duncan Temple Lang

References
For information about registering native routines, see “In Search of C/C++ & FORTRAN Routines”,
R-News, volume 1, number 3, 2001, p20-23 (http://CRAN.R-project.org/doc/Rnews/).

See Also

getDLLRegisteredRoutines, is.loaded , .C, .Fortran , .External , .Call , dyn.load.

Examples

library(stats) # normally loaded
getNativeSymbollnfo("dansari")

getNativeSymbolinfo("hcass2") # a Fortran symbol

gettext Translate Text Messages

Description

If Native Language Support was enabled in this build of R, attempt to translate character vectors or
set where the translations are to be found.

Usage
gettext(..., domain = NULL)

ngettext(n, msgl, msg2, domain = NULL)

bindtextdomain(domain, dirname = NULL)

http://CRAN.R-project.org/doc/Rnews/

gettext 209

Arguments
One or more character vectors.

domain The ‘domain’ for the translation.

n a non-negative integer.

msgl the message to be used in English forn = 1

msg2 the message to be used in English forn = 0, 2, 3,...

dirname The directory in which to find translated message catalogs for the domain.
Details

If domainis NULLor "™, a domain is searched for based on the namespace which contains the

function calling gettext or ngettext . If a suitable domain can be found, each character string is
offered for translation, and replaced by its translation into the current language if one is found.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg", and that for
C-level messages is "pkg".

For gettext , leading and trailing whitespace is ignored when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string
will often contain a single instance of %do be used in sprintf . If English is used, msgZlis returned
if n == land msg2n all other cases.

Value

For gettext , a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext , a character string.
For bindtextdomain , a character string giving the current base directory, or NULLf setting it failed.

See Also

stop and warning make use of gettext to translate messages.

xgettext for extracting translatable strings from R source files.

Examples
bindtextdomain("R") # non-null if and only if NLS is enabled
for(n in 0:3)

print(sprintf(ngettext(n, "%d variable has missing values",
"%d variables have missing values"),

n))
Not run:
for translation, those strings should appear in R-pkg.pot as
msgid "%d variable has missing values"
msgid_plural "%d variables have missing values"
msgstr[0] ™
msgstr[1] "™

End(Not run)

210 getwd

miss <- c¢("one", "or", "another")

cat(ngettext(length(miss), "variable", "variables"),
ngettext(length(miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat(sprintf(ngettext(length(miss),
"variable %s contains missing values\n",
"variables %s contain missing values\n®),
paste(sQuote(miss), collapse=", ")))

getwd Get or Set Working Directory

Description

getwd returns an absolute filepath representing the current working directory of the R process;
setwd(dir) is used to set the working directory to dir .

Usage

getwd()
setwd(dir)

Arguments

dir A character string: tilde expansion will be done.

Value

getwdreturns a character string or NULLf the working directory is not available. On Windows the
path returned will use / as the path separator and be encoded in UTFE-8. The path will not have a
trailing / unless it is the root directory (of a drive or share on Windows).

setwd returns the current directory before the change, invisibly and with the same conventions as
getwd It will give an error if it does not succeed (including if it is not implemented).

Note

Note that the return value is said to be an absolute filepath: there can be more than one repre-
sentation of the path to a directory and on some OSes the value returned can differ after changing
directories and changing back to the same directory (for example if symbolic links have been tra-
versed).

See Also

list.files for the contents of a directory.
normalizePath for a ‘canonical’ path name.

Examples

(WD <- getwd())
if (fis.null(WD)) setwd(WD)

gl 211

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage
gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.
ordered a logical indicating whether the result should be ordered or not.
Value

The result has levels from 1 to n with each value replicated in groups of length K out to a total length
of length .

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor()

Examples

First control, then treatment:
gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1s and 2s

gl2, 1, 20)
alternating pairs of 1s and 2s
gl(2, 2, 20)
grep Pattern Matching and Replacement
Description

grep, grepl , regexpr and gregexpr search for matches to argument pattern within each element
of a character vector: they differ in the format of and amount of detail in the results.

sub and gsubperform replacement of the first and all matches respectively.

212

Usage

&rep

grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE)

grepl(pattern, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

sub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexec(pattern, text, ignore.case = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments

pattern

X, text

ignore.case

perl

value

fixed

useBytes

invert

replacement

character string containing a regular expression (or character string for
fixed = TRUBE to be matched in the given character vector. Coerced by
as.character to a character string if possible. If a character vector of length 2
or more is supplied, the first element is used with a warning. Missing values are
allowed except for regexpr and gregexpr.

a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector.

if FALSEthe pattern matching is case sensitive and if TRUEcase is ignored
during matching.

logical. Should perl-compatible regexps be used?

if FALSEa vector containing the (integer) indices of the matches determined
by grep is returned, and if TRUEa vector containing the matching elements
themselves is returned.

logical. If TRUBpattern is a string to be matched as is. Overrides all conflicting
arguments.

logical. If TRUEhe matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

logical. If TRUEeturn indices or values for elements that do not match.

a replacement for matched pattern in sub and gsub Coerced to character if
possible. For fixed = FALSEthis can include backreferences "\1" to
"\9" to parenthesized subexpressions of pattern . For perl = TRUEonly, it
can also contain "\U" or "\L" to convert the rest of the replacement to upper or
lower case and "\E" to end case conversion. If a character vector of length 2 or
more is supplied, the first element is used with a warning. If NA all elements in
the result corresponding to matches will be set to NA

grep 213

Details

Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

Each of these functions (apart from regexec, which currently does not support Perl-style regular
expressions) operates in one of three modes:

1. fixed = TRUE use exact matching.
2. perl = TRUEuse Perl-style regular expressions.
3. fixed = FALSE, perl = FALSEuse POSIX 1003.2 extended regular expressions.

See the help pages on regular expression for details of the different types of regular expressions.

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences. If replacement contains backreferences which are not
defined in pattern the result is undefined (but most often the backreference is taken to be ").

For regexpr, gregexpr and regexec it is an error for pattern to be NA otherwise NAis permitted
and gives an NAmatch.

The main effect of useBytesis to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales, but for regexpr it changes the interpretation of the output. It inhibits the
conversion of inputs with marked encodings, and is forced if any input is found which is marked as
"bytes" .

Caseless matching does not make much sense for bytes in a multibyte locale, and you should expect
it only to work for ASCII characters if useBytes = TRUE

As from R 2.14.0, regexpr and gregexpr with perl = TRURllow Python-style named cap-
tures.

Value

grep(value = FALSE)returns an integer vector of the indices of the elements of X that yielded a
match (or not, for invert = TRUE

grep(value = TRUE)returns a character vector containing the selected elements of X (after coer-
cion, preserving names but no other attributes).

grepl returns a logical vector (match or not for each element of X).

For sub and gsubreturn a character vector of the same length and with the same attributes as X
(after possible coercion to character). Elements of character vectors X which are not substituted
will be returned unchanged (including any declared encoding). If useBytes = FALSEnon-ASCII
substituted result will often be in UTF-8 with a marked encoding (e.g. if there is a UTF-8 input,
and in a multibyte locale unless fixed = TRUB. Such strings can be re-encoded by enc2native .

regexpr returns an integer vector of the same length as text giving the starting position of the
first match or —1 if there is none, with attribute "match.length” , an integer vector giving the
length of the matched text (or —1 for no match). The match positions and lengths are in characters
unless useBytes = TRUL used, when they are in bytes. If named capture is used there are further
attributes "capture.start” , "capture.length" and "capture.names".

gregexpr returns a list of the same length as text each element of which is of the same form as the
return value for regexpr, except that the starting positions of every (disjoint) match are given.

regexec returns a list of the same length as text each element of which is either —1 if there is no
match, or a sequence of integers with the starting positions of the match and all substrings corre-
sponding to parenthesized subexpressions of pattern , with attribute "match.length” an integer
vector giving the lengths of the matches (or —1 for no match).

214 grep

Warning

POSIX 1003.2 mode of gsuband gregexpr does not work correctly with repeated word-boundaries
(e.g. pattern = "\b"). Use perl = TRUHor such matches (but that may not work as expected
with non-ASCII inputs, as the meaning of ‘word’ is system-dependent).

Performance considerations

If you are doing a lot of regular expression matching, including on very long strings, you will want
to consider the options used. Generally PCRE will be faster than the default regular expression
engine, and fixed = TRUEaster still (especially when each pattern is matched only a few times).

If you are working in a single-byte locale and have marked UTF-§ strings that are representable
in that locale, convert them first as just one UTF-8 string will force all the matching to be done in
Unicode, which attracts a penalty of around 3 x for the default POSIX 1003.2 mode.

If you can make use of useBytes = TRUEhe strings will not be checked before matching, and
the actual matching will be faster. Often byte-based matching suffices in a UTF-8 locale since byte
patterns of one character never match part of another.

Note

Prior to R 2.11.0 there was an argument extended which could be used to select ‘basic’ regular
expressions: this was often used when fixed = TRUEwould be preferable. In the actual implemen-
tation (as distinct from the POSIX standard) the only difference was that ‘?, ‘+, “{’, ‘| ’, ‘(’, and
‘) were not interpreted as metacharacters.

Source

The C code for POSIX-style regular expression matching has changed over the years. As from R
2.10.0 the TRE library of Ville Laurikari (http://laurikari.net/tre/) is used. From 2005 to R
2.9.2, code based on glibc was used (and before that, code from GNU grep). The POSIX standard
does give some room for interpretation, especially in the handling of invalid regular expressions and
the collation of character ranges, so the results will have changed slightly.

For Perl-style matching PCRE (http://www.pcre.org) is used.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

See Also

regular expression (aka regexp) for the details of the pattern specification.

regmatches for extracting matched substrings based on the results of regexpr, gregexpr and
regexec.

glob2rx to turn wildcard matches into regular expressions.

agrep for approximate matching.

charmatch pmatchfor partial matching, matchfor matching to whole strings.
tolower , toupper and chartr for character translations.

apropos uses regexps and has more examples.

grepRawfor matching raw vectors.

http://laurikari.net/tre/
http://www.pcre.org

grep 215

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")
if(length(i <- grep("foo",txt)))

cat("'foo' appears at least once in\n\t",txt,"\n")
i # 2 and 4
txt[i]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled’
gsub("([ab])", "\1_\1_", "abc and ABC")

txt <- ¢("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
"to", "share", "and", "change", "it.",
"™, "By", "contrast,", "the", "GNU", "General", "Public", "License",
"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share”, "and", "change", "free", "software", "--",
"to", "make", "sure", "the", "software", "is",
"free", "for", "all", "its", "users")

(i <- grep("[gu]", txt)) # indices

stopifnot(txt[i] == grep("[gu]", txt, value = TRUE))

Note that in locales such as en_US this includes B as the
collation order is aAbBcCdEe ...

(ot <- sub("[b-e]",".", txt))

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) !=
gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en”, txt)
gregexpr('e", txt)

Using grepl() for filtering
Find functions with argument names matching "warn":
findArgs <- function(env, pattern) {
nms <- Is(envir = as.environment(env))
nms <- nms[is.na(match(nms, c("F","T")))] # <-- work around "checking hack"
aa <- sapply(nms, function(.) { o <- get(.)
if(is.function(o)) names(formals(o)) })
iw <- sapply(aa, function(a) any(grepl(pattern, a, ignore.case=TRUE)))
aa[iw]
}

findArgs("package:base”, "warn")

trim trailing white space

str <- 'Now is the time

sub(' +$', ", str) ## spaces only

sub('[[:space:]]+$', ", str) ## white space, POSIX-style
sub(\\s+$', ", str, perl = TRUE) ## Perl-style white space

capitalizing
txt <- "a test of capitalizing"
gsub("(\Wwv)(\Ww*)", "WUWIWLW2", txt, perl=TRUE)

216 grepRaw

gsub("™Mb(\w)", "WUNL", txt, perl=TRUE)

txt2 <- "useRs may fly into JFK or laGuardia"
gsub("(\W)(Ww*)(\w)", "WUWIWEW2WUW3", txt2, perl=TRUE)
sub("(\w) (\Ww*) (W), "WUNIWEW2WUW3", txt2, perl=TRUE)

named capture
notables <- ¢(* Ben Franklin and Jefferson Davis",
“\tMillard Fillmore™)
name groups ‘first' and 'last'
name.rex <- "(?<first>[[:upper:]][[:lower:]]+) (?<last>[[:upper:]][[:lower:]]+)"
(parsed <- regexpr(name.rex, notables, perl = TRUE))
gregexpr(name.rex, notables, perl = TRUE)[[2]]
parse.one <- function(res, result) {
m <- do.call(rbind, lapply(seq_along(res), function(i) {
if(resultli] == -1) return("")
st <- attr(result, "capture.start")i,]
substring(res[i], st, st + attr(result, "capture.length”)[i,] - 1)
b))
colnames(m) <- attr(result, "capture.names")
m

}

parse.one(notables, parsed)

Decompose a URL into its components.
Example by LT (http://www.cs.uiowa.edu/~luke/R/regexp.html).
X <- "http://stat.umn.edu:80/xyz"
m <- regexec("(([":]+):/)?(["/1+)(:([0-9]+))2(/.*)", X)
m
regmatches(x, m)
Element 3 is the protocol, 4 is the host, 6 is the port, and 7
is the path. We can use this to make a function for extracting the
parts of a URL:
URL_parts <- function(x) {
m <- regexec("M([":]+):/N?2([N:N+)(:([0-9]+)2(/.%)", x)
parts <- do.call(rbind,
lapply(regmatches(x, m), [}, c(3L, 4L, 6L, 7L)))
colnames(parts) <- c("protocol","host","port","path")
parts

}
URL_parts(x)

grepRaw Pattern Matching for Raw Vectors

Description

grepRawsearches for substring pattern matches within a raw vector X.

Usage

grepRaw(pattern, x, offset = 1L, ignore.case
value = FALSE, fixed = FALSE, all

FALSE,
FALSE, invert = FALSE)

grepRaw 217

Arguments
pattern raw vector containing a regular expression (or fixed pattern for fixed = TRUE
to be matched in the given raw vector. Coerced by charToRawo a character
string if possible.
X a raw vector where matches are sought, or an object which can be coerced by
charToRawo a raw vector.
ignore.case if FALSEthe pattern matching is case sensitive and if TRUEcase is ignored
during matching.
offset An integer specifying the offset from which the search should start. Must be
positive. The beginning of line is defined to be at that offset so """ will match
there.
value logical. Determines the return value: see ‘Value’.
fixed logical. If TRUBpattern is a pattern to be matched as is.
all logical. If TRUEII matches are returned, otherwise just the first one.
invert logical. If TRUEeturn indices or values for elements that do nor match. Ignored
(with a warning) unless value = TRUE
Details

Unlike grep, seeks matching patterns within the raw vector X . This has implications especially in
the all = TRUEcase, e.g., patterns matching empty strings are inherently infinite and thus may
lead to unexpected results.

The argument invert is interpreted as asking to return the complement of the match, which is only
meaningful for value = TRUEArgument offset determines the start of the search, not of the
complement. Note that invert = TRUEwith all = TRUEwill split X into pieces delimited by
the pattern including leading and trailing empty strings (consequently the use of regular expressions
with "M or "$" in that case may lead to less intuitive results).

Some combinations of arguments such as fixed = TRUEwith value = TRUEre supported but are
less meaningful.

Value

grepRaw(value = FALSEpturns an integer vector of the offsets at which matches have occurred.
If all = FALSEthen it will be either of length zero (no match) or length one (first matching posi-
tion).

grepRaw(value = TRUE, all
the matched part of X.

grepRaw(value = TRUE, all
sponding to the matched parts.

FALSEgturns a raw vector which is either empty (no match) or

TRUERturns a (potentially empty) list of raw vectors corre-

Source
The TRE library of Ville Laurikari (http://laurikari.net/tre/) is used except for
fixed = TRUE

See Also

regular expression (aka regexp) for the details of the pattern specification.

grep for matching character vectors.

http://laurikari.net/tre/

218 groupGeneric

groupGeneric S3 Group Generic Functions

Description

Group generic methods can be defined for four pre-specified groups of functions, Math Ops
Summarynd Complex (There are no objects of these names in base R, but there are in the methods
package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)

Ops(el, e2)

Complex(z)

Summary(..., na.rm = FALSE)

Arguments

X, z, el, e2 objects.
further arguments passed to methods.

na.rm logical: should missing values be removed?

Details

There are four groups for which S3 methods can be written, namely the "Math", "Ops", "Summary"
and "Complex" groups. These are not R objects in base R, but methods can be supplied for them
and base R contains factor , data.frame and difftime methods for the first three groups. (There
is also a ordered method for Ops POSIXtand Date methods for Mathand Ops package_version
methods for Opsand Summarys well as a tS method for Opsin package stats.)

1. Group "Math":

« abs, sign, sqrt
floor , ceiling , trunc,
round, signif
* exp, log, expmlloglp,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh asinh, atanh
¢ lgammagammaligammatrigamma
e cumsuprcumprod cummaxummin

Members of this group dispatch on X. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and trunc accepts one or more.

2. Group "Ops™

o "y , n_n , ngn , II/II , nan , II%O/O,IIII%/%II

groupGeneric 219

. n&u’ nlu , n!u
o "==" u!:u , et , n<:u’ u>:n’ nsn

)

This group contains both binary and unary operators (+, - and !): when a unary operator is
encountered the Opsmethod is called with one argument and €2 is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Opsmethod. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "Summary’
e all ,any
e sumprod
* min, max
* range
Members of this group dispatch on the first argument supplied.
4. Group "Complex"
* Arg, Conj, Im, ModRe
Members of this group dispatch on z.

Note that a method will be used for one of these groups or one of its members only if it corresponds
to a "class" attribute, as the internal code dispatches on oldClass and not on class . This is for
efficiency: having to dispatch on, say, Ops.integer would be too slow.

The number of arguments supplied for primitive members of the "Math" group generic methods is
not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive and internal generic.
The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethodThere are a few small differences:

* For the operators of group Ops the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was

selected, the corresponding element is " .)

* Object .Group records the group used for dispatch (if a specific method is used this is ").

Note
Package methods does contain objects with these names, which it has re-used in confusing similar
(but different) ways. See the help for that package.

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

220 gzcon

See Also

methodsfor methods of non-internal generic functions.

S4groupGeneric for group generics for S4 methods.

Examples

require(utils)

d.fr <- data.frame(x=1:9, y=stats::rnorm(9))
class(1 + d.fr) == "data.frame" ##-- add to d.f. ...

methods("Math")

methods("Ops")

methods("Summary"”)
methods("Complex") # none in base R

gzcon (De)compress I/O Through Connections

Description
gzconprovides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon(con, level = 6, allowNonCompressed = TRUE)

Arguments
con a connection.
level integer between 0 and 9, the compression level when writing.

allowNonCompressed
logical. When reading, should non-compressed input be allowed?

Details
If conis open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed true, otherwise an error.

Compressed output will contain embedded NUL bytes, and so con is not permitted to be a
textConnection opened with open="w" Use a writable rawConnection to compress data into
a variable.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection. For this reason, the new connection needs to be closed explicitly.
Value

An object inheriting from class "connection” . This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

hexmode 221

See Also
gzfile

Examples

Uncompress a data file from a URL

z <- gzcon(url("http://www.stats.ox.ac.uk/pub/datasets/csb/ch12.dat.gz"))
read.table can only read from a text-mode connection.

raw <- textConnection(readLines(z))

close(z)

dat <- read.table(raw)

close(raw)

dat[1:4,]

gzfile and gzcon can inter-work.

Of course here one would use gzfile, but file() can be replaced by
any other connection generator.

zz <- gzfile("ex.gz", "w")

cat("TITLE extra line", "2 3 5 7", ™, "11 13 17", file = zz, sep = "\n")
close(zz)

readLines(zz <- gzcon(file("ex.gz", "rb")))

close(zz)

unlink("ex.gz")

zz <- gzcon(file("ex2.gz", "wb"))

cat("TITLE extra line", "2 3 5 7", "™, "11 13 17", file = zz, sep = "\n")
close(zz)

readLines(zz <- gzfile("ex2.9z"))

close(zz)

unlink("ex2.gz")

hexmode Display Numbers in Hexadecimal

Description
Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

as.hexmode(x)

S3 method for class 'hexmode’
as.character(x, ...)

S3 method for class ‘hexmode'
format(x, width = NULL, upper.case = FALSE, ...)

S3 method for class 'hexmode’
print(x, ...)

222 Hyperbolic

Arguments
X An object, for the methods inheriting from class "hexmode'
width NULLor a positive integer specifying the minimum field width to be used, with
padding by leading zeroes.
upper.case a logical indicating whether to use upper-case letters or lower-case letters (de-
fault).
further arguments passed to or from other methods.
Details

Class "hexmode'consists of integer vectors with that class attribute, used merely to ensure that they
are printed in hex.

If width = NULI(the default), the output is padded with leading zeroes to the smallest width needed
for all the non-missing elements.

as.hexmodecan convert integers (of type "integer” or "double”) and character vectors whose
elements contain only 0-9, a-f , A-F (or are NA to class "hexmode"

There is a! method and |, &and xor methods: these recycle their arguments to the length of the
longer and then apply the operators bitwise to each element.

See Also
octmode sprintf for other options in converting integers to hex, Strtoi to convert hex strings to
integers.
Hyperbolic Hyperbolic Functions
Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

Arguments

X a numeric or complex vector

iconv 223

Details
These are internal generic primitive functions: methods can be defined for them individually or via
the Mathgroup generic.

Branch cuts are consistent with the inverse trigonometric functions asin et seq, and agree with those
defined in Abramowitz and Stegun, figure 4.7, page 86. The behaviour actually on the cuts follows
the C99 standard which requires continuity coming round the endpoint in a counter-clockwise di-
rection.

S4 methods
All are S4 generic functions: methods can be defined for them individually or via the Mathgroup
generic.

References

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions, €0S, Sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh() for numeric X.

iconv Convert Character Vector between Encodings

Description
This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-
ternationalization’.

Usage
iconv(x, from = "™, to =", sub = NA, mark = TRUE, toRaw = FALSE)

iconvlist()

Arguments

X A character vector, or an object to be converted to a character vector
by as.character , or a list with NULLand raw elements as returned by
iconv(toRaw = TRUE)

from A character string describing the current encoding.
to A character string describing the target encoding.
sub character string. If not NAit is used to replace any non-convertible bytes in the

input. (This would normally be a single character, but can be more.) If "byte" ,
the indication is "<xx>" with the hex code of the byte.

mark logical, for expert use. Should encodings be marked?

toRaw logical. Should a list of raw vectors be returned rather than a character vector?

224 iconv

Details

The names of encodings and which ones are available are platform-dependent. All R platforms
support " (for the encoding of the current locale), "latinl" and "UTF-8". Generally case is
ignored when specifying an encoding.

On many platforms, including Windows, iconvlist provides an alphabetical list of the supported
encodings. On others, the information is on the man page for iconv(5) or elsewhere in the man
pages (but beware that the system command iconv may not support the same set of encodings as
the C functions R calls). Unfortunately, the names are rarely valid across all platforms.

Elements of X which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NAunless subis specified.

Most versions of iconv will allow transliteration by appending ‘//TRANSLIT to the to encoding:
see the examples.

Encoding "ASCII" is also accepted, and on most systems "C" and "POSIX"are synonyms for ASCII.

Any encoding bits (see Encoding) on elements of X are ignored: they will always be translated as
if from from even if declared otherwise.

"UTF8"will be accepted as meaning the (more correct) "UTF-8".

Value

If toRaw = FALSfhe default), the value is a character vector of the same length and the same
attributes as X (after conversion to a character vector).

If mark = TRUBhe default) the elements of the result have a declared encoding if from is
“latinl" or "UTF-8", or if from = " and the current locale’s encoding is detected as Latin-1
or UTF-8.

If toRaw = TRUIMhe value is a vector of the same length and the same attributes as X whose
elements are either NULI(f conversion fails) or a raw vector.

For iconvlist() , a character vector (typically of a few hundred elements).

Implementation Details

There are three main implementations of iconv in use. ‘glibc ’ (as used on Linux) contains one.
Several platforms supply GNU ‘libiconv ’, including Mac OS X, FreeBSD and Cygwin. On
Windows we use a version of Yukihiro Nakadaira’s ‘win_iconv’, which is based on Windows’
codepages. All three have iconvlist , ignore case in encoding names and support ‘//TRANSLIT
(but with different results, and for ‘win_iconv’ currently a ‘best fit’ strategy is used except for
to = "ASCII").

Most commercial Unixes contain an implemetation of iconv but none we have encountered have
supported the encoding names we need: the “R Installation and Administration Manual” recom-
mends installing GNU ‘libiconv ’ on Solaris and AIX, for example.

There are other implementations, e.g. NetBSD uses one from the Citrus project (which does not
support ‘//TRANSLIT) and there is an older FreeBSD port (‘libiconv ’ is usually used there): it
has not been reported whether or not these work with R.

Note that you cannot rely on invalid inputs being detected, especially forto = "ASCII" where some
implementations allow 8-bit characters and pass them through unchanged or with transliteration.

See Also

localeToCharset, file .

icuSetCollate 225

Examples

In principle, not all systems have iconvlist
try(utils::head(iconvlist(), n = 50))

Not run:

convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")

iconv(x, "LATIN2", "UTF-8")

End(Not run)

Both x below are in latinl and will only display correctly in a
locale that can represent and display latinl.

x <- "fa\xE7ile"

Encoding(x) <- "latin1"

X
charToRaw(xx <- iconv(x, "latinl", "UTF-8"))
XX

iconv(x, "latin1", "ASCII") # NA
iconv(x, "latin1", "ASCII", "?") # "fazile"
iconv(x, "latin1", "ASCII", ") # "faile”

iconv(x, "latinl", "ASCII", "byte") # "fa<e7>ile"

Extracts from old R help files (they are nowadays in UTF-8)
x <- c("Ekstr\xf8m", "J\xféreskog", "bi\xdfchen Z\xfcrcher")
Encoding(x) <- "latin1"

X

try(iconv(x, "latinl", "ASCII//TRANSLIT")) # platform-dependent
iconv(x, "latin1", "ASCII", sub="byte")

and for Windows' 'Unicode'

str(xx <- iconv(x, "latin1", "UTF-16LE", toRaw = TRUE))
iconv(xx, "UTF-16LE", "UTF-8")

icuSetCollate Setup Collation by ICU

Description

Controls the way collation is done by ICU (an optional part of the R build).

Usage

icuSetCollate(...)

Arguments

Named arguments, see ‘Details’.

226 icuSetCollate

Details

Optionally, R can be built to collate character strings by ICU (http://site.icu-project.org).
For such systems, icuSetCollate can be used to tune the way collation is done. On other builds
calling this function does nothing, with a warning.

Possible arguments are

locale : A character string such as "da_DK"giving the country whose collation rules are to be
used. If present, this should be the first argument.

case_first : "upper", "lower" or "default" , asking for upper- or lower-case characters to be
sorted first. The default is usually lower-case first, but not in all languages (see the Danish
example).

alternate_handling : Controls the handling of ‘variable’ characters (mainly punctuation and
symbols). Possible values are "non_ignorable" (primary strength) and "shifted” (qua-
ternary strength).

strength : Which components should be used? Possible values "primary" , "secondary",
"tertiary" (default), "quaternary" and "identical"

french_collation : In a French locale the way accents affect collation is from right to left,
whereas in most other locales it is from left to right. Possible values "on", "off" and
"default"

normalization : Should strings be normalized? Possible values are "on" and "off" (default).
This affects the collation of composite characters.

case_level : An additional level between secondary and tertiary, used to distinguish large and
small Japanese Kana characters. Possible values "on" and "off" (default).

hiragana_quaternary : Possible values "on" (sort Hiragana first at quaternary level) and "off" .
Only the first three are likely to be of interest except to those with a detailed understanding of
collation and specialized requirements.

Some examples are case_level="on", strength="primary" to ignore accent differences and
alternate_handling="shifted" to ignore space and punctuation characters.

Note that these settings have no effect if collation is set to the Clocale, unless locale is specified.

Note

As from R 2.9.0, ICU is used by default wherever it is available: this include Mac OS >= 10.4 and
many Linux installations.

See Also

Comparison, sort
The ICU user guide chapter on collation (http://userguide.icu-project.org/collation).

Examples

these examples depend on having ICU available, and on the locale
x <- c("Aarhus", "aarhus", "safe", "test", "Z00")

sort(x)

icuSetCollate(case_first="upper"); sort(x)

icuSetCollate(case_first="lower"); sort(x)

icuSetCollate(locale="da_DK", case_first="default"); sort(x)
icuSetCollate(locale="et_EE"); sort(x)

http://site.icu-project.org
http://userguide.icu-project.org/collation

identical 227

identical Test Objects for Exact Equality

Description
The safe and reliable way to test two objects for being exactly equal. It returns TRUEn this case,
FALSEn every other case.

Usage

identical(x, y, num.eq = TRUE, single.NA = TRUE, attrib.as.set = TRUE,
ignore.bytecode = TRUE)

Arguments

X, Y any R objects.

num.eq logical indicating if (double and complexnon-NA numbers should be compared
using ==(‘equal’), or by bitwise comparison. The latter (non-default) differen-
tiates between -0 and +0.

single.NA logical indicating if there is conceptually just one numeric NAand one Nal\
single.NA = FALSHlifferentiates bit patterns.

attrib.as.set logical indicating if attributes of x and y should be treated as unordered

tagged pairlists (“sets”); this currently also applies to slot s of S4 objects. It
may well be too strict to set attrib.as.set = FALSE .

ignore.bytecode
logical indicating if byte code should be ignored when comparing closures.

Details

A call to identical is the way to test exact equality in if and while statements, as well as in
logical expressions that use &&or || . In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as ==or !=, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected X and y to be of length 1, but it happened that one of them wasn’t, you will not
get a single FALSESimilarly, if one of the arguments is NA the result is also NAIn either case, the
expression if(x == vy).... won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

If single.NA is true, as by default, identical sees NaNs different from NA_real_, but all NaN
are equal (and all NAof the same type are equal).

Character strings are regarded as identical if they are in different marked encodings but would agree
when translated to UTF-8.

228 identical

If attrib.as.set is true, as by default, comparison of attributes view them as a set (and not a
vector, so order is not tested).

If ignore.bytecode is true (the default), the compiled bytecode of a function (see cmpfur) will
be ignored in the comparison. If it is false, functions will compare equal only if they are copies of
the same compiled object (or both are uncompiled). To check whether two different compiles are
equal, you should compare the results of disassemble() .

Note that identical(x,y,FALSE,FALSE,FALSE,FALSE)ickily tests for very exact equality.

Value

A single logical value, TRUBr FALSEnever NAand never anything other than a single value.

Author(s)
John Chambers and R Core

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate ele-
mentwise comparisons. iISTRUEs a simple wrapper based on identical

Examples

identical(1, NULL) ## FALSE -- don't try this with ==
identical(1, 1.) ## TRUE in R (both are stored as doubles)
identical(1, as.integer(1)) ## FALSE, stored as different types

x <- 1.0; y <- 0.99999999999

how to test for object equality allowing for numeric fuzz :

(E <- all.equal(x,y))

iISTRUE(E) # which is simply defined to just use

identical(TRUE, E)

If all.equal thinks the objects are different, it returns a

character string, and the above expression evaluates to FALSE

even for unusual R objects :
identical(.GlobalEnv, environment())

HHH - Pickyness Flags :

the infamous example:

identical(0., -0.) # TRUE, i.e. not differentiated
identical(0., -0., num.eq = FALSE)

similar:

identical(NaN, -NaN) # TRUE

identical(NaN, -NaN, single.NA=FALSE) # differ on bit-level
for functions:

f <- function(x) x

f

g <- compiler::cmpfun(f)

g

identity 229

identical(f, g)
identical(f, g, ignore.bytecode=FALSE)

identity Identity Function

Description

A trivial identity function returning its argument.

Usage
identity(x)
Arguments
X an R object.
ifelse Conditional Element Selection
Description

ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUr FALSE

Usage

ifelse(test, yes, no)

Arguments
test an object which can be coerced to logical mode.
yes return values for true elements of test .
no return values for false elements of test .
Details

If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including dimensions and "class") as test and data
values from the values of yes or no. The mode of the answer will be coerced from logical to
accommodate first any values taken from yes and then any values taken from no.

230 integer

Warning

The mode of the result may depend on the value of test (see the examples), and the class attribute
(see oldClass) of the result is taken from test and may be inappropriate for the values selected
from yes and no.

Sometimes it is better to use a construction such as (tmp <- yes; tmp['test] <- no[ltest]; tmp)
possibly extended to handle missing values in test .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
if .

Examples

X <- c(6:-4)
sqrt(x) #- gives warning
sqrt(ifelse(x >= 0, x, NA)) # no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqrt(x), NA)

example of different return modes:

yes <- 1:3

no <- pi"(0:3)

typeof(ifelse(NA, yes, no)) # logical

typeof(ifelse(TRUE, yes, no)) # integer
typeof(ifelse(FALSE, yes, no)) # double

integer Integer Vectors

Description

Creates or tests for objects of type "integer

Usage

integer(length = 0)
as.integer(x, ...)
is.integer(x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.

further arguments passed to or from other methods.

integer 231

Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
(small) integer data can be represented exactly and compactly.

Note that current implementations of R use 32-bit integers for integer vectors, so the range of
representable integers is restricted to about £2 x 10%: doubles can hold much larger integers
exactly.

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to O.

as.integer attempts to coerce its argument to be of integer type. The answer will be NAunless

the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values

are truncated towards zero (i.e., as.integer(x) equals trunc(x) there), and imaginary parts of

complex numbers are discarded (with a warning). Character strings containing optional whitespace

followed by either a decimal representation or a hexadecimal representation (starting with OX or 0X)

can be converted, as well as any allowed by the platform for real numbers. Like as.vector it strips

attributes including names. (To ensure that an object X is of integer type without stripping attributes,

use storage.mode(x) <- "integer")

is.integer returns TRUBr FALSHEepending on whether its argument is of integer type or not,
unless it is a factor when it returns FALSE

Note

is.integer(x) does not test if X contains integer numbers! For that, use round, as in the function
is.wholenumber(x) in the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and floor on that help page) to convert to integral values.

Examples

as.integer() truncates:
X <- pi * ¢(-1:1,10)
as.integer(x)

is.integer(1) # is FALSE !

is.wholenumber <-
function(x, tol = .Machine$double.eps™0.5) abs(x - round(x)) < tol
is.wholenumber(1) # is TRUE
(x <- seq(1,5, by=0.5))
is.wholenumber(x) #--> TRUE FALSE TRUE ...

232 interaction

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result of
interaction is always unordered.

Usage
interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)
Arguments
the factors for which interaction is to be computed, or a single list giving those
factors.
drop if drop is TRURInused factor levels are dropped from the result. The default is
to retain all factor levels.
sep string to construct the new level labels by joining the constituent ones.
lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.
Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when lex.order = FALSE, the levels are ordered so the level of the first factor varies
fastest, then the second and so on. This is the reverse of lexicographic ordering (which you can get
by lex.order = TRUE), and differs from : . (It is done this way for compatibility with S.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

factor ;: where f:g is similar to interaction(f, g, sep=":") when f and g are factors.
Examples

a <-gl2, 4, 8)

b <- gl(2, 2, 8, labels = c("ctrl", "treat"))
s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)
interaction(a, b, s, sep = ")
stopifnot(identical(a:s,
interaction(a, s, sep = ", lex.order = TRUE)),
identical(a:s:b,
interaction(a, s, b, sep = """, lex.order = TRUE)))

interactive 233

interactive Is R Running Interactively?

Description

Return TRUBvhen R is being used interactively and FALSbtherwise.

Usage

interactive()

Details

An interactive R session is one in which it is assumed that there is a human operator to interact
with, so for example R can prompt for corrections to incorrect input or ask what to do next or if it
is OK to move to the next plot.

GUI consoles will arrange to start R in an interactive session. When R is run in a terminal (via
Rterm.exe on Windows), it assumes that it is interactive if ‘stdin ’ is connected to a (pseudo-
)terminal and not if ‘stdin ’ is redirected to a file or pipe. Command-line options ‘--interactive ’
(Unix) and ‘--ess’ (Windows, Rterm.exe) override the default assumption. (On a Unix-alike,
whether the readline command-line editor is used is not overridden by ‘--interactive ’.)

Embedded uses of R can set a session to be interactive or not.

Internally, whether a session is interactive determines

* how some errors are handled and reported, e.g. see stop and options("showWarnCalls") .

 whether one of ‘--save ’, ‘--no-save ’ or ‘--vanilla ’ is required, and if R ever asks whether
to save the workspace.

* the choice of default graphics device launched when needed and by dev.new see
options("device")

» whether graphics devices ever ask for confirmation of a new page.

In addition, R’s own R code makes use of interactive() : for example help, debugger and
install.packages do.

Note

This is a primitive function.

See Also

source, .First

Examples

.First <- function() if(interactive()) x11()

234 InternalMethods

Internal Call an Internal Function

Description

Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage

.Internal(call)

Arguments

call a call expression

See Also

.Primitive , .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methodsfor them:
[’ [[5 $7 [<' > [[<' > $<'9

length , length<- , dimnamesdimnamess-dim, dim<-, namesnames<;levels<- ,

¢, unlist , cbind, rbind ,

as.character , as.complex, as.double, as.integer , as.logical , as.raw, as.vector ,
is.array , is.matrix , is.na , is.nan, is.numeric , rep, seq.int (which dispatches methods
for "seq") and xtfrm

In addition, is.name is a synonym for is.symbol and dispatches methods for the latter.

Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic and
not group generic. Currently as.vector , cbind, rbind and unlist are the internal non-primitive
functions which are internally generic.

For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methodsfor the methods which are available.

invisible 235

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

X an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible , return , function .

Examples

These functions both return their argument
fl <- function(x) x

f2 <- function(x) invisible(x)

f1(1)# prints

f2(1)# does not

is.finite Finite, Infinite and NaN Numbers

Description

is.finite andis.infinite return a vector of the same length as X, indicating which elements are
finite (not infinite and not missing) or infinite.

Inf and -Inf are positive and negative infinity whereas NaNneans ‘Not a Number’. (These apply to
numeric values and real and imaginary parts of complex values but not to values of integer vectors.)
Inf and NaMre reserved words in the R language.

236 is.finite

Usage
is.finite(x)
is.infinite(x)
Inf

NaN
is.nan(x)

Arguments

X R object to be tested: the default methods handle atomic vectors.

Details

is.finite returns a vector of the same length as X the jth element of which is TRUE X[j] is finite
(i.e., it is not one of the values NANaNInf or -Inf) and FALSbtherwise. Complex numbers are
finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as X the jth element of which is TRUES X[j]
is infinite (i.e., equal to one of Inf or -Inf) and FALSEtherwise. This will be false unless X is
numeric or complex. Complex numbers are infinite if either the real or the imaginary part is.

is.nan tests if a numeric value is NaNDo not test equality to NaNor even use identical , since
systems typically have many different NaN values. One of these is used for the numeric missing
value NAand is.nan is false for that value. A complex number is regarded as NaNf either the real
or imaginary part is NaNbut not NA All elements of logical, integer and raw vectors are considered
not to be NaN.

All three functions accept NULlas input and return a length zero result. The default methods accept
character and raw vectors, and return FALSHor all entries. Prior to R version 2.14.0 they accepted
all input, returning FALSHEor most non-numeric values; cases which are not atomic vectors are now
signalled as errors.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

Value

A logical vector of the same length as x: dim, dimnameand namesttributes are preserved.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/- Inf and NaNs input or output.

The basic rule should be that calls and relations with Inf s really are statements with a proper
mathematical limit.

Computations involving NaNwill return NaNor perhaps NA which of those two is not guaranteed
and may depend on the R platform (since compilers may re-order computations).

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.
http://en.wikipedia.org/wiki/NaN

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).

http://en.wikipedia.org/wiki/NaN

is.function 237

Postscript version available at http://www.validlab.com/goldberg/paper.ps Extended PDF
version at http://www.validlab.com/goldberg/paper.pdf

The C99 function isfinite is used for is.finite if available.

See Also

NA ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric and complex.

Arithmetic , double.

Examples

pi / 0 ## = Inf a non-zero number divided by zero creates infinity
0/0 ## = NaN

1/0 + 1/0 # Inf
1/0 - 1/0 # NaN

stopifnot(
1/0 == Inf,
UInf ==
)
sin(Inf)
cos(Inf)
tan(Inf)

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage
is.function(x)
is.primitive(x)

Arguments

X an R object.

Details
is.primitive(x) tests if X is a primitive function (either a "builtin® or "special" as described
for typeof)? It is a primitive function.

Value

TRUH X is a (primitive) function, and FALSBtherwise.

http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf

238 is.object

Examples

is.function(1) # FALSE

is.function(is.primitive) # TRUE: it is a function, but ..
is.primitive(is.primitive) # FALSE:it's not a primitive one, whereas
is.primitive(is.function) # TRUE: that one *is*

is.language Is an Object a Language Object?

Description

is.language returns TRUE X is a variable namea call , or an expression.

Usage

is.language(x)

Arguments

X object to be tested.

Note

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

Il <- list(a = expression(x*2 - 2*x + 1), b = as.name("Jim"),
¢ = as.expression(exp(1)), d = call("sin", pi))

sapply(ll, typeof)

sapply(ll, mode)

stopifnot(sapply(ll, is.language))

is.object Is an Object ‘internally classed’?

Description

A function rather for internal use. It returns TRUE the object X has the R internal OBJECHit set,
and FALSbtherwise. The OBJECHit is set when a "class" attribute is added and removed when
that attribute is removed, so this is a very efficient way to check if an object has a class attribute.
(S4 objects always should.)

Usage

is.object(x)

is.R 239

Arguments

X object to be tested.

Note

This is a primitive function.

See Also

class, and methods
isS4.

Examples

is.object(1) # FALSE
is.object(as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage
is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS. In order
for code to be runnable in both R and S dialects previous to S-PLUS 8.0, your code must either
define is.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {

R-specific code

} else {

S-version of code

}
Value

is.R returns TRUE we are using R and FALSkbtherwise.

See Also

R.version , system

Examples

X <- stats::runif(20); small <- x < 0.4
In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seq(along=small)[small]

240 is.recursive

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUH X is an atomic vector (or NUL)and FALSBtherwise.

is.recursive returns TRUK X has a recursive (list-like) structure and FALSbtherwise.

Usage

is.atomic(x)
is.recursive(x)

Arguments
X object to be tested.
Details
is.atomic is true for the atomic vector types ("logical” , "integer" , "numeric", "complex”,

"character" and "raw") and NULL

Most types of objects are regarded as recursive, except for atomic vector types, NULland symbols
(as given by as.name.

These are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list ,is.language , etc, and the demo("is.things")

Examples

require(stat