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Chapter 1

Introduction

FIAT (FInite element Automatic Tabulator) is a Python package for defining and evaluating
a wide range of different finite element basis functions for numerical partial differential equa-
tions. It is intended to make “difficult” elements such as high-order Brezzi-Douglas-Marini []
elements usable by providing abstractions so that they may be implemented succinctly and
hence treated as a black box. FIAT is intended for use at two different levels. For one, it is
designed to provide a standard API for finite element bases so that programmers may use
whatever elements they need in their code. At a lower level, it provides necessary infrastruc-
ture to rapidly deploy new kinds of finite elements without expensive symbolic computation
or tedious algebraic manipulation. It is my goal that a large number of people use FIAT
without ever knowing it. Thanks to several ongoing projects such as Sundance [], FFC [],
and PETSc [], it is becoming possible to to define finite element methods using mathematical
notation in some high-level or domain-specific language. The primary shortcoming of these
projects is their lack of support for general elements. It is one thing to “provide hooks” for
general elements, but absent a tool such as FIAT, these hooks remain mainly empty. As
these projects mature, I hope to expose users of the finite element method to the exotic
world of potentially high-degree finite element on unstructured grids using the best elements
in H1, H(div), and H(curl).

In this brief (and still developing) guide, I will first present the high-level API for users who
wish to instantiate a finite element on a reference domain and evaluate its basis functions
and derivatives at some quadrature points. Then, I will explain some of the underlying
infrastructure so as to demonstrate how to add new elements.
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Chapter 2

Installation

FIAT uses the standard Python distutils tools. From the top directory, one executes
python setup.py install. This will put FIAT into the site-packages directory. Super-
user permission (such as su or sudo) may be required to write to this directory. For more
configuration options, one may type python setup.py --help or consult the online Python
documentation at http://docs.python.org/inst/inst.html

FIAT requires the commonly used Numeric package.
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Chapter 3

Using FIAT: A tutorial with Lagrange
elements

3.1 Importing FIAT

FIAT is organized as a package in Python, consisting of several modules. In order to get
some of the packages, we use the line

from FIAT import Lagrange, quadrature, shapes

This loads several modules for the Lagrange elements, quadrature rules, and the simplicial
element shapes which FIAT implements. The roles each of these plays will become clear
shortly.

3.2 Important note

Throughout, FIAT defines the reference elements based on the interval (−1, 1) rather than
the more common (0, 1). So, the one-dimensional reference element is (−1, 1), the three
vertices of the reference triangle are (−1,−1), (1,−1), (1,−1), and the four vertices of the
reference tetrahedron are (−1,−1,−1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).
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3.3 Instantiating elements

FIAT uses a lightweight object-oriented infrastructure to define finite elements. The Lagrange
module contains a class Lagrange modeling the Lagrange finite element family. This class
is a subclass of some FiniteElement class contained in another module (polynomial to be
precise). So, having imported the Lagrange module, we can create the Lagrange element of
degree 2 on triangles by

shape = shapes.TRIANGLE

degree = 2

U = Lagrange.Lagrange( shape , degree )

Here, shapes.TRIANGLE is an integer code indicating the two dimensional simplex. shapes

also defines LINE and TETRAHEDRON. Most of the upper-level interface to FIAT is dimension-
ally abstracted over element shape.

The class FiniteElement supports three methods, modeled on the abstract definition of
Ciarlet. These methods are domain_shape(), function_space(), and dual_basis(). The
first of these returns the code for the shape and the second returns the nodes of the finite
element (including information related to topological association of nodes with mesh entities,
needed for creating degree of freedom orderings).

3.4 Quadrature rules

FIAT implements arbitrary-order collapsed quadrature, as discussed in Karniadakis and
Sherwin [], for the simplex of dimension one, two, or three. The simplest way to get a
quadrature rule is through the function make_quadrature(shape,m), which takes a shape
code and an integer indicating the number of points per direction. For building element
matrices using quadratics, we will typically need a second or third order integration rule, so
we can get such a rule by

>>> Q = quadrature.make_quadrature( shape , 2 )

This uses two points in each direction on the reference square, then maps them to the ref-
erence triangle. We may get a Numeric.array of the quadrature weights with the method
Q.get_weights() and a list of tuples storing the quadrature points with the method Q.get_points().
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3.5 Tabulation

FIAT provides functions for tabulating the element basis functions and their derivatives. To
get the FunctionSpace object, we do

>>> Ufs = U.function_space()

To get the values of each basis function at each of the quadrature points, we use the
tabulate() method

>>> Ufs.tabulate( Q.get_points() )

array([[ 0.22176167, -0.12319761, -0.11479229, -0.06377178],

[-0.11479229, -0.06377178, 0.22176167, -0.12319761],

[-0.10696938, 0.18696938, -0.10696938, 0.18696938],

[ 0.11074286, 0.19356495, 0.41329796, 0.72239423],

[ 0.41329796, 0.72239423, 0.11074286, 0.19356495],

[ 0.47595918, 0.08404082, 0.47595918, 0.08404082]])

This returns a two-dimensional Numeric.array with rows for each basis function and columns
for each input point.

Also, finite element codes require tabulation of the basis functions’ derivatives. Each FunctionSpace

object also provides a method tabulate_jet(i,xs) that returns a list of Python dictionar-
ies. The ith entry of the list is a dictionary storing the values of all ith order derivatives.
Each dictionary maps a multiindex (a tuple of length i) to the table of the associated partial
derivatives of the basis functions at those points. For example,

>>> Ufs_jet = Ufs.tabulate_jet( 1 , Q.get_points() )

tabulates the zeroth and first partial derivatives of the function space at the quadrature
points. Then,

>>> Ufs_jet[0]

{(0, 0): array([[ 0.22176167, -0.12319761, -0.11479229, -0.06377178],

[-0.11479229, -0.06377178, 0.22176167, -0.12319761],

[-0.10696938, 0.18696938, -0.10696938, 0.18696938],

[ 0.11074286, 0.19356495, 0.41329796, 0.72239423],

[ 0.41329796, 0.72239423, 0.11074286, 0.19356495],

[ 0.47595918, 0.08404082, 0.47595918, 0.08404082]])}
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gives us a dictionary mapping the only zeroth-order partial derivative to the values of the
basis functions at the quadrature points. More interestingly, we may get the first derivatives
in the x- and y- directions with

>>> Ufs_jet[1][(1,0)]

array([[-0.83278049, -0.06003983, 0.14288254, 0.34993778],

[-0.14288254, -0.34993778, 0.83278049, 0.06003983],

[ 0. , 0. , 0. , 0. ],

[ 0.31010205, 1.28989795, 0.31010205, 1.28989795],

[-0.31010205, -1.28989795, -0.31010205, -1.28989795],

[ 0.97566304, 0.40997761, -0.97566304, -0.40997761]])

>>> Ufs_jet[1][(0,1)]

array([[ -8.32780492e-01, -6.00398310e-02, 1.42882543e-01, 3.49937780e-01],

[ 7.39494156e-17, 4.29608279e-17, 4.38075188e-17, 7.47961065e-17],

[ -1.89897949e-01, 7.89897949e-01, -1.89897949e-01, 7.89897949e-01],

[ 3.57117457e-01, 1.50062220e-01, 1.33278049e+00, 5.60039831e-01],

[ 1.02267844e+00, -7.29858118e-01, 4.70154051e-02, -1.13983573e+00],

[ -3.57117457e-01, -1.50062220e-01, -1.33278049e+00, -5.60039831e-01]])
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Chapter 4

Lower-level API

Not only does FIAT provide a high-level library interface for users to evaluate existing finite
element bases, but it also provides lower-level tools. Here, we survey these tools module-by-
module.

4.1 shapes.py

FIAT currenly only supports simplicial reference elements, but does so in a fairly dimensionally-
independent way (up to tetrahedra).

4.2 jacobi.py

This is a low-level module that tabulates the Jacobi polynomials and their derivatives, and
also provides Gauss-Jacobi points. This module will seldom if ever be imported directly by
users. For more information, consult the documentation strings and source code.

4.3 expansions.py

FIAT relies on orthonormal polynomial bases. These are constructed by mapping appropriate
Jacobi polynomials from the reference cube to the reference simplex, as described in the
reference of Karniadakis and Sherwin []. The module expansions.py implements these
orthonormal expansions. This is also a low-level module that will infrequently be used
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directly, but it forms the backbone for the module polynomial.py

4.4 quadrature.py

FIAT makes heavy use of numerical quadrature, both internally and in the user interface.
Internally, many function spaces or degrees of freedom are defined in terms of integral quan-
tities having certain behavior. Keeping with the theme of arbitrary order approximations,
FIAT provides arbitrary order quadrature rules on the reference simplices. These are con-
structed by mapping Gauss-Jacobi rules from the reference cube. While these rules are
suboptimal in terms of order of accuracy achieved for a given number of points, they may
be generated mechanically in a simpler way than symmetric quadrature rules. In the future,
we hope to have the best symmetric existing rules integrated into FIAT.

Unless one is modifying the quadrature rules available, all of the functionality of quadrature.py
may be accessed through the single function make_quadrature. This function takes the code
for a shape and the number of points in each coordinate direction and returns a quadrature
rule. Internally, there is a lightweight class hierarchy rooted at an abstract QuadratureRule
class, where the quadrature rules for different shapes are actually different classes. However,
the dynamic typing of Python relieves the user from these considerations. The interface to
an instance consists in the following methods

• get_points(), which returns a list of the quadrature points, each stored as a tuple.
For dimensional uniformity, one-dimensional quadrature rules are stored as lists of
1-tuples rather than as lists of numbers.

• get_weights(), which returns a Numeric.array of quadrature weights.

• integrate(f), which takes a callable object f and returns the (approximate) integral
over the domain

• Also, the __call__ method is overloaded so that a quadrature rule may be applied to
a callable object. This is syntactic sugar on top of the integrate method.

4.5 polynomial.py

The polynomial module provides the bulk of the classes needed to represent polynomial
bases and finite element spaces. The class PolynomialBase provides a high-level access to
the orthonormal expansion bases; it is typically not instantiated directly in an application,
but all other kinds of polynomial bases are constructed as linear combinations of the members
of a PolynomialBase instance. The module provides classes for scalar and vector-valued
polynomial sets, as well as an interface to individual polynomials and finite element spaces.
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4.5.1 PolynomialBase

4.5.2 PolynomialSet

The PolynomialSet function is a factory function interface into the hierarchy

15





Chapter 5

Wish list and open problems

While FIAT is highly functional as a tool for tabulating basis functions at quadrature points,
there are a lot of interesting things to do. In case anybody wants to help out, I have chosen
to describe some of these issues here.

5.1 Stable/fast VDM inversion

5.2 Symmetric quadrature rules

5.3 Declarative top-level language

5.4 Integration with SMART-type tools
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